Research article Special Issues

On a singular parabolic $ p $-Laplacian equation with logarithmic nonlinearity

  • Received: 12 December 2023 Revised: 02 February 2024 Accepted: 10 July 2024 Published: 18 July 2024
  • 35A02, 35B44, 35L67

  • In this paper, we considered a singular parabolic $ p $-Laplacian equation with logarithmic nonlinearity in a bounded domain with homogeneous Dirichlet boundary conditions. We established the local solvability by the technique of cut-off combining with the method of Faedo-Galerkin approximation. Based on the potential well method and Hardy-Sobolev inequality, the global existence of solutions was derived. In addition, we obtained the results of the decay. The blow-up phenomenon of solutions with different indicator ranges was also given. Moreover, we discussed the blow-up of solutions with arbitrary initial energy and the conditions of extinction.

    Citation: Xiulan Wu, Yaxin Zhao, Xiaoxin Yang. On a singular parabolic $ p $-Laplacian equation with logarithmic nonlinearity[J]. Communications in Analysis and Mechanics, 2024, 16(3): 528-553. doi: 10.3934/cam.2024025

    Related Papers:

  • In this paper, we considered a singular parabolic $ p $-Laplacian equation with logarithmic nonlinearity in a bounded domain with homogeneous Dirichlet boundary conditions. We established the local solvability by the technique of cut-off combining with the method of Faedo-Galerkin approximation. Based on the potential well method and Hardy-Sobolev inequality, the global existence of solutions was derived. In addition, we obtained the results of the decay. The blow-up phenomenon of solutions with different indicator ranges was also given. Moreover, we discussed the blow-up of solutions with arbitrary initial energy and the conditions of extinction.



