Research article

Pullback random attractors of stochastic strongly damped wave equations with variable delays on unbounded domains

  • Received: 11 August 2021 Accepted: 23 September 2021 Published: 26 September 2021
  • MSC : 37L55, 35B41, 35B40

  • In this paper, we consider the asymptotic behavior of solutions to stochastic strongly damped wave equations with variable delays on unbounded domains, which is driven by both additive noise and deterministic non-autonomous forcing. We first establish a continuous cocycle for the equations. Then we prove asymptotic compactness of the cocycle by tail-estimates and a decomposition technique of solutions. Finally, we obtain the existence of a tempered pullback random attractor.

    Citation: Li Yang. Pullback random attractors of stochastic strongly damped wave equations with variable delays on unbounded domains[J]. AIMS Mathematics, 2021, 6(12): 13634-13664. doi: 10.3934/math.2021793

    Related Papers:

  • In this paper, we consider the asymptotic behavior of solutions to stochastic strongly damped wave equations with variable delays on unbounded domains, which is driven by both additive noise and deterministic non-autonomous forcing. We first establish a continuous cocycle for the equations. Then we prove asymptotic compactness of the cocycle by tail-estimates and a decomposition technique of solutions. Finally, we obtain the existence of a tempered pullback random attractor.



    加载中


    [1] L. Arnold, Random Dynamical Systems, Berlin: Springer-Verlag, 1998.
    [2] P. W. Bates, K. Lu, B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equations, 246 (2009), 845–869. doi: 10.1016/j.jde.2008.05.017
    [3] Z. Brzézniak, Y. Li, Asymptotic compactness and absorbing sets for 2D stochastic navier-stokes equations on some unbounded domains, Trans. Amer. Math. Soc., 358 (2006), 5587–5629. doi: 10.1090/S0002-9947-06-03923-7
    [4] T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuss, J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Cont. Dyn-A., 21 (2008), 415. doi: 10.3934/dcds.2008.21.415
    [5] T. Caraballo, B. Guo, N. H. Tuan, R. Wang, Asymptotically autonomous robustness of random attractors for a class of weakly dissipative stochastic wave equations on unbounded domains, Proc. Roy. Soc. Edinb. Sect. A, (2020), 1–31.
    [6] T. Caraballo, J. Real, Attractors for 2D-Navier-Stokes models with delays, J. Differ. Equations, 205 (2004), 271–297. doi: 10.1016/j.jde.2004.04.012
    [7] P. Chen, X. Zhang, Upper semi-continuity of attractors for non-autonomous fractional stochastic parabolic equations with delay, Discrete Cont. Dyn-B., 26 (2021), 4325.
    [8] H. Crauel, F. Flandoli, Attractors for random dynamical systems, Probab. Theory Rel., 100 (1994), 365–393. doi: 10.1007/BF01193705
    [9] F. Flandoli, B. Gess, M. Scheutzow, Synchronization by noise, Probab. Theory Rel., 168 (2017), 511–556.
    [10] B. Gess, Random attractors for stochastic porous media equations perturbed by space-time linear multiplicative noise. Ann. Probab., 42 (2014), 818–864.
    [11] B. Gess, W. Liu, A. Schenke, Random attractors for locally monotone stochastic partial differential equations, J. Differ. Equations, 269 (2020), 3414–3455. doi: 10.1016/j.jde.2020.03.002
    [12] A. Gu, B. Wang, Asymptotic behavior of random Fitzhugh-Nagumo systems driven by colored noise, Discrete Cont. Dyn-B., 23 (2018), 1689–1720.
    [13] J. U. Jeong, J. Park, Pullback attractors for a 2D-non-autonomous incompressible non-Newtonian fluid with variable delays, Discrete Cont. Dyn-B., 21 (2016), 2687–2702. doi: 10.3934/dcdsb.2016068
    [14] X. Jia, X. Ding, Random attractors for stochastic retarded strongly damped wave equations with additive noise on bounded domains, Open Math., 17 (2019), 472–486. doi: 10.1515/math-2019-0038
    [15] R. Jones, B. Wang, Asymptotic behavior of a class of stochastic nonlinear wave equations with dispersive and dissipative terms, Nonlinear Anal-Real., 14 (2013), 1308–1322. doi: 10.1016/j.nonrwa.2012.09.019
    [16] D. Li, K. Lu, B. Wang, X. Wang, Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains, Discrete Cont. Dyn-A., 39 (2019), 3717–3747. doi: 10.3934/dcds.2019151
    [17] D. Li, L. Shi, Upper semicontinuity of attractors of stochastic delay reaction-diffusion equations in the delay, J. Math. Phys., 59 (2018), 032703. doi: 10.1063/1.4994869
    [18] H. Li, Y. You, J. Tu, Random attractors and averaging for non-autonomous stochastic wave equations with nonlinear damping, J. Differ. Equations, 258 (2015), 148–190. doi: 10.1016/j.jde.2014.09.007
    [19] L. Liu, T. Caraballo, P. Marín-Rubio, Stability results for 2D Navier-Stokes equations with unbounded delay, J. Differ. Equations, 265 (2018), 5685–5708. doi: 10.1016/j.jde.2018.07.008
    [20] H. Lu, J. Qi, B. Wang, M. Zhang, Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains, Discrete Cont. Dyn-A., 39 (2019), 683–706. doi: 10.3934/dcds.2019028
    [21] K. Lu, B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dyn. Differ. Equ., 31 (2019), 1341–1371. doi: 10.1007/s10884-017-9626-y
    [22] Y. Lv, W. Wang, Limiting dynamics for stochastic wave equations, J. Differ. Equations, 244 (2008), 1–23. doi: 10.1016/j.jde.2007.10.009
    [23] L. Shi, R. Wang, K. Lu, B. Wang, Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains, J. Differ. Equations, 267 (2019), 4373–4409. doi: 10.1016/j.jde.2019.05.002
    [24] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, New York: Springer-Verlag, 1997.
    [25] B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on $\mathbb{R}^3$, T. Am. Math. Soc., 363 (2011), 3639–3663. doi: 10.1090/S0002-9947-2011-05247-5
    [26] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differ. Equations, 253 (2012), 1544–1583. doi: 10.1016/j.jde.2012.05.015
    [27] B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete Cont. Dyn-A., 34 (2014), 269–300. doi: 10.3934/dcds.2014.34.269
    [28] B. Wang, Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise, J. Differ. Equations, 268 (2019), 1–59. doi: 10.1016/j.jde.2019.08.007
    [29] X. Wang, K. Lu, B. Wang, Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing, SIAM J. Appl. Dyn. Syst., 14 (2015), 1018–1047. doi: 10.1137/140991819
    [30] R. Wang, L. Shi, B. Wang, Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on ${{\mathbb R}}^N$, Nonlinearity, 32 (2019), 4524–4556. doi: 10.1088/1361-6544/ab32d7
    [31] R. Wang, B. Wang, Asymptotic behavior of non-autonomous fractional stochastic p-Laplacian equations, Comput. Math. Appl., 78 (2019), 3527–3543. doi: 10.1016/j.camwa.2019.05.024
    [32] Z. Wang, S. Zhou, Random attractor for non-autonomous stochastic strongly damped wave equation on unbounded domains, J. Appl. Anal. Comput., 5 (2015), 363–387.
    [33] Z. Wang, S. Zhou, Random attractor for stochastic non-autonomous damped wave equation with critical exponent, Discrete Cont. Dyn-A., 37 (2017), 545–573. doi: 10.3934/dcds.2017022
    [34] Z. Wang, S. Zhou, A. Gu, Random attractor for a stochastic damped wave equation with multiplicative noise on unbounded domains, Nonlinear Anal-Real., 12 (2011), 3468–3482. doi: 10.1016/j.nonrwa.2011.06.008
    [35] F. Wu, P. E. Kloeden, Mean-square random attractors of stochastic delay differential equations with random delay, Discrete Cont. Dyn-B., 18 (2013), 1715.
    [36] Y. Yan, X. Li, Long time behavior for the stochastic parabolic-wave systems with delay on infinite lattice, Nonlinear Anal., 197 (2020), 111866. doi: 10.1016/j.na.2020.111866
    [37] M. Yang, J. Duan, P. E. Kloeden, Asymptotic behavior of solutions for random wave equations with nonlinear damping and white noise, Nonlinear Anal-Real., 12 (2011), 464–478. doi: 10.1016/j.nonrwa.2010.06.032
    [38] S. Zhou, M. Zhao, Random attractors for damped non-autonomous wave equations with memory and white noise, Nonlinear Anal., 120 (2015), 202–226. doi: 10.1016/j.na.2015.03.009
    [39] R. Zhu, X. Zhu, Random attractor associated with the quasi-geostrophic equation, J. Dyn. Differ. Equ., 29 (2017), 289–322. doi: 10.1007/s10884-016-9537-3
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1748) PDF downloads(87) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog