Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

Adjacency relations induced by some Alexandroff topologies on Zn

  • Received: 26 January 2022 Revised: 28 March 2022 Accepted: 28 March 2022 Published: 14 April 2022
  • MSC : 54A05, 54J05, 68U05

  • Let (X,T) be an Alexandroff space. We define the adjacency relation ART on X induced by T as the irreflexive relation defined for xy in X by:

    (x,y)ARTifandonlyifxSNT(y)orySNT(x),

    where SNT(z) is the smallest open set containing z in (X,T) and z{x,y}. Two families of Alexandroff topologies (Tk,kZ) and (Tk,kZ) have been recently introduced on Z. The aim of this paper is to show that for each nonzero integers k, the topologies Tk,Tk, Tk, and Tk are homeomorphic. The adjacency relations induced by the product topologies (Tk)n and (Tk)n are studied and compared with classical ones. We also show that the adjacency relations induced by Tk,Tk, Tk, and Tk are isomorphic. Then, note that the adjacency relations on Z induced by these topologies, k0, are different from each other.

    Citation: Sang-Eon Han. Adjacency relations induced by some Alexandroff topologies on Zn[J]. AIMS Mathematics, 2022, 7(7): 11581-11596. doi: 10.3934/math.2022645

    Related Papers:

    [1] Rou Lin, Min Zhao, Jinlu Zhang . Random uniform exponential attractors for non-autonomous stochastic Schrödinger lattice systems in weighted space. AIMS Mathematics, 2023, 8(2): 2871-2890. doi: 10.3934/math.2023150
    [2] Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040
    [3] Xin Liu . Stability of random attractors for non-autonomous stochastic p-Laplacian lattice equations with random viscosity. AIMS Mathematics, 2025, 10(3): 7396-7413. doi: 10.3934/math.2025339
    [4] Xintao Li, Yunlong Gao . Random uniform attractors for fractional stochastic FitzHugh-Nagumo lattice systems. AIMS Mathematics, 2024, 9(8): 22251-22270. doi: 10.3934/math.20241083
    [5] Chunting Ji, Hui Liu, Jie Xin . Random attractors of the stochastic extended Brusselator system with a multiplicative noise. AIMS Mathematics, 2020, 5(4): 3584-3611. doi: 10.3934/math.2020233
    [6] Xintao Li, Lianbing She, Rongrui Lin . Invariant measures for stochastic FitzHugh-Nagumo delay lattice systems with long-range interactions in weighted space. AIMS Mathematics, 2024, 9(7): 18860-18896. doi: 10.3934/math.2024918
    [7] Hamood Ur Rehman, Aziz Ullah Awan, Sayed M. Eldin, Ifrah Iqbal . Study of optical stochastic solitons of Biswas-Arshed equation with multiplicative noise. AIMS Mathematics, 2023, 8(9): 21606-21621. doi: 10.3934/math.20231101
    [8] Xiaobin Yao . Random attractors for non-autonomous stochastic plate equations with multiplicative noise and nonlinear damping. AIMS Mathematics, 2020, 5(3): 2577-2607. doi: 10.3934/math.2020169
    [9] Xiao Bin Yao, Chan Yue . Asymptotic behavior of plate equations with memory driven by colored noise on unbounded domains. AIMS Mathematics, 2022, 7(10): 18497-18531. doi: 10.3934/math.20221017
    [10] Li Yang . Pullback random attractors of stochastic strongly damped wave equations with variable delays on unbounded domains. AIMS Mathematics, 2021, 6(12): 13634-13664. doi: 10.3934/math.2021793
  • Let (X,T) be an Alexandroff space. We define the adjacency relation ART on X induced by T as the irreflexive relation defined for xy in X by:

    (x,y)ARTifandonlyifxSNT(y)orySNT(x),

    where SNT(z) is the smallest open set containing z in (X,T) and z{x,y}. Two families of Alexandroff topologies (Tk,kZ) and (Tk,kZ) have been recently introduced on Z. The aim of this paper is to show that for each nonzero integers k, the topologies Tk,Tk, Tk, and Tk are homeomorphic. The adjacency relations induced by the product topologies (Tk)n and (Tk)n are studied and compared with classical ones. We also show that the adjacency relations induced by Tk,Tk, Tk, and Tk are isomorphic. Then, note that the adjacency relations on Z induced by these topologies, k0, are different from each other.



    Lattice dynamical systems arise from a variety of applications in electrical engineering, biology, chemical reaction, pattern formation and so on, see, e.g., [4,7,14,19,33]. Many researchers have discussed broadly the deterministic models in [6,12,34,39], etc. Stochastic lattice equations, driven by additive independent white noise, was discussed for the first time in [2], followed by extensions in [8,13,15,16,21,23,27,32,35,36,37,38,40].

    In this paper, we will study the long term behavior of the following second order non-autonomous stochastic lattice system driven by additive white noise: for given τR, t>τ and iZ,

    {¨u+νA˙u+h(˙u)+Au+λu+f(u)=g(t)+a˙ω(t),u(τ)=(uτi)iZ=uτ,˙u(τ)=(u1τi)iZ=u1τ, (1.1)

    where u=(ui)iZ is a sequence in l2, ν and λ are positive constants, ˙u=(˙ui)iZ and ¨u=(¨ui)iZ denote the fist and the second order time derivatives respectively, Au=((Au)i)iZ, A˙u=((A˙u)i)iZ, A is a linear operators defined in (2.2), a=(ai)iZl2, f(u)=(fi(ui))iZ and h(˙u)=(hi(˙ui))iZ satisfy certain conditions, g(t)=(gi(t))iZL2loc(R,l2) is a given time dependent sequence, and ω(t)=W(t,ω) is a two-sided real-valued Wiener process on a probability space.

    The approximation we use in the paper was first proposed in [18,22] where the authors investigated the chaotic behavior of random equations driven by Gδ(θtω). Since then, their work was extended by many scholars. To the best of my knowledge, there are three forms of Wong-Zakai approximations Gδ(θtω) used recenly, Euler approximation of Brownian [3,10,17,20,25,28,29,30], Colored noise [5,11,26,31] and Smoothed approximation of Brownian motion by mollifiers [9]. In this paper, we will focus on Euler approximation of Brownian and compare the long term behavior of system (1.1) with pathwise deterministic system given by

    {¨uδ+νA˙uδ+h(˙uδ)+Auδ+λuδ+f(uδ)=g(t)+aGδ(θtω),uδ(τ)=(uδτi)iZ=uδτ,˙uδ(τ)=(uδ,1τi)iZ=uδ,1τ, (1.2)

    for δR with δ0, τR, t>τ and iZ, where Gδ(θtω) is defined in (3.2). Note that the solution of system (1.2) is written as uδ to show its dependence on δ.

    This paper is organized as follows. In Section 2, we prove the existence and uniqueness of random attractors of system (1.1). Section 3 is devoted to consider the the Wong-Zakai approximations associated with system (1.1). In Section 4, we establish the convergence of solutions and attractors for approximate system (1.2) when δ0.

    Throughout this paper, the letter c and ci(i=1,2,) are generic positive constants which may change their values from line to line.

    In this section, we will define a continuous cocycle for second order non-autonomous stochastic lattice system (1.1), and then prove the existence and uniqueness of pullback attractors.

    A standard Brownian motion or Wiener process (Wt)tR (i.e., with two-sided time) in R is a process with W0=0 and stationary independent increments satisfying WtWsN(0,|ts|I). F is the Borel σ-algebra induced by the compact-open topology of Ω, and P is the corresponding Wiener measure on (Ω,F), where

    Ω={ωC(R,R):ω(0)=0},

    the probability space (Ω,F,P) is called Wiener space. Define the time shift by

    θtω()=ω(+t)ω(t),ωΩ, tR.

    Then (Ω,F,P,{θt}tR) is a metric dynamical system (see [1]) and there exists a {θt}tR-invariant subset ˜ΩΩ of full measure such that for each ωΩ,

    ω(t)t0ast±. (2.1)

    For the sake of convenience, we will abuse the notation slightly and write the space ˜Ω as Ω.

    We denote by

    lp={u|u=(ui)iZ,uiR, iZ|ui|p<+},

    with the norm as

    upp=iZ|ui|p.

    In particular, l2 is a Hilbert space with the inner product (,) and norm given by

    (u,v)=iZuivi,u2=iZ|ui|2,

    for any u=(ui)iZ, v=(vi)iZl2.

    Define linear operators B, B, and A acting on l2 in the following way: for any u=(ui)iZl2,

    (Bu)i=ui+1ui,(Bu)i=ui1ui,

    and

    (Au)i=2uiui+1ui1. (2.2)

    Then we find that A=BB=BB and (Bu,v)=(u,Bv) for all u,vl2.

    Also, we let Fi(s)=s0fi(r)dr, h(˙u)=(hi(˙ui))iZ, f(u)=(fi(ui))iZ with fi,hiC1(R,R) satisfy the following assumptions:

    |fi(s)|α1(|s|p+|s|), (2.3)
    sfi(s)α2Fi(s)α3|s|p+1, (2.4)

    and

    hi(0)=0,0<h1hi(s)h2,sR, (2.5)

    where p>1, αi and hj are positive constants for i=1,2,3 and j=1,2.

    In addition, we let

    β=h1λ4λ+h22,β<1ν, (2.6)

    and

    σ=h1λ4λ+h22(h2+4λ+h22). (2.7)

    For any u,vl2, we define a new inner product and norm on l2 by

    (u,v)λ=(1νβ)(Bu,Bv)+λ(u,v),u2λ=(u,u)λ=(1νβ)Bu2+λu2.

    Denote

    l2=(l2,(,),),l2λ=(l2,(,)λ,λ).

    Then the norms and λ are equivalent to each other.

    Let E=l2λ×l2 endowed with the inner product and norm

    (ψ1,ψ2)E=(u(1),u(2))λ+(v(1),v(2)),ψ2E=u2λ+v2,

    for ψj=(u(j),v(j))T=((u(j)i),(v(j)i))TiZE, j=1,2,ψ=(u,v)T=((ui),(vi))TiZE.

    A family D={D(τ,ω):τR,ωΩ} of bounded nonempty subsets of E is called tempered (or subexponentially growing) if for every ϵ>0, the following holds:

    lim

    where \|D\| = \mathop{\sup}\limits_{x\in D}\|x\|_{E} . In the sequel, we denote by \mathcal{D} the collection of all families of tempered nonempty subsets of E , i.e.,

    \begin{equation} \nonumber \mathcal{D} = \{D = \{D(\tau,\omega):\tau\in\mathbb{R},\omega\in\Omega\}:D\; \text{is tempered in}\; E\}. \end{equation}

    The following conditions will be needed for g when deriving uniform estimates of solutions, for every \tau\in\mathbb{R} ,

    \begin{equation} \int_{-\infty}^{\tau}e^{\gamma s}\|g(s)\|^{2}ds < \infty, \end{equation} (2.8)

    and for any \varsigma > 0

    \begin{equation} \lim\limits_{t\rightarrow -\infty}e^{\varsigma t}\int_{-\infty}^{0}e^{ \gamma s}\|g(s+t)\|^{2}ds = 0, \end{equation} (2.9)

    where \gamma = \min\{\frac{\sigma}{2}, \frac{\alpha_{2}\beta}{p+1}\} .

    Let \bar{v} = \dot{u}+\beta u and \bar{\varphi} = (u, \bar{v})^{T} , then system (1.1) can be rewritten as

    \begin{eqnarray} \dot{\bar{\varphi}}+L_{1}(\bar{\varphi}) = H_{1}(\bar{\varphi})+G_{1}(\omega), \end{eqnarray} (2.10)

    with initial conditions

    \bar{\varphi}_{\tau} = (u_{\tau},\bar{v}_{\tau})^{T} = (u_{\tau},u_{\tau}^{1}+\beta u_{\tau})^{T},

    where

    L_{1}(\bar{\varphi}) = \left( \begin{array}{ccc} \beta u-\bar{v} \\ (1-\nu\beta)Au+\nu A\bar{v}+\lambda u +\beta^{2} u-\beta\bar{v} \end{array} \right) + \left( \begin{array}{ccc} 0 \\ h(\bar{v}-\beta u) \end{array} \right) ,
    H_{1}(\bar{\varphi}) = \left( \begin{array}{ccc} 0 \\ -f(u)+g(t) \end{array} \right),\; \; \; \; G_{1}(\omega) = \left( \begin{array}{ccc} 0 \\ a\dot\omega(t) \end{array} \right) .

    Denote

    v(t) = \bar{v}(t)-a\omega(t) \; \; \text{and}\; \; \varphi = (u,v)^{T}.

    By (2.10) we have

    \begin{eqnarray} \dot{\varphi}+L(\varphi) = H(\varphi)+G(\omega), \end{eqnarray} (2.11)

    with initial conditions

    \varphi_{\tau} = (u_{\tau},v_{\tau})^{T} = (u_{\tau},u_{\tau}^{1}+\beta u_{\tau}-a\omega(\tau))^{T},

    where

    L(\varphi) = \left( \begin{array}{ccc} \beta u-v \\ (1-\nu\beta) Au+\nu Av+\lambda u+\beta^{2} u-\beta v \end{array} \right) + \left( \begin{array}{ccc} 0 \\ h(v-\beta u+a\omega(t)) \end{array} \right) ,
    H(\varphi) = \left( \begin{array}{ccc} 0 \\ -f(u)+g(t) \end{array} \right),\; \; \; \; G(\omega) = \left( \begin{array}{ccc} a\omega(t)\\ \beta a\omega(t)-\nu Aa\omega(t) \end{array} \right) .

    Note that system (2.11) is a deterministic functional equation and the nonlinearity in (2.11) is locally Lipschitz continuous from E to E . Therefore, by the standard theory of functional differential equations, system (2.11) is well-posed. Thus, we can define a continuous cocycle \Phi_{0}:\mathbb{R}^{+}\times\mathbb{R}\times \Omega\times E\rightarrow E associated with system (2.10), where for \tau\in\mathbb{R} , t\in\mathbb{R}^{+} and \omega\in\Omega

    \begin{equation} \begin{split}\nonumber \Phi_{0}(t,\tau,\omega,\bar{\varphi}_{\tau})& = \bar{\varphi}(t+\tau,\tau,\theta_{-\tau}\omega,\bar{\varphi}_{\tau})\\ & = (u(t+\tau,\tau,\theta_{-\tau}\omega,u_{\tau}),\bar{v}(t+\tau,\tau,\theta_{-\tau}\omega,\bar{v}_{\tau}))^{T}\\ & = (u(t+\tau,\tau,\theta_{-\tau}\omega,u_{\tau}),v(t+\tau,\tau,\theta_{-\tau}\omega,v_{\tau})+a(\omega(t)-\omega(-\tau)))^{T}\\ & = \varphi(t+\tau,\tau,\theta_{-\tau}\omega,\varphi_{\tau})+(0,a(\omega(t)-\omega(-\tau)))^{T}, \end{split} \end{equation}

    where v_{\tau} = \bar{v}_{\tau}+a\omega(-\tau) .

    Lemma 2.1. Suppose that (2.3)–(2.8) hold. Then for every \tau\in\mathbb{R} , \omega\in\Omega , and T > 0 , there exists c = c(\tau, \omega, T) > 0 such that for all t\in[\tau, \tau+T] , the solution \varphi of system (2.11) satisfies

    \begin{equation} \begin{split}\nonumber \|\varphi(t,\tau,\omega,\varphi_{\tau})\|^{2}_{E} +\int_{\tau}^{t}\|\varphi(s,\tau,\omega,\varphi_{\tau})\|^{2}_{E}ds \leq& c\int^{t}_{\tau}\big(\|g(s)\|^{2}+|\omega(s)|^{2}+| \omega(s)|^{p+1}\big)ds\\ &+c\big(\|\varphi_{\tau}\|^{2}_{E}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau,i})\big). \end{split} \end{equation}

    Proof. Taking the inner product (\cdot, \cdot)_{E} on both side of the system (2.11) with \varphi , it follows that

    \begin{equation} \begin{split} &\frac{1}{2}\frac{d}{dt}\|\varphi\|^{2}_{E}+(L(\varphi),\varphi)_{E} = (H(\varphi),\varphi)_{E}+(G(\omega),\varphi)_{E}. \end{split} \end{equation} (2.12)

    For the second term on the left-hand side of (2.12), we have

    \begin{equation} \begin{split}\nonumber (L(\varphi),\varphi)_{E} = \beta\|u\|^{2}_{\lambda}+\beta^{2}(u,v)-\beta\|v\|^{2}+\nu(Av,v)+(h(v-\beta u+a\omega(t)),v). \end{split} \end{equation}

    By the mean value theorem and (2.5), there exists \xi_{i}\in(0, 1) such that

    \begin{equation} \begin{split}\nonumber &\beta^{2}(u,v)+(h(v-\beta u+a\omega(t)),v)\\ & = \beta^{2}(u,v) +\sum\limits_{i\in\mathbb{Z}}h'_{i}(\xi_{i}(v_{i}-\beta u_{i}+a_{i}\omega(t)))(v_{i}-\beta u_{i}+a_{i}\omega(t))v_{i}\\ &\geq (\beta^{2}-h_{2}\beta)\|u\|\|v\|+h_{1}\|v\|^{2}-h_{2}|(a\omega(t),v)|. \end{split} \end{equation}

    Then

    \begin{equation} \begin{split}\nonumber (L(\varphi),\varphi)_{E}-\sigma\|\varphi\|^{2}_{E}-\frac{h_{1}}{2}\|v\|^{2} \geq &(\beta-\sigma)\|u\|^{2}_{\lambda}+(\frac{h_{1}}{2}-\beta-\sigma)\|v\|^{2}\\&- \frac{\beta h_{2}}{\sqrt{\lambda}}\|u\|_{\lambda}\|v\|-h_{2}|(a\omega(t),v)|, \end{split} \end{equation}

    which along with (2.6) and (2.7) implies that

    \begin{equation} \begin{split} (L(\varphi),\varphi)_{E}\geq\sigma\|\varphi\|^{2}_{E}+\frac{h_{1}}{2}\|v\|^{2} -\frac{\sigma+h_{1}}{6}\|v\|^{2}-c|\omega(t)|^{2}\|a\|^{2}. \end{split} \end{equation} (2.13)

    As to the first term on the right-hand side of (2.12), by (2.3) and (2.4) we get

    \begin{equation} \begin{split} (H(\varphi),\varphi)_{E}& = (-f(u),\dot{u}+\beta u-a\omega(t))+(g(t),v)\\ &\leq-\frac{d}{dt}\big(\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{i})\big)-\alpha_{2}\beta\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{i}) +\alpha_{1}\sum\limits_{i\in\mathbb{Z}}(|u_{i}|^{p}+|u_{i}|)|a_{i}\omega(t)|+(g(t),v)\\ &\leq-\frac{d}{dt}\big(\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{i})\big)-\frac{\alpha_{2}\beta}{p+1}\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{i}) +c|\omega(t)|^{p+1}\|a\|^{p+1}\\ &\quad+\frac{\sigma\lambda}{4}\|u\|^{2}+c\|a\|^{2}|\omega(t)|^{2}+\frac{\sigma+h_{1}}{6}\|v\|^{2}+c\|g(t)\|^{2}. \end{split} \end{equation} (2.14)

    The last term of (2.12) is bounded by

    \begin{equation} \begin{split} (G(\omega),\varphi)_{E}& = \omega(t)(a,u)_{\lambda}+\beta \omega(t)(a,v)-\nu\omega(t)(Aa,v)\\ &\leq \frac{\sigma}{4}\|u\|^{2}_{\lambda}+\frac{1}{\sigma}\|a\|^{2}_{\lambda}|\omega(t)|^{2}+\frac{\sigma+h_{1}}{6}\|v\|^{2}+c|\omega(t)|^{2}\|a\|^{2}. \end{split} \end{equation} (2.15)

    It follows from (2.12)–(2.15) that

    \begin{equation} \begin{split} &\frac{d}{dt}\Big(\|\varphi\|_{E}^{2}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{i})\Big) +\gamma\Big(\|\varphi\|_{E}^{2}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{i})\Big)+\gamma\|\varphi\|_{E}^{2}\\ &\leq c\Big(\|g(t)\|^{2}+|\omega(t)|^{2}+|\omega(t)|^{p+1}\Big), \end{split} \end{equation} (2.16)

    where \gamma = \min\{\frac{\sigma}{2}, \frac{\alpha_{2}\beta}{p+1}\} . Multiplying (2.16) by e^{\gamma t} and then integrating over (\tau, t) with t\geq\tau , we get for every \omega\in\Omega

    \begin{equation} \begin{split} &\|\varphi(t,\tau,\omega,\varphi_{\tau})\|_{E}^{2} +\gamma\int^{t}_{\tau}e^{\gamma(s-t)}\|\varphi(s,\tau,\omega,\varphi_{\tau})\|_{E}^{2}ds\\ &\leq e^{\gamma(\tau-t)}\Big(\|\varphi_{\tau}\|_{E}^{2}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau,i})\Big)+c\int^{t}_{\tau}e^{\gamma(s-t)}\Big(\|g(s)\|^{2}+|\omega(s)|^{2}+|\omega(s)|^{p+1}\Big)ds, \end{split} \end{equation} (2.17)

    which implies desired result.

    Lemma 2.2. Suppose that (2.3)–(2.9) hold. Then the continuous cocycle \Phi_{0} associated with system (2.10) has a closed measurable \mathcal{D} -pullback absorbing set K_{0} = \{K_{0}(\tau, \omega):\tau\in\mathbb{R}, \omega\in\Omega\}\in\mathcal{D} , where for every \tau\in\mathbb{R} and \omega\in\Omega

    \begin{equation} \begin{split} K_{0}(\tau,\omega) = \{\bar{\varphi}\in E:\|\bar{\varphi}\|^{2}_{E}\leq R_{0}(\tau,\omega)\}, \end{split} \end{equation} (2.18)

    where \bar{\varphi}_{\tau-t}\in D(\tau-t, \theta_{-t}\omega) and R_{0}(\tau, \omega) is given by

    \begin{equation} \begin{split} R_{0}(\tau,\omega) = c+c|\omega(-\tau)|^{2}+c\int^{0}_{-\infty}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\omega(s)-\omega(-\tau)|^{2}+| \omega(s)-\omega(-\tau)|^{p+1}\Big)ds, \end{split} \end{equation} (2.19)

    where c is a positive constant independent of \tau , \omega and \mathcal{D} .

    Proof. By (2.17), we get for every \tau\in\mathbb{R} , t\in\mathbb{R}^{+} and \omega\in\Omega

    \begin{equation} \begin{split} &\|\varphi(\tau,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})\|^{2}_{E}+\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\varphi(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})\|^{2}_{E}ds\\ &\leq e^{-\gamma t}\Big(\|\varphi_{\tau-t}\|^{2}_{E}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\Big)\\ &\quad +c\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\Big(\|g(s)\|^{2}+|\omega(s-\tau)-\omega(-\tau)|^{2}+|\omega(s-\tau)-\omega(-\tau)|^{p+1}\Big)ds\\ &\leq e^{-\gamma t}\Big(\|\varphi_{\tau-t}\|^{2}_{E}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\Big)\\ &\quad +c\int^{0}_{-t}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\omega(s)-\omega(-\tau)|^{2}+| \omega(s)-\omega(-\tau)|^{p+1}\Big)ds. \end{split} \end{equation} (2.20)

    By (2.1) and (2.8), the last integral on the right-hand side of (2.20) is well defined. For any s\geq \tau-t ,

    \begin{equation} \begin{split}\nonumber &\bar{\varphi}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t}) = \varphi(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})+(0,a(\omega(s-\tau)-\omega(-\tau)))^{T}, \end{split} \end{equation}

    which along with (2.20) implies that

    \begin{equation} \begin{split} &\|\bar{\varphi}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E} +\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\bar{\varphi}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E}ds\\ &\leq2\|\varphi(\tau,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})\|^{2}_{E} +2\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\varphi(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})\|^{2}_{E}ds\\ &\quad+2\|a\|^{2}\Big(|\omega(-\tau)|^{2}+\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}|\omega(s-\tau)-\omega(-\tau)|^{2}ds\Big)\\ &\leq 4e^{-\gamma t}\Big(\|\bar{\varphi}_{\tau-t}\|^{2}_{E}+\|a\|^{2}|\omega(-t)-\omega(-\tau)|^{2}+\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\Big)+c|\omega(-\tau)|^{2}\\ &\quad +c\int^{0}_{-\infty}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\omega(s)-\omega(-\tau)|^{2}+| \omega(s)-\omega(-\tau)|^{p+1}\Big)ds.\\ \end{split} \end{equation} (2.21)

    By (2.3) and (2.4) we have

    \begin{equation} \begin{split} \sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\leq \frac{1}{\alpha_{2}}\sum\limits_{i\in\mathbb{Z}} f_{i}(u_{\tau-t,i})u_{\tau-t, i} \leq\frac{1}{\alpha_{2}}\max\limits_{-\|u_{\tau-t}\|\leq s\leq\|u_{\tau-t}\|}|f'_{i}(s)|\|u_{\tau-t}\|^{2}. \end{split} \end{equation} (2.22)

    Using \bar{\varphi}_{\tau-t}\in D(\tau-t, \theta_{-t}\omega) , (2.1) and (2.22), we find

    \begin{equation} \begin{split} \limsup\limits_{t\rightarrow +\infty}4e^{-\gamma t}\Big(\|\bar{\varphi}_{\tau-t}\|^{2}_{E}+\|a\|^{2}|\omega(-t)-\omega(-\tau)|^{2}+\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\Big) = 0, \end{split} \end{equation} (2.23)

    which along with (2.21) implies that there exists T = T(\tau, \omega, D) > 0 such that for all t\geq T ,

    \begin{equation} \begin{split} &\|\bar{\varphi}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E} +\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\bar{\varphi}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E}ds\\ &\leq c+c|\omega(-\tau)|^{2}+c\int^{0}_{-\infty}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\omega(s)-\omega(-\tau)|^{2}+| \omega(s)-\omega(-\tau)|^{p+1}\Big)ds, \end{split} \end{equation} (2.24)

    where c is a positive constant independent of \tau , \omega and D . Note that K_{0} given by (2.18) is closed measurable random set in E . Given \tau\in\mathbb{R} , \omega\in\Omega , and D\in\mathcal{D} , it follows from (2.24) that for all t\geq T ,

    \begin{equation} \begin{split} \Phi_{0}(t,\tau-t,\theta_{-t}\omega,D(\tau-t,\theta_{-t}\omega))\subseteq K_{0}(\tau,\omega), \end{split} \end{equation} (2.25)

    which implies that K_{0} pullback attracts all elements in \mathcal{D} . By (2.1) and (2.9), one can easily check that K_{0} is tempered, which along with (2.25) completes the proof.

    Next, we will get uniform estimates on the tails of solutions of system (2.10).

    Lemma 2.3. Suppose that (2.3)–(2.9) hold. Then for every \tau\in\mathbb{R} , \omega\in\Omega , D = \{D(\tau, \omega):\tau\in\mathbb{R}, \omega\in\Omega\}\in\mathcal{D} and \varepsilon > 0 , there exist T = T(\tau, \omega, D, \varepsilon) > 0 and N = N(\tau, \omega, \varepsilon) > 0 such that for all t\geq T , the solution \bar{\varphi} of system (2.10) satisfies

    \begin{equation} \begin{split}\nonumber \sum\limits_{|i|\geq N}|\bar{\varphi}_{i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t,i})|_{E}^{2}\leq\varepsilon,\\ \end{split} \end{equation}

    where \bar{\varphi}_{\tau-t}\in D(\tau-t, \theta_{-t}\omega) and |\bar{\varphi}_{i}|_{E}^{2} = (1-\nu\beta)|Bu|_{i}^{2}+\lambda |u_{i}|^{2}+|\bar{v}_{i}|^{2} .

    Proof. Let \eta be a smooth function defined on \mathbb{R}^{+} such that 0\leq\eta(s)\leq1 for all s\in\mathbb{R}^{+} , and

    \begin{equation} \nonumber \eta(s) = \left\{\begin{array}{l} 0,\; \; 0\leq s\leq1;\\ 1,\; \; s\geq2. \end{array}\right. \end{equation}

    Then there exists a constant C_{0} such that |\eta'(s)|\leq C_{0} for s\in\mathbb{R}^{+} . Let k be a fixed positive integer which will be specified later, and set x = (x_{i})_{i\in\mathbb{Z}} , y = (y_{i})_{i\in\mathbb{Z}} with x_{i} = \eta(\frac{|i|}{k})u_{i} , y_{i} = \eta(\frac{|i|}{k})v_{i} . Note \psi = (x, y)^{T} = ((x_{i}), (y_{i}))^{T}_{i\in\mathbb{Z}} . Taking the inner product of system (2.11) with \psi , we have

    \begin{equation} \begin{split} (\dot{\varphi},\psi)_{E}+(L(\varphi),\psi)_{E} = (H(\varphi),\psi)_{E}+(G,\psi)_{E}. \end{split} \end{equation} (2.26)

    For the first term of (2.26), we have

    \begin{equation} \begin{split} (\dot{\varphi},\psi)_{E}& = (1-\nu\beta)\sum\limits_{i\in\mathbb{Z}}(B\dot{u})_{i}(Bx)_{i}+\lambda\sum\limits_{i\in\mathbb{Z}}\dot{u}_{i}x_{i} +\sum\limits_{i\in\mathbb{Z}}\dot{v}_{i}y_{i}\\ & = \frac{1}{2}\frac{d}{dt}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{i}|^{2}_{E} +(1-\nu\beta)\sum\limits_{i\in\mathbb{Z}}(B\dot{u})_{i}\Big((Bx)_{i}-\eta(\frac{|i|}{k})(Bu)_{i}\Big)\\ &\geq\frac{1}{2}\frac{d}{dt}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{i}|^{2}_{E} -\frac{(1-\nu\beta)C_{0}}{k}\sum\limits_{i\in\mathbb{Z}}|(B(v-\beta u+a\omega(t))_{i}||u_{i+1}|\\ &\geq\frac{1}{2}\frac{d}{dt}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{i}|^{2}_{E} -\frac{c}{k}\|\varphi\|^{2}_{E}-\frac{c}{k}|\omega(t)|^{2}\|a\|^{2}, \end{split} \end{equation} (2.27)

    where |\varphi_{i}|_{E}^{2} = (1-\nu\beta)|Bu|_{i}^{2}+\lambda |u_{i}|^{2}+|v_{i}|^{2} . As to the second term on the left-hand side of (2.26), we get

    \begin{equation} \begin{split}\nonumber (L(\varphi),\psi)_{E} = &\beta(1-\nu\beta)(Au,x)+(1-\nu\beta)((Au,y)-(Av,x))+\nu(Av,y)+\lambda\beta(u,x)\\ &+\beta^{2}(u,y)-\beta(v,y)+(h(v-\beta u+a\omega(t)),y). \end{split} \end{equation}

    It is easy to check that

    \begin{equation} \begin{split}\nonumber (Au,x) = \sum\limits_{i\in\mathbb{Z}}(Bu)_{i}\Big(\eta(\frac{|i|}{k})(Bu)_{i}+(Bx)_{i}-\eta(\frac{|i|}{k})(Bu)_{i}\Big) \geq\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|Bu|_{i}^{2}-\frac{2C_{0}}{k}\|u\|^{2}, \end{split} \end{equation}
    \begin{equation} \begin{split}\nonumber (Av,y) = \sum\limits_{i\in\mathbb{Z}}(Bv)_{i}\Big(\eta(\frac{|i|}{k})(Bv)_{i}+(By)_{i}-\eta(\frac{|i|}{k})(Bv)_{i}\Big) \geq\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|Bv|_{i}^{2}-\frac{2C_{0}}{k}\|v\|^{2}, \end{split} \end{equation}

    and

    \begin{equation} \begin{split}\nonumber (Au,y)-(Av,x)\geq-\frac{C_{0}}{k}\sum\limits_{i\in\mathbb{Z}}|(Bu)_{i}||v_{i+1}|-\frac{C_{0}}{k}\sum\limits_{i\in\mathbb{Z}}|(Bv)_{i}||u_{i+1}| \geq-\frac{2 C_{0}}{k}(\|u\|^{2}+\|v\|^{2}). \end{split} \end{equation}

    By the mean value theorem and (2.5), there exists \xi_{i}\in(0, 1) such that

    \begin{equation} \begin{split}\nonumber &\beta^{2}(u,y)+(h(v-\beta u+a\omega(t)),y)\\ & = \beta^{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})u_{i}v_{i} +\sum\limits_{i\in\mathbb{Z}}h'_{i}(\xi_{i}(v_{i}-\beta u_{i}+a_{i}\omega(t)))(v_{i}-\beta u_{i}+a_{i}\omega(t))\eta(\frac{|i|}{k})v_{i}\\ &\geq \beta(\beta-h_{2})\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|u_{i}v_{i}|+h_{1}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|^{2} -h_{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}a_{i}\omega(t)|. \end{split} \end{equation}

    Then

    \begin{equation} \begin{split}\nonumber &(L(\varphi),\varphi)_{E}-\sigma\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{i}|^{2}_{E} -\frac{h_{1}}{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|^{2}\\ &\geq (\beta-\sigma)\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big((1-\nu\beta)|Bu|_{i}^{2}+\lambda u_{i}^{2}\Big)+(\frac{h_{1}}{2}-\beta-\sigma)\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|^{2}\\ &\quad-\frac{\beta h_{2}}{\sqrt{\lambda}}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|\Big((1-\nu\beta)(Bu)_{i}^{2}+\lambda| u_{i}|^{2}\Big)^{\frac{1}{2}}-h_{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}a_{i}\omega(t)|-\frac{c}{k}\|\varphi\|^{2}_{E}, \end{split} \end{equation}

    which along with (2.6) and (2.7) implies that

    \begin{equation} \begin{split} (L(\varphi),\varphi)_{E}&\geq\sigma\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{i}|^{2}_{E}+ \frac{h_{1}}{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|^{2}-\frac{c}{k}\|\varphi\|^{2}_{E}-h_{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}a_{i}\omega(t)|\\ &\geq\sigma\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{i}|^{2}_{E}+ \frac{h_{1}}{6}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|^{2}-\frac{c}{k}\|\varphi\|^{2}_{E} -c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}|^{2}|\omega(t)|^{2}. \end{split} \end{equation} (2.28)

    As to the first term on the right-hand side of (2.26), by (2.3) and (2.4)we get

    \begin{equation} \begin{split} (H(\varphi),\psi)_{E}& = -\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})f_{i}(u_{i})(\dot{u_{i}}+\beta u_{i}-a_{i}\omega(t))+\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})g_{i}(t)v_{i}\\ &\leq-\frac{d}{dt}\big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})F_{i}(u_{i})\big) -\frac{\alpha_{2}\beta}{p+1}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})F_{i}(u_{i})\\ &\quad+c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\omega(t)|^{p+1}|a_{i}|^{p+1} +\frac{\sigma\lambda}{4}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|u_{i}|^{2}\\ &\quad+c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}|^{2}|\omega(t)|^{2} +\frac{\sigma}{6} \sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}|^{2} +c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|g_{i}(t)|^{2}. \end{split} \end{equation} (2.29)

    For the last term of (2.26), we have

    \begin{equation} \begin{split} (G,\psi)_{E}& = \omega(t)(a,x)_{\lambda}+\beta \omega(t)(a,y)-\nu\omega(t)(Aa,y)\\ & = \omega(t)(1-\nu\beta)(Ba,Bx)-\nu\omega(t)(Ba,By)+\lambda\omega(t)(a,x)+\beta \omega(t)(a,y), \end{split} \end{equation} (2.30)

    As to the first two terms on the right-hand side of (2.30), we get

    \begin{equation} \begin{split} \omega(t)(1-\nu\beta)(Ba,Bx)& = \omega(t)(1-\nu\beta)\sum\limits_{i\in\mathbb{Z}}(a_{i+1}-a_{i})\Big(\eta(\frac{|i+1|}{k})u_{i+1}-\eta(\frac{|i|}{k})u_{i}\Big)\\ &\leq\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i+1|}{k})u_{i+1}^{2}\Big)^{\frac{1}{2}}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i+1|}{k})\big(\omega(t)(1-\nu\beta)(a_{i+1}-a_{i})\big)^{2}\Big)^{\frac{1}{2}}\\ &\quad+\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})u_{i}^{2}\Big)^{\frac{1}{2}}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(\omega(t)(1-\nu\beta)(a_{i+1}-a_{i})\big)^{2}\Big)^{\frac{1}{2}}\\ &\leq \frac{\sigma\lambda}{8}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})u_{i}^{2}+c|\omega(t)|^{2}\sum\limits_{|i|\geq k}a_{i}^{2}, \end{split} \end{equation} (2.31)

    and

    \begin{equation} \begin{split} -\nu\omega(t)(Ba,By)& = -\nu\omega(t)\sum\limits_{i\in\mathbb{Z}}(a_{i+1}-a_{i})\Big(\eta(\frac{|i+1|}{k})v_{i+1}-\eta(\frac{|i|}{k})v_{i}\Big)\\ &\leq \frac{\sigma}{6}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})v_{i}^{2}+c|\omega(t)|^{2}\sum\limits_{|i|\geq k}a_{i}^{2}. \end{split} \end{equation} (2.32)

    The last two terms of (2.30) is bounded by

    \begin{equation} \begin{split} \lambda\omega(t)(a,x)+\beta \omega(t)(a,y)\leq \frac{\sigma\lambda}{8}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})u_{i}^{2}+\frac{\sigma+h_{1}}{6}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})v_{i}^{2} +c|\omega(t)|^{2}\sum\limits_{|i|\geq k}a_{i}^{2}. \end{split} \end{equation} (2.33)

    It follows from (2.26)–(2.33) that

    \begin{equation} \begin{split} &\frac{d}{dt}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\varphi_{i}|_{E}^{2} +2 F_{i}(u_{i})\big)\Big) +\gamma\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\varphi_{i}|_{E}^{2} +2 F_{i}(u_{i})\big)\Big)+\gamma\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi|_{E}^{2}\\ &\leq\frac{c}{k}\|\varphi\|^{2}_{E}+\frac{c}{k}|\omega(t)|^{2} +c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}|\omega(t)|^{p+1}+c\sum\limits_{|i|\geq k}|g_{i}(t)|^{2}+c\sum\limits_{|i|\geq k}|a_{i}|^{2}|\omega(t)|^{2}, \end{split} \end{equation} (2.34)

    where \gamma = \min\{\frac{\sigma}{2}, \frac{\alpha_{2}\beta}{p+1}\} . Multiplying (2.34) by e^{\gamma t} , replacing \omega by \theta_{-\tau}\omega and integrating on (\tau-t, \tau) with t\in\mathbb{R}^{+} , we get for every \omega\in\Omega

    \begin{equation} \begin{split} &\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big(|\varphi_{i}(\tau,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t,i})|^{2}_{E} +2F_{i}(u_{i}(\tau,\tau-t,\theta_{-\tau}\omega,u_{\tau-t,i}))\Big)\\ &\leq e^{-\gamma t}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\varphi_{\tau-t,i}|^{2}_{E}+2 F_{i}(u_{\tau-t,i})\big)\Big) +\frac{c}{k}\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\|\varphi(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})\|^{2}_{E}ds\\ &\quad+\frac{c}{k}\int^{0}_{-\infty}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{2}ds +c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}\int_{-\infty}^{0}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{p+1}ds\\ &\quad+c\sum\limits_{|i|\geq k}|a_{i}|^{2}\int_{-\infty}^{0}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{2}ds+c\int_{-\infty}^{0}e^{\gamma s}\sum\limits_{|i|\geq k}|g_{i}(s+\tau)|^{2}ds. \end{split} \end{equation} (2.35)

    For any s\geq \tau-t ,

    \begin{equation} \begin{split}\nonumber &\bar{\varphi}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t}) = \varphi(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\tau-t})+(0,a(\omega(s-\tau)-\omega(-\tau)))^{T}, \end{split} \end{equation}

    which along with (2.35) implies that

    \begin{equation} \begin{split} &\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big(|\bar{\varphi}_{i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t,i})|^{2}_{E} +2F_{i}(u_{i}(\tau,\tau-t,\theta_{-\tau}\omega,u_{\tau-t,i}))\Big)\\ &\leq 4e^{-\gamma t}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\bar{\varphi}_{\tau-t,i}|^{2}_{E}+|a_{i}|^{2}|\omega(-t)-\omega(-\tau)|^{2}+ F_{i}(u_{\tau-t,i})\big)\Big)\\ &\quad+\frac{c}{k}\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\|\bar{\varphi}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E}ds+\frac{c}{k}\int^{0}_{-\infty}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{2}ds\\ &\quad +c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}\int_{-\infty}^{0}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{p+1}ds+c\sum\limits_{|i|\geq k}|a_{i}|^{2}\int_{-\infty}^{0}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{2}ds\\ &\quad+c\int_{-\infty}^{0}e^{\gamma s}\sum\limits_{|i|\geq k}|g_{i}(s+\tau)|^{2}ds+2\sum\limits_{|i|\geq k}|a_{i}|^{2}|\omega(-\tau)|^{2}. \end{split} \end{equation} (2.36)

    By (2.1) and (2.8), the last four integrals in (2.36) are well defined. By (2.3) and (2.4), we obtain

    \begin{equation} \begin{split}\nonumber \sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k}) F_{i}(u_{i,\tau-t})\leq \frac{1}{\alpha_{2}}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k}) f_{i}(u_{\tau-t,i})u_{\tau-t,i} \leq\frac{1}{\alpha_{2}}\max\limits_{-\|u_{\tau-t}\|\leq s\leq\|u_{\tau-t}\|}|f'_{i}(s)|\|u_{\tau-t}\|^{2}, \end{split} \end{equation}

    which along with \bar{\varphi}_{\tau-t}\in D(\tau-t, \theta_{-t}\omega) and (2.1) implies that

    \begin{equation} \begin{split} \label{127}\nonumber \limsup\limits_{t\rightarrow +\infty}4e^{-\gamma t}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\bar{\varphi}_{\tau-t,i}|^{2}_{E}+|a_{i}|^{2}|\omega(-t)-\omega(-\tau)|^{2}+ F_{i}(u_{\tau-t,i})\big)\Big) = 0. \end{split} \end{equation}

    Then there exists T_{1} = T_{1}(\tau, \omega, D, \varepsilon) > 0 such that for all t\geq T_{1} ,

    \begin{equation} \begin{split} 4e^{-\gamma t}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\bar{\varphi}_{\tau-t,i}|^{2}_{E}+|a_{i}|^{2}|\omega(-t)-\omega(-\tau)|^{2}+ F_{i}(u_{\tau-t,i})\big)\Big)\leq\frac{\varepsilon}{4}. \end{split} \end{equation} (2.37)

    By (2.1) and (2.24), there exist T_{2} = T_{2}(\tau, \omega, D, \varepsilon) > T_{1} and N_{1} = N_{1}(\tau, \omega, \varepsilon) > 0 such that for all t\geq T_{2} and k\geq N_{1}

    \begin{equation} \begin{split} \frac{c}{k}\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\|\bar{\varphi}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E}ds+\frac{c}{k}\int^{0}_{-\infty}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{2}ds\leq\frac{\varepsilon}{4}. \end{split} \end{equation} (2.38)

    By (2.8), there exists N_{2} = N_{2}(\tau, \omega, \varepsilon) > N_{1} such that for all k\geq N_{2} ,

    \begin{equation} \begin{split} 2\sum\limits_{|i|\geq k}|a_{i}|^{2}|\omega(-\tau)|^{2}+c\int_{-\infty}^{0}e^{\gamma s}\sum\limits_{|i|\geq k}|g_{i}(s+\tau)|^{2}ds\leq\frac{\varepsilon}{4}. \end{split} \end{equation} (2.39)

    By (2.1) again, we find that there exists N_{3} = N_{3}(\tau, \omega, \varepsilon) > N_{2} such that for all k\geq N_{3} ,

    \begin{equation} \begin{split} c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}\int_{-\infty}^{0}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{p+1}ds +c\sum\limits_{|i|\geq k}|a_{i}|^{2}\int_{-\infty}^{0}e^{\gamma s}|\omega(s)-\omega(-\tau)|^{2}ds \leq\frac{\varepsilon}{4}. \end{split} \end{equation} (2.40)

    Then it follows from (2.36)–(2.40) that for all t\geq T_{2} and k\geq N_{3}

    \begin{equation} \begin{split}\nonumber \sum\limits_{|i|\geq 2k}|\bar{\varphi}_{i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t,i})|^{2}_{E} \leq\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\bar{\varphi}_{i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t,i})|^{2}_{E} \leq\varepsilon. \end{split} \end{equation}

    This concludes the proof.

    As a consequence of Lemma 2.2 and Lemma 2.3, we get the existence of \mathcal{D} -pullback attractors for \Phi_{0} immediately.

    Theorem 2.1. Suppose that (2.3)–(2.9) hold. Then the continuous cocycle \Phi_{0} associated with system (2.10) has a unique \mathcal{D} -pullback attractors \mathcal{A}_{0} = \{\mathcal{A}_{0}(\tau, \omega):\tau\in\mathbb{R} , \omega\in\Omega\}\in \mathcal{D} in E .

    In this section, we will approximate the solutions of system (1.1) by the pathwise Wong-Zakai approximated system (1.2). Given \delta\neq0 , define a random variable \mathcal{G}_{\delta} by

    \begin{equation} \begin{split} \mathcal{G}_{\delta}(\omega) = \frac{\omega(\delta)}{\delta},\; \; \text{for all}\; \omega\in\Omega. \end{split} \end{equation} (3.1)

    From (3.1) we find

    \begin{equation} \begin{split} \mathcal{G}_{\delta}(\theta_{t}\omega) = \frac{\omega(t+\delta)-\omega(t)}{\delta}\; \; \text{and}\; \int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds = \int_{t}^{t+\delta}\frac{\omega(s)}{\delta}ds+\int_{\delta}^{0}\frac{\omega(s)}{\delta}ds. \end{split} \end{equation} (3.2)

    By (3.2) and the continuity of \omega we get for all t\in\mathbb{R} ,

    \begin{equation} \begin{split} \lim\limits_{\delta\rightarrow0}\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds = \omega(t). \end{split} \end{equation} (3.3)

    Note that this convergence is uniform on a finite interval as stated below.

    Lemma 3.1. ([17]). Let \tau\in\mathbb{R} , \omega\in\Omega and T > 0 . Then for every \varepsilon > 0 , there exists \delta_{0} = \delta_{0}(\varepsilon, \tau, \omega, T) > 0 such that for all 0 < |\delta| < \delta_{0} and t\in[\tau, \tau+T] ,

    \Big|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)\Big| < \varepsilon.

    By Lemma 3.1, we find that there exist c = c(\tau, \omega, T) > 0 and \tilde{\delta}_{0} = \tilde{\delta}_{0}(\tau, \omega, T) > 0 such that for all 0 < |\delta| < \tilde{\delta}_{0} and t\in[\tau, \tau+T] ,

    \begin{equation} \begin{split} \Big|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds\Big|\leq c. \end{split} \end{equation} (3.4)

    By (3.3) we find that \mathcal{G}_{\delta}(\theta_{t}\omega) is an approximation of the white noise in a sense. This leads us to consider system (1.2) as an approximation of system (1.1).

    Let \bar{v}^{\delta} = \dot{u}^{\delta}+\beta u^{\delta} and \bar{\varphi}_{\delta} = (u^{\delta}, \bar{v}^{\delta}) , the system (1.2) can be rewritten as

    \begin{eqnarray} \dot{\bar{\varphi}}_{\delta}+L_{\delta,1}(\bar{\varphi}_{\delta}) = H_{\delta,1}(\bar{\varphi}_{\delta})+G_{\delta,1}(\omega), \end{eqnarray} (3.5)

    with initial conditions

    \bar{\varphi}_{\delta,\tau} = (u^{\delta}_{\tau},\bar{v}^{\delta}_{\tau})^{T} = (u_{\tau}^{\delta},u_{\tau}^{\delta,1}+\beta u_{\tau}^{\delta})^{T},

    where

    L_{\delta,1}(\bar{\varphi}) = \left( \begin{array}{ccc} \beta u^{\delta}-\bar{v}^{\delta} \\ (1-\nu\beta)Au^{\delta}+\nu A\bar{v}^{\delta}+\lambda u^{\delta} +\beta^{2} u^{\delta}-\beta\bar{v}^{\delta} \end{array} \right) + \left( \begin{array}{ccc} 0 \\ h(\bar{v}^{\delta}-\beta u^{\delta}) \end{array} \right) ,
    H_{\delta,1}(\bar{\varphi_{\delta}}) = \left( \begin{array}{ccc} 0 \\ -f(u^{\delta})+g(t) \end{array} \right),\; \; \; \; G_{\delta,1}(\omega) = \left( \begin{array}{ccc} 0 \\ a\mathcal{G}_{\delta}(\theta_{t}\omega) \end{array} \right) .

    Denote

    v^{\delta}(t) = \bar{v}^{\delta}(t)-a\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds \; \; \text{and}\; \; \varphi_{\delta} = (u^{\delta},v^{\delta})^{T}.