    加载中


    [1] C. V. Pao, Nonlinear parabolic and elliptic equations, Springer-Verlag, New York, 1994. https://doi.org/10.1007/978-1-4615-3034-3
    [2] W. Lian, J. Wang, R. Z. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differ. Equations, 269 (2020), 4914–4959. https://doi.org/10.1016/j.jde.2020.03.047 doi: 10.1016/j.jde.2020.03.047
    [3] R. Z. Xu, W. Lian, Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 63 (2020), 321–356. https://doi.org/10.1007/s11425-017-9280-x doi: 10.1007/s11425-017-9280-x
    [4] R. Z. Xu, J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763. https://doi.org/10.1016/j.jfa.2013.03.010 doi: 10.1016/j.jfa.2013.03.010
    [5] J. B. Han, R. Z. Xu, C. Yang, Improved growth estimate of infinite time blowup solution for a semilinear hyperbolic equation with logarithmic nonlinearity, Appl. Math. Lett., 143 (2023), 1–6. https://doi.org/10.1016/j.aml.2023.108670 doi: 10.1016/j.aml.2023.108670
    [6] T. D. Do, N. N. Trong, B. L. T. Thanh, On a higher-order reaction-diffusion equation with a special medium void via potential well method, Taiwan. J. Math., 27 (2023), 53–79. https://doi.org/10.11650/tjm/220703 doi: 10.11650/tjm/220703
    [7] Z. Tan, X. G. Liu, Non-Newton filtration equation with nonconstant medium void and critical Sobolev exponent, Acta Math Sin, 20 (2004), 367–378. https://doi.org/10.1007/s10114-004-0361-z doi: 10.1007/s10114-004-0361-z
    [8] M. Badiale, G. Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Ration. Mech. Anal., 163 (2002), 259–293. https://doi.org/10.1007/s002050200201 doi: 10.1007/s002050200201
    [9] Y. Z. Han, A new Blow-up Criterion for Non-newton Filtration Equations with Special Medium Void, Rocky Mt. J. Math., 48 (2018), 1–13. https://doi.org/10.1216/rmj-2018-48-8-2489 doi: 10.1216/rmj-2018-48-8-2489
    [10] Y. Liu, Potential well and application to non-Newtonian filtration equations at critical initial energy level, Acta Math. sci, 36 (2016), 1211–1220. http://jglobal.jst.go.jp/en/public/20090422/201702254714171942
    [11] X. M. Deng, J. Zhou, Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity, Commun. Pur. Appl. Anal., 19 (2020), 923–939. https://doi.org/10.3934/cpaa.2020042 doi: 10.3934/cpaa.2020042
    [12] M. D. Pino, J. Dolbeault, Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the p-Laplacian, C. R. Math., 334 (2002), 365–370. https://doi.org/10.1016/s1631-073x(02)02225-2 doi: 10.1016/s1631-073x(02)02225-2
    [13] L. Gross, Logarithmic sobolev inequalities, Am. J. Math., 97 (1975), 1061–1083. https://doi.org/10.2307/2373688 doi: 10.2307/2373688
    [14] Z. Q. Liu, Z. B. Fang, On a singular parabolic $p$-biharmonic equation with logarithmic nonlinearity, Nonlinear Anal. Real World Appl., 70 (2023), 1–34. https://doi.org/10.1016/j.nonrwa.2022.103780 doi: 10.1016/j.nonrwa.2022.103780
    [15] C. N. Le, X. T. Le, Global solution and blow-up for a class of $p$-Laplacian evolution equations with logarithmic nonlinearity, Acta Appl Math, 151 (2017), 149–169. https://doi.org/10.1007/s10440-017-0106-5 doi: 10.1007/s10440-017-0106-5
    [16] O. A. Ladyzenskaia, Linear and quasilinear equations of parabolic type, Transl. Math. Monographs, 23 (1968).
    [17] Y. J. He, H. L. Gao, H. Wang, Blow-up and decay for a class of pseudo-parabolic $p$-Laplacian equation with logarithmic nonlinearity, Comput. Math. Appl., 75 (2018), 459–469. https://doi.org/10.1016/j.camwa.2017.09.027 doi: 10.1016/j.camwa.2017.09.027
    [18] H. Yang, Y. Z. Han, Blow-up for a damped p-Laplacian type wave equation with logarithmic nonlinearity, J. Differ. Equations, 306 (2022), 569–589. https://doi.org/10.1016/j.jde.2021.10.036 doi: 10.1016/j.jde.2021.10.036
    [19] M. Badiale, G. Tarantello, A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Ration. Mech. Anal., 163 (2002), 259–293. https://doi.org/10.1007/s002050200201 doi: 10.1007/s002050200201
    [20] H. F. Di, Y. D. Shang, Z. F. Song, Initial boundary value problem for a class of strongly damped semilinear wave equations with logarithmic nonlinearity, Nonlinear Anal. Real World Appl., 51 (2020), 1–22. https://doi.org/10.1016/j.nonrwa.2019.102968 doi: 10.1016/j.nonrwa.2019.102968
    [21] Y. Z. Han, W. J. Gao, Z. Sun, H. X. Li, Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy, Comput. Math. Appl., 76 (2018), 2477–2483. https://doi.org/10.1016/j.camwa.2018.08.043 doi: 10.1016/j.camwa.2018.08.043
    [22] H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t = -Au+F(u)$, Arch. Ration. Mech. An., 51 (1973), 371–386. http://doi.org/10.1007/bf00263041 doi: 10.1007/bf00263041
    [23] H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal., 5 (1974), 138–146. https://doi.org/10.1137/0505015 doi: 10.1137/0505015
    [24] A. J. Hao, J. Zhou, Blow-up, extinction and non-extinction for a nonlocal p-biharmonic parabolic equation, Appl. Math. Lett., 64 (2017), 198–204. https://doi.org/10.1016/j.aml.2016.09.007 doi: 10.1016/j.aml.2016.09.007
    [25] J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. pura Appl., 146 (1986), 65–96. https://doi.org/10.1007/bf01762360 doi: 10.1007/bf01762360
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(809) PDF downloads(121) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog