Let $ (X, T) $ be an Alexandroff space. We define the adjacency relation $ AR_T $ on $ X $ induced by $ T $ as the irreflexive relation defined for $ x \neq y $ in $ X $ by:
$ (x,y) \in AR_T\,\,{\rm{if \;and\; only\; if}}\,\, x \in SN_T(y)\,\,{\rm{or}}\,\, y \in SN_T(x), $
where $ SN_T(z) $ is the smallest open set containing $ z $ in $ (X, T) $ and $ z \in \{x, y\} $. Two families of Alexandroff topologies $ (T_k, k \in {\mathbb Z}) $ and $ (T_k^\prime, k \in {\mathbb Z}) $ have been recently introduced on $ {\mathbb Z} $. The aim of this paper is to show that for each nonzero integers $ k $, the topologies $ T_k, T_k^\prime $, $ T_{-k} $, and $ T_{-k}^\prime $ are homeomorphic. The adjacency relations induced by the product topologies $ (T_k)^n $ and $ (T_k^\prime)^n $ are studied and compared with classical ones. We also show that the adjacency relations induced by $ T_k, T_k^\prime $, $ T_{-k} $, and $ T_{-k}^\prime $ are isomorphic. Then, note that the adjacency relations on $ {\mathbb Z} $ induced by these topologies, $ k \neq 0 $, are different from each other.
Citation: Sang-Eon Han. Adjacency relations induced by some Alexandroff topologies on $ {\mathbb Z}^n $[J]. AIMS Mathematics, 2022, 7(7): 11581-11596. doi: 10.3934/math.2022645
Let $ (X, T) $ be an Alexandroff space. We define the adjacency relation $ AR_T $ on $ X $ induced by $ T $ as the irreflexive relation defined for $ x \neq y $ in $ X $ by:
$ (x,y) \in AR_T\,\,{\rm{if \;and\; only\; if}}\,\, x \in SN_T(y)\,\,{\rm{or}}\,\, y \in SN_T(x), $
where $ SN_T(z) $ is the smallest open set containing $ z $ in $ (X, T) $ and $ z \in \{x, y\} $. Two families of Alexandroff topologies $ (T_k, k \in {\mathbb Z}) $ and $ (T_k^\prime, k \in {\mathbb Z}) $ have been recently introduced on $ {\mathbb Z} $. The aim of this paper is to show that for each nonzero integers $ k $, the topologies $ T_k, T_k^\prime $, $ T_{-k} $, and $ T_{-k}^\prime $ are homeomorphic. The adjacency relations induced by the product topologies $ (T_k)^n $ and $ (T_k^\prime)^n $ are studied and compared with classical ones. We also show that the adjacency relations induced by $ T_k, T_k^\prime $, $ T_{-k} $, and $ T_{-k}^\prime $ are isomorphic. Then, note that the adjacency relations on $ {\mathbb Z} $ induced by these topologies, $ k \neq 0 $, are different from each other.
[1] | P. S. Alexandorff, $\ddot{U}$ber die Metrisation der im Kleinen kompakten topologischen R$\ddot{a}$ume, Math. Ann., 92 (1924), 294–301. |
[2] | P. Alexandorff, Diskrete R$\ddot{a}$ume, Mat. Sbornik., 2 (1937), 501–519. |
[3] | V. A. Chatyrko, S. E. Han, Y. Hattori, Some remarks concerning semi-$T_{\frac{1}{2}}$ spaces, Filomat, 28 (2014), 21–25. https://doi.org/10.2298/FIL1401021C doi: 10.2298/FIL1401021C |
[4] | W. Dunham, $T_{\frac{1}{2}}$-spaces, Kyungpook Math. J., 17 (1977), 161–169. |
[5] | S. E. Han, Non-product property of the digital fundamental group, Inform. Sciences, 171 (2005), 73–91. https://doi.org/10.1016/j.ins.2004.03.018 doi: 10.1016/j.ins.2004.03.018 |
[6] | S. E. Han, Topological graphs based on a new topology on ${\mathbb Z}^n$ and its applications, Filomat, 31 (2017), 6313–6328. |
[7] | S. E. Han, Covering rough set structures for a locally finite covering approximation space, Inf. Sci., 480 (2019), 420–437. https://doi.org/10.1016/j.ins.2018.12.049 doi: 10.1016/j.ins.2018.12.049 |
[8] | S. E. Han, Estimation of the complexity of a digital image form the viewpoint of fixed point theory, Appl. Math. Compt., 347 (2019), 236–248. https://doi.org/10.1016/j.amc.2018.10.067 doi: 10.1016/j.amc.2018.10.067 |
[9] | S. E. Han, Roughness measures of locally finite covering rough sets, Int. J. Approx. Reason., 105 (2019), 368–385. https://doi.org/10.1016/j.ijar.2018.12.003 doi: 10.1016/j.ijar.2018.12.003 |
[10] | S. E. Han, Jordan surface theorem for simple closed $SST$-surfaces, Topol. Appl., 272 (2020), 106953. https://doi.org/10.1016/j.topol.2019.106953 doi: 10.1016/j.topol.2019.106953 |
[11] | S. E. Han, Digital topological rough set structures and topological operators, Topol. Appl., 301 (2021), 107507. https://doi.org/10.1016/j.topol.2020.107507 doi: 10.1016/j.topol.2020.107507 |
[12] | S. E. Han, S. Jafari, J. M. Kang, Topologies on ${\mathbb Z}^n$ that are not homeomorphic to the $n$-dimensional Khalimsky topological space, Mathematics, 7 (2019), 1072. https://doi.org/10.3390/math711072 doi: 10.3390/math711072 |
[13] | S. E. Han, S. Jafari, J. M. Kang, S. Lee, Remarks on topological spaces on ${\mathbb Z}^n$ which are related to the Khalimsky $n$-dimensional space, AIMS Math., 7 (2021), 1224–1240. https://doi.org/10.3934/math.2022072 doi: 10.3934/math.2022072 |
[14] | S. E. Han, A. Sostak, A compression of digital images derived from a Khalimsky topological structure, Compt. Appl. Math., 32 (2013), 521–536. https://doi.org/10.1007/s40314-013-0034-6 doi: 10.1007/s40314-013-0034-6 |
[15] | G. T. Herman, Oriented surfaces in digital spaces, CVGIP: Graph. Model. Image Process., 55 (1993), 381–396. https://doi.org/10.1006/cgip.1993.1029 doi: 10.1006/cgip.1993.1029 |
[16] | H. Herrlich, Limit operators and topological coreflections, Trans. Amer. Math. Soc., 146 (1969), 203–210. https://doi.org/10.2307/1995168 doi: 10.2307/1995168 |
[17] | J. M. Kang, S. E. Han, Compression of Khalimsky topological spaces, Filomat, 26 (2012), 1101–1114. |
[18] | E. D. Khalimsky, Applications of connected ordered topological spaces in topology, Conf. Math., Department of Provoia, 1970. |
[19] | E. Khalimsky, R. Kopperman, P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topol. Appl., 36 (1990), 1–17. https://doi.org/10.1016/0166-8641(90)90031-V doi: 10.1016/0166-8641(90)90031-V |
[20] | C. O. Kiselman, Digital geometry and mathematical morphology, Lecture Notes, Spring, 2002. |
[21] | J. J. Li, Topological properties of approximation spaces and their applications, Math. Practice Theory, 39 (2009), 145–151. |
[22] | E. F. Lashin, A. M. Kozae, A. A. Abo Khadra, T. Medhat, Rough set theory for topologoical spaces, Int. J. Approx. Reason., 40 (2005), 35–43. https://doi.org/10.1016/j.ijar.2004.11.007 doi: 10.1016/j.ijar.2004.11.007 |
[23] | A. Rosenfeld, Digital topology, Am. Math. Mon., 86 (1979), 621–630. |
[24] | A. Rosenfeld, Continuous functions on digital pictures, Pattern Recogn. Lett., 4 (1986), 177–184. https://doi.org/10.1016/0167-8655(86)90017-6 doi: 10.1016/0167-8655(86)90017-6 |
[25] | F. Wyse, D. Marcus, Solution to problem 5712, Am. Math. Mon., 77 (1970), 9. |