    By (3.5) we have

    \begin{eqnarray} \dot{\varphi}_{\delta}+L_{\delta}(\varphi_{\delta}) = H_{\delta}(\varphi_{\delta})+G_{\delta}(\omega), \end{eqnarray} (3.6)

    with initial conditions

    \varphi_{\delta,\tau} = (u^{\delta}_{\tau},v^{\delta}_{\tau})^{T} = (u^{\delta}_{\tau},u_{\tau}^{\delta,1}+\beta u^{\delta}_{\tau}-a\int_{0}^{\tau}\mathcal{G}_{\delta}(\theta_{s}\omega)ds)^{T},

    where

    L_{\delta}(\varphi_{\delta}) = \left( \begin{array}{ccc} \beta u^{\delta}-v^{\delta} \\ (1-\nu\beta) Au^{\delta}+\nu Av^{\delta}+\lambda u^{\delta}+\beta^{2} u^{\delta}-\beta v^{\delta} \end{array} \right) + \left( \begin{array}{ccc} 0 \\ h(v^{\delta}-\beta u^{\delta}+a\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds) \end{array} \right) ,
    H_{\delta}(\varphi_{\delta}) = \left( \begin{array}{ccc} 0 \\ -f(u^{\delta})+g(t) \end{array} \right),\; \; \; \; G_{\delta}(\omega) = \left( \begin{array}{ccc} a\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds\\ \beta a\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\nu Aa\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds \end{array} \right) .

    Note that system (3.6) is a deterministic functional equation and the nonlinearity in (3.6) is locally Lipschitz continuous from E to E . Therefore, by the standard theory of functional differential equations, system (3.6) is well-posed. Thus, we can define a continuous cocycle \Phi_{\delta}:\mathbb{R}^{+}\times\mathbb{R}\times \Omega\times E\rightarrow E associated with system (3.5), where for \tau\in\mathbb{R} , t\in\mathbb{R}^{+} and \omega\in\Omega

    \begin{equation} \begin{split}\nonumber \Phi_{\delta}(t,\tau,\omega,\bar{\varphi}_{\delta,\tau})& = \bar{\varphi}_{\delta}(t+\tau,\tau,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau})\\ & = (u^{\delta}(t+\tau,\tau,\theta_{-\tau}\omega,u^{\delta}_{\tau}),\bar{v}^{\delta}(t+\tau,\tau,\theta_{-\tau}\omega,\bar{v}^{\delta}_{\tau}))^{T}\\ & = \Big(u^{\delta}(t+\tau,\tau,\theta_{-\tau}\omega,u^{\delta}_{\tau}),v^{\delta}(t+\tau,\tau,\theta_{-\tau}\omega,v^{\delta}_{\tau})+a\int_{-\tau}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds\Big)^{T}\\ & = \varphi_{\delta}(t+\tau,\tau,\theta_{-\tau}\omega,\varphi_{\delta,\tau})+\Big(0,a\int_{-\tau}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds\Big)^{T}, \end{split} \end{equation}

    where v_{\tau}^{\delta} = \bar{v}_{\tau}^{\delta}-a\int_{-\tau}^{0}\mathcal{G}_{\delta}(\theta_{s}\omega)ds .

    For later purpose, we now show the estimates on the solutions of system (3.6) on a finite time interval.

    Lemma 3.2. Suppose that (2.3)–(2.8) hold. Then for every \tau\in\mathbb{R} , \omega\in\Omega , and T > 0 , there exist \delta_{0} = \delta_{0}(\tau, \omega, T) > 0 and c = c(\tau, \omega, T) > 0 such that for all 0 < |\delta| < \delta_{0} and t\in[\tau, \tau+T] , the solution \varphi_{\delta} of system (3.6) satisfies

    \begin{equation} \begin{split}\nonumber &\|\varphi_{\delta}(t,\tau,\omega,\varphi_{\delta,\tau})\|^{2}_{E} +\int_{\tau}^{t}\|\varphi_{\delta}(s,\tau,\omega,\varphi_{\delta,\tau})\|^{2}_{E}ds\leq c\Big(\|\varphi_{\delta,\tau}\|^{2}_{E}+2\sum\limits_{i\in\mathbb{Z}}F_{i}(u^{\delta}_{\tau,i})\Big)\\ &\quad+ c\int^{t}_{\tau}\Big(\|g(s)\|^{2}+|\int_{0}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+|\int_{0}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}|\Big)ds. \end{split} \end{equation}

    Proof. Taking the inner product (\cdot, \cdot)_{E} on both side of the system (3.6) with \varphi_{\delta} , it follows that

    \begin{equation} \begin{split} &\frac{1}{2}\frac{d}{dt}\|\varphi_{\delta}\|^{2}_{E}+(L_{\delta}(\varphi_{\delta}),\varphi_{\delta})_{E} = (H_{\delta}(\varphi_{\delta}),\varphi_{\delta})_{E}+(G_{\delta}(\omega),\varphi_{\delta})_{E}. \end{split} \end{equation} (3.7)

    By the similar calculations in (2.13)–(2.15), we get

    \begin{equation} \begin{split} (L_{\delta}(\varphi_{\delta}),\varphi_{\delta})_{E}\geq\sigma\|\varphi_{\delta}\|^{2}_{E}+\frac{h_{1}}{2}\|v^{\delta}\|^{2} -\frac{\sigma+h_{1}}{6}\|v^{\delta}\|^{2}-c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}\|a\|^{2}, \end{split} \end{equation} (3.8)
    \begin{equation} \begin{split} (H_{\delta}(\varphi_{\delta}),\varphi_{\delta})_{E} &\leq-\frac{d}{dt}(\sum\limits_{i\in\mathbb{Z}}F_{i}(u^{\delta}_{i}))-\frac{\alpha_{2}\beta}{p+1}\sum\limits_{i\in\mathbb{Z}}F_{i}(u^{\delta}_{i}) +c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{p+1}\|a\|^{p+1}\\ &\quad+\frac{\sigma\lambda}{4}\|u^{\delta}\|^{2}+c\|a\|^{2}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}+c\|g(t)\|^{2}+\frac{\sigma+h_{1}}{6}\|v^{\delta}\|^{2}, \end{split} \end{equation} (3.9)

    and

    \begin{equation} \begin{split} (G_{\delta}(\omega),\varphi_{\delta})_{E}\leq \frac{\sigma}{4}\|u^{\delta}\|^{2}_{\lambda} +c\|a\|^{2}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}+\frac{\sigma+h_{1}}{6}\|v^{\delta}\|^{2}. \end{split} \end{equation} (3.10)

    It follows from (3.7)–(3.10) that

    \begin{equation} \begin{split} &\frac{d}{dt}\Big(\|\varphi_{\delta}\|_{E}^{2}+2\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{i}^{\delta})\Big) +\gamma\Big(\|\varphi_{\delta}\|_{E}^{2}+2\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{i}^{\delta})\Big) +\gamma\|\varphi_{\delta}\|_{E}^{2}\\ &\leq c\Big(\|g(t)\|^{2}+|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}+|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{p+1}\Big), \end{split} \end{equation} (3.11)

    where \gamma = \min\{\frac{\sigma}{2}, \frac{\alpha_{2}\beta}{p+1}\} . Multiplying (3.11) by e^{\gamma t} and integrating on (\tau, t) with t\geq\tau , we get for every \omega\in\Omega

    \begin{equation} \begin{split}\nonumber &\|\varphi_{\delta}(t,\tau,\omega,\varphi_{\delta,\tau})\|_{E}^{2} +\gamma\int^{t}_{\tau}e^{\gamma(s-t)}\|\varphi_{\delta}(s,\tau,\omega,\varphi_{\delta,\tau})\|_{E}^{2}ds\leq e^{\gamma(\tau-t)}\Big(\|\varphi_{\delta,\tau}\|_{E}^{2}+2\sum\limits_{i\in\mathbb{Z}}F_{i}(u_{\tau,i}^{\delta})\Big)\\ &\quad+c\int_{\tau}^{t}e^{\gamma(s-t)}\Big(\|g(s)\|^{2}+|\int_{0}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+|\int_{0}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}\Big)ds, \end{split} \end{equation}

    which implies the desired result.

    In what follows, we derive uniform estimates on the solutions of system (3.5) when t is sufficiently large.

    Lemma 3.3. Suppose that (2.3)–(2.8) hold. Then for every \delta\neq0 , \tau\in\mathbb{R} , \omega\in\Omega , and D = \{D(\tau, \omega):\tau\in\mathbb{R}, \omega\in\Omega\}\in\mathcal{D} , there exists T = T(\tau, \omega, D, \delta) > 0 such that for all t\geq T , the solution \bar{\varphi}_{\delta} of system (3.5) satisfies

    \begin{equation} \begin{split}\nonumber &\|\bar{\varphi}_{\delta}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t})\|^{2}_{E} +\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\bar{\varphi}_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t})\|^{2}_{E}ds\leq R_{\delta}(\tau,\omega), \end{split} \end{equation}

    where \bar{\varphi}_{\delta, \tau-t}\in D(\tau-t, \theta_{-t}\omega) and R_{\delta}(\tau, \omega) is given by

    \begin{equation} \begin{split} R_{\delta}(\tau,\omega) = &c\int^{0}_{-\infty}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2} +|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}\Big)ds\\ &+c+c|\int_{-\tau}^{0}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}, \end{split} \end{equation} (3.12)

    where c is a positive constant independent of \tau , \omega and \delta .

    Proof. Multiplying (3.11) by e^{\gamma t} , replacing \omega by \theta_{-\tau}\omega and integrating on (\tau-t, \tau) with t\in\mathbb{R}^{+} , we get for every \omega\in\Omega

    \begin{equation} \begin{split} &\|\varphi_{\delta}(\tau,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t})\|^{2}_{E}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{i}^{\delta}(\tau,\tau-t,\theta_{-\tau}\omega,u^{\delta}_{\tau-t,i}))\\ &\quad+\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\varphi_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t})\|^{2}_{E}ds\\ &\leq e^{-\gamma t}\Big(\|\varphi_{\delta,\tau-t}\|^{2}_{E}+2\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i}^{\delta})\Big)\\ &\quad +c\int^{0}_{-\infty}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}\Big)ds. \end{split} \end{equation} (3.13)

    By (2.1), (2.8) and (3.2), the last integral on the right-hand side of (3.13) is well defined. For any s\geq \tau-t ,

    \begin{equation} \begin{split}\nonumber &\bar{\varphi}_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t}) = \varphi_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t})+\Big(0,a\int_{0}^{s}\mathcal{G}_{\delta}(\theta_{l-\tau}\omega)dl\Big)^{T}, \end{split} \end{equation}

    which along with (3.13) shows that

    \begin{equation} \begin{split} &\|\bar{\varphi}_{\delta}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t})\|^{2}_{E} +\gamma\int_{\tau-t}^{\tau}e^{\gamma(s-\tau)}\|\bar{\varphi}_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\tau-t})\|^{2}_{E}ds\\ &\leq 4e^{-\gamma t}\Big(\|\bar{\varphi}_{\delta,\tau-t}\|^{2}_{E}+\|a\|^{2}|\int_{-\tau}^{-t}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\Big)+c|\int_{-\tau}^{0}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}\\ &\quad+c\int^{0}_{-\infty}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2} +| \int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}\Big)ds, \end{split} \end{equation} (3.14)

    Note that (2.3) and (2.4) implies that

    \begin{equation} \begin{split}\nonumber \sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i}^{\delta})\leq \frac{1}{\alpha_{2}}\sum\limits_{i\in\mathbb{Z}} f_{i}(u_{\tau-t,i}^{\delta})u_{\tau-t,i}^{\delta} \leq\frac{1}{\alpha_{2}}\max\limits_{-\|u_{\tau-t}^{\delta}\|\leq s\leq\|u_{\tau-t}^{\delta}\|}|f'_{i}(s)|\|u_{\tau-t}^{\delta}\|^{2}, \end{split} \end{equation}

    which along with \bar{\varphi}_{\delta, \tau-t}\in D(\tau-t, \theta_{-t}\omega) , (2.1) and (3.2) implies that

    \begin{equation} \begin{split} \limsup\limits_{t\rightarrow +\infty}4e^{-\gamma t}\Big(\|\bar{\varphi}_{\delta,\tau-t}\|^{2}_{E}+\|a\|^{2}|\int_{-\tau}^{-t}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+\sum\limits_{i\in\mathbb{Z}} F_{i}(u_{\tau-t,i})\Big) = 0. \end{split} \end{equation} (3.15)

    Then (3.14) and (3.15) can imply the desired estimates.

    Next, we show that system (3.5) has a \mathcal{D} -pullback absorbing set.

    Lemma 3.4. Suppose that (2.3)–(2.9) hold. Then the continuous cocycle \Phi_{\delta} associated with system (3.5) has a closed measurable \mathcal{D} -pullback absorbing set K_{\delta} = \{K_{\delta}(\tau, \omega):\tau\in\mathbb{R}, \omega\in\Omega\}\in\mathcal{D} , where for every \tau\in\mathbb{R} and \omega\in\Omega

    \begin{equation} \begin{split} K_{\delta}(\tau,\omega) = \{\bar{\varphi}_{\delta}\in E:\|\bar{\varphi}_{\delta}\|^{2}_{E}\leq R_{\delta}(\tau,\omega)\}, \end{split} \end{equation} (3.16)

    where R_{\delta}(\tau, \omega) is given by (3.12).In addition, we have for every \tau\in\mathbb{R} and \omega\in\Omega

    \begin{equation} \begin{split} \lim\limits_{\delta\rightarrow0}R_{\delta}(\tau,\omega) = R_{0}(\tau,\omega), \end{split} \end{equation} (3.17)

    where R_{0}(\tau, \omega) is defined in (2.19).

    Proof. Note K_{\delta} given by (3.16) is closed measurable random set in E . Given \tau\in\mathbb{R} , \omega\in\Omega , and D\in\mathcal{D} , it follows from Lemma 3.3 that there exists T_{0} = T_{0}(\tau, \omega, D, \delta) such that for all t\geq T_{0} ,

    \begin{equation} \begin{split}\nonumber \Phi_{\delta}(t,\tau-t,\theta_{-t}\omega,D(\tau-t,\theta_{-t}\omega))\subseteq K_{\delta}(\tau,\omega), \end{split} \end{equation}

    which implies that K_{\delta} pullback attracts all elements in \mathcal{D} . By (2.1), (2.8) and (3.2), we can prove K_{\delta}(\tau, \omega) is tempered. The convergence (3.17) can be obtained by Lebesgue dominated convergence as in [17].

    We are now in a position to derive uniform estimates on the tail of solutions of system (3.5).

    Lemma 3.5. Suppose that (2.3)–(2.8) hold. Then for every \tau\in\mathbb{R} , \omega\in\Omega and \varepsilon > 0 , there exist \delta_{0} = \delta_{0}(\omega) > 0 , T = T(\tau, \omega, \varepsilon) > 0 and N = N(\tau, \omega, \varepsilon) > 0 such that for all t\geq T and 0 < |\delta| < \delta_{0} , the solution \bar{\varphi}_{\delta} of system (3.5) satisfies

    \begin{equation} \begin{split}\nonumber \sum\limits_{|i|\geq N}|\bar{\varphi}_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t,i})|_{E}^{2}\leq\varepsilon,\\ \end{split} \end{equation}

    where \bar{\varphi}_{\delta, \tau-t}\in K_{\delta}(\tau-t, \theta_{-t}\omega) and |\bar{\varphi}_{\delta, i}|_{E}^{2} = (1-\nu\beta)|Bu^{\delta}|_{i}^{2}+\lambda |u^{\delta}_{i}|^{2}+|\bar{v}^{\delta}_{i}|^{2} .

    Proof. Let \eta be a smooth function defined in Lemma 2.3, and set x = (x_{i})_{i\in\mathbb{Z}} , y = (y_{i})_{i\in\mathbb{Z}} with x_{i} = \eta(\frac{|i|}{k})u^{\delta}_{i} , y_{i} = \eta(\frac{|i|}{k})v^{\delta}_{i} . Note \psi = (x, y)^{T} = ((x_{i}), (y_{i}))^{T}_{i\in\mathbb{Z}} . Taking the inner product of system (3.6) with \psi , we have

    \begin{equation} \begin{split} (\dot{\varphi}_{\delta},\psi)_{E}+(L_{\delta}(\varphi_{\delta}),\psi)_{E} = (H_{\delta}(\varphi_{\delta}),\psi)_{E}+(G_{\delta},\psi)_{E}. \end{split} \end{equation} (3.18)

    For the first term of (3.18), we have

    \begin{equation} \begin{split} (\dot{\varphi}_{\delta},\psi)_{E}& = (1-\nu\beta)\sum\limits_{i\in\mathbb{Z}}(B\dot{u}^{\delta})_{i}(Bx)_{i}+\lambda\sum\limits_{i\in\mathbb{Z}}\dot{u}_{i}^{\delta}x_{i} +\sum\limits_{i\in\mathbb{Z}}\dot{v}_{i}^{\delta}y_{i}\\ & = \frac{1}{2}\frac{d}{dt}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{\delta,i}|^{2}_{E} +(1-\nu\beta)\sum\limits_{i\in\mathbb{Z}}(B\dot{u}^{\delta})_{i}\Big((Bx)_{i}-\eta(\frac{|i|}{k})(Bu^{\delta})_{i}\Big)\\ &\geq\frac{1}{2}\frac{d}{dt}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{\delta,i}|^{2}_{E} -\frac{(1-\nu\beta)C_{0}}{k}\sum\limits_{i\in\mathbb{Z}}|B(v^{\delta}-\beta u^{\delta}+a\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds)|_{i}|u_{i+1}^{\delta}|\\ &\geq\frac{1}{2}\frac{d}{dt}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{\delta,i}|^{2}_{E} -\frac{c}{k}\|\varphi_{\delta}\|^{2}_{E}-\frac{c}{k}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}\|a\|^{2}, \end{split} \end{equation} (3.19)

    where |\varphi_{\delta, i}|_{E}^{2} = (1-\nu\beta)|Bu^{\delta}|_{i}^{2}+\lambda |u^{\delta}_{i}|^{2}+|v^{\delta}_{i}|^{2} . By the similar calculations in (2.28)–(2.33), we get

    \begin{equation} \begin{split} (L_{\delta}(\varphi_{\delta}),\psi)_{E} \geq&\sigma\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{\delta,i}|^{2}_{E}+ \frac{h_{1}}{6}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v_{i}^{\delta}|^{2}-\frac{c}{k}\|\varphi_{\delta}\|^{2}_{E}\\ &-c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}|^{2}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}, \end{split} \end{equation} (3.20)
    \begin{equation} \begin{split} (H_{\delta}(\varphi_{\delta}),\psi)_{E} &\leq-\frac{d}{dt}(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})F_{i}(u^{\delta}_{i})) -\frac{\alpha_{2}\beta}{p+1}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})F_{i}(u^{\delta}_{i})\\ &\quad +\frac{\sigma\lambda}{4}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|u_{i}^{\delta}|^{2}+\frac{\sigma}{6} \sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v^{\delta}_{i}|^{2} +c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|g_{i}(t)|^{2}\\ &\quad +c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}|^{2}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2} +c\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}|^{p+1}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{p+1}, \end{split} \end{equation} (3.21)

    and

    \begin{equation} \begin{split} (G_{\delta},\psi)_{E}& = (1-\nu\beta)\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds(Bx,Ba)_{\lambda}+\beta \int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds(y,a)\\ &\leq \frac{\sigma\lambda}{4}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|u^{\delta}_{i}|^{2} +\Big(\frac{h_{1}}{6}+\frac{\sigma}{3}\Big)\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|v^{\delta}_{i}|^{2} +c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}|^{2}. \end{split} \end{equation} (3.22)

    It follows from (3.18)–(3.22) that

    \begin{equation} \begin{split} &\frac{d}{dt}\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\varphi_{\delta,i}|_{E}^{2}+2 F_{i}(u_{i}^{\delta})\big)\Big) +\gamma\Big(\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\big(|\varphi_{\delta,i}|_{E}^{2}+2 F_{i}(u_{i}^{\delta})\big)\Big)+\gamma\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{\delta,i}|_{E}^{2}\\ &\leq\frac{c}{k}\|\varphi_{\delta}\|^{2}_{E}+\frac{c}{k}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}+c\sum\limits_{|i|\geq k}|g_{i}(t)|^{2} +c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{p+1}\\ &\quad+ c\sum\limits_{|i|\geq k}|a_{i}|^{2}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds|^{2}, \end{split} \end{equation} (3.23)

    where \gamma = \min\{\frac{\sigma}{2}, \frac{\alpha_{2}\beta}{p+1}\} . Multiplying (3.23) by e^{\gamma t} , replacing \omega by \theta_{-\tau}\omega and integrating on (\tau-t, \tau) with t\in\mathbb{R}^{+} , we get for every \omega\in\Omega

    \begin{equation} \begin{split} &\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big(|\varphi_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t,i})|^{2}_{E} +2F_{i}(u_{i}^{\delta}(\tau,\tau-t,\theta_{-\tau}\omega,u^{\delta}_{\tau-t,i}))\Big)\\ &\leq e^{-\gamma t}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big(|\varphi_{\delta,\tau-t,i}|^{2}_{E}+2 F_{i}(u_{\tau-t,i}^{\delta})\Big) +\frac{c}{k}\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\|\varphi_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t})\|^{2}_{E}ds\\ &\quad+\frac{c}{k}\int^{0}_{-\infty}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds +c\int_{-\infty}^{0}e^{\gamma s}\sum\limits_{|i|\geq k}|g_{i}(s+\tau)|^{2}ds\\ &\quad+c\sum\limits_{|i|\geq k}|a_{i}|^{2}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds+c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}ds. \end{split} \end{equation} (3.24)

    For any s\geq\tau-t ,

    \begin{equation} \begin{split}\nonumber &\bar{\varphi}_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t}) = \varphi_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t})+\Big(0,a\int_{0}^{s}\mathcal{G}_{\delta}(\theta_{l-\tau}\omega)dl\Big)^{T}, \end{split} \end{equation}

    which along with (3.24) shows that

    \begin{equation} \begin{split} &\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\bar{\varphi}_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t,i})|^{2}_{E}\\ &\leq2\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\varphi_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\varphi_{\delta,\tau-t,i})|^{2}_{E} +2\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|a_{i}\int_{0}^{\tau}\mathcal{G}_{\delta}(\theta_{l-\tau}\omega)dl|^{2}\\ &\leq 2\sum\limits_{|i|\geq k}|a_{i}\int_{-\tau}^{0}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2} +4e^{-\gamma t}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big(|\bar{\varphi}_{\delta,\tau-t,i}|^{2}_{E}+|a_{i}\int_{-\tau}^{-t}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+ F_{i}(u_{\tau-t,i}^{\delta})\Big)\\ &\quad+\frac{c}{k}\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\|\bar{\varphi}_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t})\|^{2}_{E}ds +\frac{c}{k}\int^{0}_{-\infty}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds\\ &\quad +c\int_{-\infty}^{0}e^{\gamma s}\sum\limits_{|i|\geq k}|g_{i}(s+\tau)|^{2}ds+c\sum\limits_{|i|\geq k}|a_{i}|^{2}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds\\ &\quad+c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}ds. \end{split} \end{equation} (3.25)

    By (2.1) and (2.8), the last four integrals on the right-hand side of (3.24) are well defined. Note that (2.3) and (2.4) implies that

    \begin{equation} \begin{split}\nonumber \sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k}) F_{i}(u_{\tau-t,i}^{\delta})\leq \frac{1}{\alpha_{2}}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k}) f_{i}(u_{\tau-t,i}^{\delta})u_{\tau-t,i}^{\delta} \leq\frac{1}{\alpha_{2}}\max\limits_{-\|u_{\tau-t}^{\delta}\|\leq s\leq\|u_{\tau-t}^{\delta}\|}|f'_{i}(s)|\|u_{\tau-t}^{\delta}\|^{2}. \end{split} \end{equation}

    Since \bar{\varphi}_{\delta, \tau-t}\in K_{\delta}(\tau-t, \theta_{-t}\omega) , we find

    \begin{equation} \begin{split}\nonumber \limsup\limits_{t\rightarrow +\infty}e^{-\gamma t}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\bar{\varphi}_{\delta,\tau-t,i}|^{2}_{E}\leq\limsup\limits_{t\rightarrow +\infty}e^{-\gamma t}\|K_{\delta}(\tau-t,\theta_{-t}\omega)\|^{2}_{E} = 0, \end{split} \end{equation}

    which along with (2.1) and (3.2) shows that there exist T_{1} = T_{1}(\tau, \omega, \varepsilon) > 0 and \delta_{0} > 0 such that for all t\geq T_{1} and 0 < |\delta| < \delta_{0} ,

    \begin{equation} \begin{split} 4e^{-\gamma t}\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})\Big(|\bar{\varphi}_{\delta,\tau-t,i}|^{2}_{E}+|a_{i}\int_{-\tau}^{-t}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+ F_{i}(u_{\tau-t,i}^{\delta})\Big)\leq\frac{\varepsilon}{4}. \end{split} \end{equation} (3.26)

    By Lemma 3.3, (2.1) and (3.2), there exist T_{2} = T_{2}(\tau, \omega, \varepsilon) > T_{1} and N_{1} = N_{1}(\tau, \varepsilon) > 0 such that for all t\geq T_{2} , k\geq N_{1} and 0 < |\delta| < \delta_{0}

    \begin{equation} \begin{split} \frac{c}{k}\int^{\tau}_{\tau-t}e^{\gamma(s-\tau)}\|\bar{\varphi}_{\delta}(s,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t})\|^{2}_{E}ds+\frac{c}{k}\int^{0}_{-\infty}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds\leq\frac{\varepsilon}{4}. \end{split} \end{equation} (3.27)

    By (2.8), there exists N_{2} = N_{2}(\tau, \varepsilon) > N_{1} such that for all k\geq N_{2} ,

    \begin{equation} \begin{split} 2\sum\limits_{|i|\geq k}|a_{i}\int_{-\tau}^{0}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}+c\int_{-\infty}^{0}e^{\gamma s}\sum\limits_{|i|\geq k}|g_{i}(s+\tau)|^{2}ds\leq\frac{\varepsilon}{4}. \end{split} \end{equation} (3.28)

    By (2.1) and (3.2) again, we find that there exists N_{3} = N_{3}(\tau, \varepsilon) > N_{2} such that for all k\geq N_{3} and 0 < |\delta| < \delta_{0} ,

    \begin{equation} \begin{split} c\sum\limits_{|i|\geq k}|a_{i}|^{p+1}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{p+1}ds +c\sum\limits_{|i|\geq k}|a_{i}|^{2}\int_{-\infty}^{0}e^{\gamma s}|\int_{-\tau}^{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|^{2}ds \leq\frac{\varepsilon}{4}. \end{split} \end{equation} (3.29)

    Then it follows from (3.25)–(3.29) that for all t\geq T_{2} , k\geq N_{3} and 0 < |\delta| < \delta_{0} ,

    \begin{equation} \begin{split}\nonumber \sum\limits_{|i|\geq 2k}|\bar{\varphi}_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t,i})|^{2}_{E} \leq\sum\limits_{i\in\mathbb{Z}}\eta(\frac{|i|}{k})|\bar{\varphi}_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t,i})|^{2}_{E} \leq\varepsilon. \end{split} \end{equation}

    This concludes the proof.

    By Lemma 3.4, \Phi_{\delta} has a closed \mathcal{D} -pullback absorbing set, and Lemma 3.5 shows that \Phi_{\delta} is asymptotically null in E with respect to \mathcal{D} . Therefore, we get the existence of \mathcal{D} -pullback attractors for \Phi_{\delta} .

    Lemma 3.6. Suppose that (2.3)–(2.9) hold. Then the continuous cocycle \Phi_{\delta} associated with (3.5) has a unique \mathcal{D} -pullback attractors \mathcal{A}_{\delta} = \{\mathcal{A}_{\delta}(\tau, \omega):\tau\in\mathbb{R} , \omega\in\Omega\}\in \mathcal{D} in E .

    For the attractor \mathcal{A}_{\delta} of \Phi_{\delta} , we have the uniform compactness as showed below.

    Lemma 3.7. Suppose that (2.3)–(2.9) hold. Then for every \tau\in\mathbb{R} , \omega\in\Omega , there exists \delta_{0} = \delta_{0}(\omega) > 0 such that \mathop{\bigcup}\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau, \omega) is precompact in E .

    Proof. Given \varepsilon > 0 , we will prove that \mathop{\bigcup}\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau, \omega) has a finite covering of balls of radius less than \varepsilon . By (3.2) we have

    \begin{equation} \begin{split} \int^{0}_{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl = -\int^{s+\delta}_{s}\frac{\omega(l)}{\delta}dl+\int^{\delta}_{0}\frac{\omega(l)}{\delta}dl. \end{split} \end{equation} (3.30)

    By \lim_{\delta\rightarrow0}\int^{\delta}_{0}\frac{\omega(r)}{\delta}dr = 0 , there exists \delta_{1} = \delta_{1}(\omega) > 0 such that for all 0 < |\delta| < \delta_{1} ,

    \begin{equation} \begin{split} |\int^{\delta}_{0}\frac{\omega(l)}{\delta}dl|\leq1. \end{split} \end{equation} (3.31)

    Similarly, there exists l_{1} between s and s+\delta such that \int^{s+\delta}_{s}\frac{\omega(l)}{\delta}dl = \omega(l_{1}) , which along with (2.1) implies that there exists T_{1} = T_{1}(\omega) < 0 such that for all s\leq T_{1} and |\delta|\leq1 ,

    \begin{equation} \begin{split} |\int^{s+\delta}_{s}\frac{\omega(l)}{\delta}dl|\leq 1-s. \end{split} \end{equation} (3.32)

    Let \delta_{2} = \min\{\delta_{1}, 1\} . By (3.30)–(3.32) we get for all 0 < |\delta| < \delta_{2} and s\leq T_{1} ,

    \begin{equation} \begin{split} |\int^{0}_{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl| < 2-s. \end{split} \end{equation} (3.33)

    By (3.4), there exist \delta_{0} = \delta_{0}(\omega)\in(0, \delta_{2}) and c_{1}(\omega) > 0 such that for all 0 < |\delta|\leq\delta_{0} and T_{1}\leq s\leq0 ,

    \begin{equation} \begin{split}\nonumber |\int^{0}_{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|\leq c_{1}(\omega), \end{split} \end{equation}

    which along with (3.33) implies that for all 0 < |\delta| < \delta_{0} and s\leq0 ,

    \begin{equation} \begin{split} |\int^{0}_{s}\mathcal{G}_{\delta}(\theta_{l}\omega)dl|\leq -s+c_{2}(\omega), \end{split} \end{equation} (3.34)

    where c_{2}(\omega) = 2+c_{1}(\omega) . Denote by

    \begin{equation} \begin{split}\nonumber B(\tau,\omega) = \{\bar{\varphi}_{\delta}\in E:\|\bar{\varphi}_{\delta}\|^{2}\leq R(\tau,\omega)\}, \end{split} \end{equation}

    and

    \begin{equation} \begin{split} R(\tau,\omega) = &c\int_{-\infty}^{0}e^{\gamma s}\Big(\|g(s+\tau)\|^{2}+2(c_{2}-s)^{2}+2(|\tau|+c_{2})^{2}+2^{p}(c_{2}-s)^{p+1}+2^{p}(|\tau|+c_{2})^{p+1}\Big)ds\\ &\quad+c+2c(|\tau|+c_{2})^{2}, \end{split} \end{equation} (3.35)

    with c and c_{2} being as in (3.12) and (3.34). By (3.12) and (3.35) we find that for all 0 < |\delta| < \delta_{0} ,

    \begin{equation} \begin{split} R_{\delta}(\tau,\omega)\leq R(\tau,\omega). \end{split} \end{equation} (3.36)

    By (3.35) and (3.36), we find that K_{\delta}(\tau, \omega)\subseteq B(\tau, \omega) for all 0 < |\delta| < \delta_{0} , \tau\in\mathbb{R} and \omega\in\Omega . Therefore, for every \tau\in\mathbb{R} , \omega\in\Omega ,

    \begin{equation} \begin{split} \bigcup\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau,\omega)\subseteq\bigcup\limits_{0 < |\delta| < \delta_{0}}K_{\delta}(\tau,\omega) \subseteq B(\tau,\omega). \end{split} \end{equation} (3.37)

    By Lemma 3.5, there exist T = T(\tau, \omega, \varepsilon) > 0 and N = N(\tau, \omega, \varepsilon) > 0 such that for all t\geq T and 0 < |\delta| < \delta_{0} ,

    \begin{equation} \begin{split} \sum\limits_{|i|\geq N}|\bar{\varphi}_{\delta,i}(\tau,\tau-t,\theta_{-\tau}\omega,\bar{\varphi}_{\delta,\tau-t,i})|^{2}_{E}\leq\frac{\varepsilon}{4}, \end{split} \end{equation} (3.38)

    for any \bar{\varphi}_{\delta, \tau-t}\in K_{\delta}(\tau-t, \theta_{-t}\omega) . By (3.38) and the invariance of \mathcal{A}_{\delta} , we obtain

    \begin{equation} \begin{split} \sum\limits_{|i|\geq N}|\bar{\varphi}_{i}|^{2}_{E}\leq\frac{\varepsilon}{4},\; \; \text{for all}\; \bar{\varphi} = (\bar{\varphi}_{i})_{i\in\mathbb{Z}}\in\bigcup\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau,\omega). \end{split} \end{equation} (3.39)

    We find that (3.37) implies the set \{(\bar{\varphi}_{i})_{|i| < N}:\bar{\varphi}\in \mathop{\bigcup}\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau, \omega)\} is bounded in a finite dimensional space and hence is precompact. This along with (3.39) implies \mathop{\bigcup}\limits_{0 < |\delta| < \delta_{0}}\mathcal{A}_{\delta}(\tau, \omega) has a finite covering of balls of radius less than \varepsilon in E . This completes the proof.

    In this section, we will study the limiting of solutions of (3.5) as \delta\rightarrow0 . Hereafter, we need an additional condition on f : For all i\in\mathbb{Z} and s\in\mathbb{R} ,

    \begin{equation} \begin{split} |f'_{i}(s)|\leq\alpha_{4}|s|^{p-1}+\kappa_{i}, \end{split} \end{equation} (4.1)

    where \alpha_{4} is a positive constant, \kappa = (\kappa_{i})_{i\in\mathbb{Z}}\in l^{2} and p > 1 .

    Lemma 4.1. Suppose that (2.3)–(2.7) and (4.1) hold. Let \bar{\varphi} and \bar{\varphi}_{\delta} are the solutions of (2.10) and (3.5), respectively. Then for every \tau\in\mathbb{R} , \omega\in\Omega , T > 0 and \varepsilon\in(0, 1) , there exist \delta_{0} = \delta_{0}(\tau, \omega, T, \varepsilon) > 0 and c = c(\tau, \omega, T) > 0 such that for all t\in[\tau, \tau+T] and 0 < |\delta| < \delta_{0} ,

    \begin{equation} \begin{split}\nonumber \|\bar{\varphi}_{\delta}(t,\tau,\omega,\bar{\varphi}_{\delta,\tau})-\bar{\varphi}(t,\tau,\omega,\bar{\varphi}_{\tau})\|^{2}_{E} \leq 2e^{c(t-\tau)}\|\bar{\varphi}_{\delta,\tau}-\bar{\varphi}_{\tau}\|^{2}_{E}+c\varepsilon. \end{split} \end{equation}

    Proof. Let \tilde{\varphi} = \varphi_{\delta}-\varphi and \tilde{\varphi} = (\tilde{u}, \tilde{v})^{T} , where \tilde{u} = u^{\delta}-u , \tilde{v} = v^{\delta}-v , \varphi and \varphi_{\delta} are the solutions of (2.11) and (3.6), respectively. By (2.11) and (3.6) we get

    \begin{equation} \begin{split} \dot{\tilde{\varphi}}+\tilde{L}(\tilde{\varphi}) = \tilde{H}(\tilde{\varphi})+\tilde{G}(\omega), \end{split} \end{equation} (4.2)

    where

    \begin{equation} \begin{aligned}\nonumber \tilde{L}(\tilde{\varphi})& = \left( \begin{array}{ccc} \beta \tilde{u}-\tilde{v}\\ (1-\nu\beta)A\tilde{u}+\nu A\tilde{v}+\lambda \tilde{u} +\beta^{2} \tilde{u}-\beta\tilde{v} \end{array} \right)\\ &\quad+ \left( \begin{array}{ccc} 0 \\ h\big(v^{\delta}-\beta u^{\delta}+a\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds\big)-h\big(v-\beta u+a\omega(t)\big) \end{array} \right), \end{aligned} \end{equation}
    \begin{equation} \begin{aligned}\nonumber \tilde{H}(\tilde{\varphi}) = \left( \begin{array}{ccc} 0 \\ -f(u^{\delta})+f(u) \end{array} \right),\; \; \; \; \tilde{G}(\omega) = \left( \begin{array}{ccc} a\big(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)\big)\\ (\beta a-\nu Aa)\big(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)\big) \end{array} \right). \end{aligned} \end{equation}

    Taking the inner product of (4.2) with \tilde{\varphi} in E , we have

    \begin{equation} \begin{split} \frac{1}{2}\frac{d}{dt}\|\tilde{\varphi}\|^{2}_{E}+(\tilde{L}(\tilde{\varphi}),\tilde{\varphi})_{E} = (\tilde{H}(\tilde{\varphi}),\tilde{\varphi})_{E}+(\tilde{G}(\omega),\tilde{\varphi})_{E}. \end{split} \end{equation} (4.3)

    For the second term on the left-hand side of (4.3), using the similar calculations in (2.13) we have

    \begin{equation} \begin{split} (\tilde{L}(\tilde{\varphi}),\tilde{\varphi})_{E}&\geq\sigma\|\tilde{\varphi}\|_{E}^{2}+\frac{h_{1}}{2}\|\tilde{v}\|^{2} -h_{2}|\big(a(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)),\tilde{v}\big)|\\ &\geq\sigma\|\tilde{\varphi}\|_{E}^{2}+\frac{h_{1}}{4}\|\tilde{v}\|^{2} -c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t))|^{2}\|a\|^{2}. \end{split} \end{equation} (4.4)

    For the first term on the right-hand side of (4.3), by (4.1) we get

    \begin{equation} \begin{split} (f(u)-f(u^{\delta}),\tilde{v})& = \sum\limits_{i\in\mathbb{Z}}(f_{i}(u_{i})-f_{i}(u^{\delta}_{i}))\tilde{v}_{i} = \frac{1}{h_{1}}\sum\limits_{i\in\mathbb{Z}}|f_{i}(u_{i})-f_{i}(u^{\delta}_{i})|^{2}+\frac{h_{1}}{4}\sum\limits_{i\in\mathbb{Z}}|\tilde{v}_{i}|^{2}\\ &\leq c(\|\varphi\|^{2p-2}_{E}+\|\varphi_{\delta}\|^{2p-2}_{E})\|\tilde{\varphi}\|^{2}_{E}+\frac{h_{1}}{4}\|\tilde{v}\|^{2}+\frac{2\|\kappa\|^{2}}{h_{1}\lambda}\|\tilde{\varphi}\|^{2}_{E}. \end{split} \end{equation} (4.5)

    As to the last term of (4.3), we have

    \begin{equation} \begin{split} &\big(a(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)),\tilde{u}\big)_{\lambda} +\big((\beta a-\nu Aa)(\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)),\tilde{v}\big)\\ &\leq\sigma\|\tilde{u}\|^{2}_{\lambda}+\frac{1}{4\sigma}|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)|^{2}\|a\|^{2}_{\lambda} +\sigma\|\tilde{v}\|^{2}+c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)|^{2}\|a\|^{2}. \end{split} \end{equation} (4.6)

    It follows from (4.3)–(4.6) that

    \begin{equation} \begin{split} \frac{d}{dt}\|\tilde{\varphi}\|^{2}_{E}\leq c(\|\varphi\|^{2p-2}_{E}+\|\varphi_{\delta}\|^{2p-2}_{E}+1)\|\tilde{\varphi}\|^{2}_{E}+c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)|^{2}. \end{split} \end{equation} (4.7)

    By Lemma 2.1 and Lemma 3.2, there exists \delta_{1} = \delta_{1}(\tau, \omega, T) > 0 and c_{1} = c_{1}(\tau, \omega, T) > 0 such that for all 0 < |\delta| < \delta_{1} and t\in[\tau, \tau+T] ,

    \begin{equation} \begin{split}\nonumber \|\varphi_{\delta}(t,\tau,\omega,\varphi_{\delta,\tau})\|^{2}_{E}+\|\varphi(t,\tau,\omega,\varphi_{\tau})\|^{2}_{E}\leq c_{1}, \end{split} \end{equation}

    which along with (4.7) shows that for all 0 < |\delta| < \delta_{1} and t\in[\tau, \tau+T]

    \begin{equation} \begin{split} \frac{d}{dt}\|\tilde{\varphi}\|^{2}_{E}\leq c\|\tilde{\varphi}\|^{2}_{E}+c|\int_{0}^{t}\mathcal{G}_{\delta}(\theta_{s}\omega)ds-\omega(t)|^{2}. \end{split} \end{equation} (4.8)

    Applying Gronwall's inequality and Lemma 3.1 to (4.8), we see that for every \varepsilon\in(0, 1) , there exists \delta_{0} = \delta_{0}(\tau, \omega, T, \varepsilon)\in(0, \delta_{1}) such that for all 0 < |\delta| < \delta_{0} and t\in[\tau, \tau+T]

    \begin{equation} \begin{split} \|\tilde{\varphi}(t,\tau,\omega,\tilde{\varphi}_{\tau})\|^{2}_{E}\leq e^{c(t-\tau)}\|\tilde{\varphi}_{\tau}\|^{2}_{E}+c\varepsilon. \end{split} \end{equation} (4.9)

    On the other hand, we have

    \begin{equation} \begin{split}\nonumber \bar{\varphi}_{\delta}(t,\tau,\omega,\bar{\varphi}_{\delta,\tau})-\bar{\varphi}(t,\tau,\omega,\bar{\varphi}_{\tau}) = \tilde{\varphi}+\big(0,a(\int^{t}_{0}\mathcal{G}_{\delta}(\theta_{s})ds-\omega(t))\big)^{T}, \end{split} \end{equation}

    which along with (4.9) implies the desired result.

    Finally, we establish the upper semicontinuity of random attractors as \delta\rightarrow0 .

    Theorem 4.1. Suppose that (2.3)–(2.9) and (4.1) hold. Then for every \tau\in\mathbb{R} and \omega\in\Omega ,

    \begin{equation} \begin{split} \lim\limits_{\delta\rightarrow0}d_{E}(\mathcal{A}_{\delta}(\tau,\omega),\mathcal{A}_{0}(\tau,\omega)) = 0, \end{split} \end{equation} (4.10)

    where d_{E}(\mathcal{A}_{\delta}(\tau, \omega), \mathcal{A}_{0}(\tau, \omega)) = \mathop{\sup}\limits_{x\in\mathcal{A}_{\delta}(\tau, \omega)}\mathop{\inf}\limits_{y\in\mathcal{A}_{0}(\tau, \omega)}\|x-y\|_{E} .

    Proof. Let \delta_{n}\rightarrow0 and \bar{\varphi}_{\delta_{n}, \tau}\rightarrow \bar{\varphi}_{\tau} in E . Then by Lemma 4.1, we find that for all \tau\in\mathbb{R} , t\geq0 and \omega\in\Omega ,

    \begin{equation} \begin{split} \Phi_{\delta_{n}}(t,\tau,\omega,\bar{\varphi}_{\delta_{n},\tau})\rightarrow \Phi_{0}(t,\tau,\omega,\bar{\varphi}_{\tau}) \; \; \text{in}\; \; E. \end{split} \end{equation} (4.11)

    By (3.16)–(3.17) we have, for all \tau\in\mathbb{R} and \omega\in\Omega ,

    \begin{equation} \begin{split} \lim\limits_{\delta\rightarrow0}\|K_{\delta}(\tau,\omega)\|_{E}^{2}\leq R_{0}(\tau,\omega). \end{split} \end{equation} (4.12)

    Then by (4.11), (4.12) and Lemma 3.7, (4.10) follows from Theorem 3.1 in [24] immediately.

    In this paper we use similar idea in [30] but apply to second order non-autonomous stochastic lattice dynamical systems with additive noise. we establish the convergence of solutions of Wong-zakai approximations and the upper semicontinuity of random attractors of the approximate random system as the step-length of the Wiener shift approaches zero. In addition, as to the second order non-autonomous stochastic lattice dynamical systems with multiplicative noise, we can use the similar method in [29] to get the corresponding results.

    The authors would like to thank anonymous referees and editors for their valuable comments and constructive suggestions.

    The authors declare no conflict of interest.



    [1] P. S. Alexandorff, \ddot{U}ber die Metrisation der im Kleinen kompakten topologischen R\ddot{a}ume, Math. Ann., 92 (1924), 294–301.
    [2] P. Alexandorff, Diskrete R\ddot{a}ume, Mat. Sbornik., 2 (1937), 501–519.
    [3] V. A. Chatyrko, S. E. Han, Y. Hattori, Some remarks concerning semi-T_{\frac{1}{2}} spaces, Filomat, 28 (2014), 21–25. https://doi.org/10.2298/FIL1401021C doi: 10.2298/FIL1401021C
    [4] W. Dunham, T_{\frac{1}{2}}-spaces, Kyungpook Math. J., 17 (1977), 161–169.
    [5] S. E. Han, Non-product property of the digital fundamental group, Inform. Sciences, 171 (2005), 73–91. https://doi.org/10.1016/j.ins.2004.03.018 doi: 10.1016/j.ins.2004.03.018
    [6] S. E. Han, Topological graphs based on a new topology on {\mathbb Z}^n and its applications, Filomat, 31 (2017), 6313–6328.
    [7] S. E. Han, Covering rough set structures for a locally finite covering approximation space, Inf. Sci., 480 (2019), 420–437. https://doi.org/10.1016/j.ins.2018.12.049 doi: 10.1016/j.ins.2018.12.049
    [8] S. E. Han, Estimation of the complexity of a digital image form the viewpoint of fixed point theory, Appl. Math. Compt., 347 (2019), 236–248. https://doi.org/10.1016/j.amc.2018.10.067 doi: 10.1016/j.amc.2018.10.067
    [9] S. E. Han, Roughness measures of locally finite covering rough sets, Int. J. Approx. Reason., 105 (2019), 368–385. https://doi.org/10.1016/j.ijar.2018.12.003 doi: 10.1016/j.ijar.2018.12.003
    [10] S. E. Han, Jordan surface theorem for simple closed SST-surfaces, Topol. Appl., 272 (2020), 106953. https://doi.org/10.1016/j.topol.2019.106953 doi: 10.1016/j.topol.2019.106953
    [11] S. E. Han, Digital topological rough set structures and topological operators, Topol. Appl., 301 (2021), 107507. https://doi.org/10.1016/j.topol.2020.107507 doi: 10.1016/j.topol.2020.107507
    [12] S. E. Han, S. Jafari, J. M. Kang, Topologies on {\mathbb Z}^n that are not homeomorphic to the n-dimensional Khalimsky topological space, Mathematics, 7 (2019), 1072. https://doi.org/10.3390/math711072 doi: 10.3390/math711072
    [13] S. E. Han, S. Jafari, J. M. Kang, S. Lee, Remarks on topological spaces on {\mathbb Z}^n which are related to the Khalimsky n-dimensional space, AIMS Math., 7 (2021), 1224–1240. https://doi.org/10.3934/math.2022072 doi: 10.3934/math.2022072
    [14] S. E. Han, A. Sostak, A compression of digital images derived from a Khalimsky topological structure, Compt. Appl. Math., 32 (2013), 521–536. https://doi.org/10.1007/s40314-013-0034-6 doi: 10.1007/s40314-013-0034-6
    [15] G. T. Herman, Oriented surfaces in digital spaces, CVGIP: Graph. Model. Image Process., 55 (1993), 381–396. https://doi.org/10.1006/cgip.1993.1029 doi: 10.1006/cgip.1993.1029
    [16] H. Herrlich, Limit operators and topological coreflections, Trans. Amer. Math. Soc., 146 (1969), 203–210. https://doi.org/10.2307/1995168 doi: 10.2307/1995168
    [17] J. M. Kang, S. E. Han, Compression of Khalimsky topological spaces, Filomat, 26 (2012), 1101–1114.
    [18] E. D. Khalimsky, Applications of connected ordered topological spaces in topology, Conf. Math., Department of Provoia, 1970.
    [19] E. Khalimsky, R. Kopperman, P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topol. Appl., 36 (1990), 1–17. https://doi.org/10.1016/0166-8641(90)90031-V doi: 10.1016/0166-8641(90)90031-V
    [20] C. O. Kiselman, Digital geometry and mathematical morphology, Lecture Notes, Spring, 2002.
    [21] J. J. Li, Topological properties of approximation spaces and their applications, Math. Practice Theory, 39 (2009), 145–151.
    [22] E. F. Lashin, A. M. Kozae, A. A. Abo Khadra, T. Medhat, Rough set theory for topologoical spaces, Int. J. Approx. Reason., 40 (2005), 35–43. https://doi.org/10.1016/j.ijar.2004.11.007 doi: 10.1016/j.ijar.2004.11.007
    [23] A. Rosenfeld, Digital topology, Am. Math. Mon., 86 (1979), 621–630.
    [24] A. Rosenfeld, Continuous functions on digital pictures, Pattern Recogn. Lett., 4 (1986), 177–184. https://doi.org/10.1016/0167-8655(86)90017-6 doi: 10.1016/0167-8655(86)90017-6
    [25] F. Wyse, D. Marcus, Solution to problem 5712, Am. Math. Mon., 77 (1970), 9.
  • This article has been cited by:

    1. Ming Huang, Lili Gao, Lu Yang, Regularity of Wong-Zakai approximations for a class of stochastic degenerate parabolic equations with multiplicative noise, 2024, 0, 1937-1632, 0, 10.3934/dcdss.2024097
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1977) PDF downloads(99) Cited by(2)

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog