In the present paper, we study an anisotropic →p(⋅)-Laplace equation with combined effects of variable singular and sublinear nonlinearities. Using the Ekeland's variational principle and a constrained minimization, we show the existence of a positive solution for the case where the variable singularity β(x) assumes its values in the interval (1,∞).
Citation: Mustafa Avci. On an anisotropic →p(⋅)-Laplace equation with variable singular and sublinear nonlinearities[J]. Communications in Analysis and Mechanics, 2024, 16(3): 554-577. doi: 10.3934/cam.2024026
[1] | Xiulan Wu, Yaxin Zhao, Xiaoxin Yang . On a singular parabolic $ p $-Laplacian equation with logarithmic nonlinearity. Communications in Analysis and Mechanics, 2024, 16(3): 528-553. doi: 10.3934/cam.2024025 |
[2] | Eleonora Amoroso, Angela Sciammetta, Patrick Winkert . Anisotropic $ (\vec{p}, \vec{q}) $-Laplacian problems with superlinear nonlinearities. Communications in Analysis and Mechanics, 2024, 16(1): 1-23. doi: 10.3934/cam.2024001 |
[3] | Leandro Tavares . Solutions for a class of problems driven by an anisotropic $ (p, q) $-Laplacian type operator. Communications in Analysis and Mechanics, 2023, 15(3): 533-550. doi: 10.3934/cam.2023026 |
[4] | Mohamed Karim Hamdani, Lamine Mbarki, Mostafa Allaoui . A new class of multiple nonlocal problems with two parameters and variable-order fractional $ p(\cdot) $-Laplacian. Communications in Analysis and Mechanics, 2023, 15(3): 551-574. doi: 10.3934/cam.2023027 |
[5] | Xiao Han, Hui Wei . Multiplicity of the large periodic solutions to a super-linear wave equation with general variable coefficient. Communications in Analysis and Mechanics, 2024, 16(2): 278-292. doi: 10.3934/cam.2024013 |
[6] | Ming Liu, Binhua Feng . Grand weighted variable Herz-Morrey spaces estimate for some operators. Communications in Analysis and Mechanics, 2025, 17(1): 290-316. doi: 10.3934/cam.2025012 |
[7] | Isaac Neal, Steve Shkoller, Vlad Vicol . A characteristics approach to shock formation in 2D Euler with azimuthal symmetry and entropy. Communications in Analysis and Mechanics, 2025, 17(1): 188-236. doi: 10.3934/cam.2025009 |
[8] | Wang Xiao, Xuehua Yang, Ziyi Zhou . Pointwise-in-time $ \alpha $-robust error estimate of the ADI difference scheme for three-dimensional fractional subdiffusion equations with variable coefficients. Communications in Analysis and Mechanics, 2024, 16(1): 53-70. doi: 10.3934/cam.2024003 |
[9] | Chunyou Sun, Junyan Tan . Attractors for a Navier–Stokes–Allen–Cahn system with unmatched densities. Communications in Analysis and Mechanics, 2025, 17(1): 237-262. doi: 10.3934/cam.2025010 |
[10] | Hongxia Lin, Sabana, Qing Sun, Ruiqi You, Xiaochuan Guo . The stability and decay of 2D incompressible Boussinesq equation with partial vertical dissipation. Communications in Analysis and Mechanics, 2025, 17(1): 100-127. doi: 10.3934/cam.2025005 |
In the present paper, we study an anisotropic →p(⋅)-Laplace equation with combined effects of variable singular and sublinear nonlinearities. Using the Ekeland's variational principle and a constrained minimization, we show the existence of a positive solution for the case where the variable singularity β(x) assumes its values in the interval (1,∞).
In this article, we study the following anisotropic singular →p(⋅)-Laplace equation
{−N∑i=1∂xi(|∂xiu|pi(x)−2∂xiu)=f(x)u−β(x)+g(x)uq(x) in Ω,u>0 in Ω,u=0 on ∂Ω, | (1.1) |
where Ω is a bounded domain in RN (N≥3) with smooth boundary ∂Ω; f∈L1(Ω) is a positive function; g∈L∞(Ω) is a nonnegative function; β∈C(¯Ω) such that 1<β(x)<∞ for any x∈¯Ω; q∈C(¯Ω) such that 0<q(x)<1 for any x∈¯Ω; pi∈C(¯Ω) such that 2≤pi(x)<N for any x∈¯Ω, i∈{1,...,N}.
The differential operator
N∑i=1∂xi(|∂xiu|pi(x)−2∂xiu), |
that appears in problem (1.1) is an anisotropic variable exponent →p(⋅)-Laplace operator, which represents an extension of the p(⋅)-Laplace operator
N∑i=1∂xi(|∂xiu|p(x)−2∂xiu), |
obtained in the case for each i∈{1,...,N}, pi(⋅)=p(⋅).
In the variable exponent case, p(⋅), the integrability condition changes with each point in the domain. This makes variable exponent Sobolev spaces very useful in modeling materials with spatially varying properties and in studying partial differential equations with non-standard growth conditions [1,2,3,4,5,6,7,8].
Anisotropy, on the other hand, adds another layer of complexity, providing a robust mathematical framework for modeling and solving problems that involve complex materials and phenomena exhibiting non-uniform and direction-dependent properties. This is represented mathematically by having different exponents for different partial derivatives. We refer to the papers [9,10,11,12,13,14,15,16,17,18,19,20,21] and references for further reading.
The progress in researching anisotropic singular problems with →p(⋅)-growth, however, has been relatively slow. There are only a limited number of studies available on this topic in academic literature. We could only refer to the papers [22,23,24] that were published recently. In [22], the author studied an anisotropic singular problems with constant case p(⋅)=p but with a variable singularity, where existence and regularity of positive solutions was obtained via the approximation methods. In [23], the author obtained the existence and regularity results of positive solutions by using the regularity theory and approximation methods. In [24], the authors showed the existence of positive solutions using the regularity theory and maximum principle. However, none of these papers studied combined effects of variable singular and sublinear nonlinearities.
We would also like to mention that the singular problems of the type
{−Δu=f(x)u−β in Ω,u>0 in Ω,u=0 on ∂Ω, | (1.2) |
have been intensively studied because of their wide applications to physical models in the study of non-Newtonian fluids, boundary layer phenomena for viscous fluids, chemical heterogenous catalysts, glacial advance, etc. (see, e.g., [25,26,27,28,29,30]).
These studies, however, have mainly focused on the case 0<β<1, i.e., the weak singularity (see, e.g. [31,32,33,34,35,36]), and in this case, the corresponding energy functional is continuous.
When β>1 (the strong singularity), on the other hand, the situation changes dramatically, and numerous challenges emerge in the analysis of differential equations of the type (1.2), where the primary challenge encountered is due to the lack of integrability of u−β for u∈H10(Ω) [37,38,39,40,41].
To overcome these challenges, as an alternative approach, the so-called "compatibility relation" between f(x) and β has been introduced in the recent studies [37,40,42]. This method, used along with a constrained minimization and the Ekeland's variational principle [43], suggests a practical approach to obtain solutions to the problems of the type (1.2). In the present paper, we generalize these results to nonstandard p(⋅)-growth.
The paper is organized as follows. In Section 2, we provide some fundamental information for the theory of variable Sobolev spaces since it is our work space. In Section 3, first we obtain the auxiliary results. Then, we present our main result and obtain a positive solution to problem (1.1). In Section 4, we provide an example to illustrate our results in a concrete way.
We start with some basic concepts of variable Lebesgue-Sobolev spaces. For more details, and the proof of the following propositions, we refer the reader to [1,2,44,45].
C+(¯Ω)={p;p∈C(¯Ω),infp(x)>1, for all x∈¯Ω}. |
For p∈C+(¯Ω) denote
p−:=infx∈¯Ωp(x)≤p(x)≤p+:=supx∈¯Ωp(x)<∞. |
For any p∈C+(¯Ω), we define the variable exponent Lebesgue space by
Lp(⋅)(Ω)={u∣u:Ω→R is measurable,∫Ω|u(x)|p(x)dx<∞}, |
then, Lp(⋅)(Ω) endowed with the norm
|u|p(⋅)=inf{λ>0:∫Ω|u(x)λ|p(x)dx≤1}, |
becomes a Banach space.
Proposition 2.1. For any u∈Lp(⋅)(Ω) and v∈Lp′(⋅)(Ω), we have
∫Ω|uv|dx≤C(p−,(p−)′)|u|p(⋅)|v|p′(⋅) |
where Lp′(x)(Ω) is the conjugate space of Lp(⋅)(Ω) such that 1p(x)+1p′(x)=1.
The convex functional Λ:Lp(⋅)(Ω)→R defined by
Λ(u)=∫Ω|u(x)|p(x)dx, |
is called modular on Lp(⋅)(Ω).
Proposition 2.2. If u,un∈Lp(⋅)(Ω) (n=1,2,...), we have
(i) |u|p(⋅)<1(=1;>1)⇔Λ(u)<1(=1;>1);
(ii) |u|p(⋅)>1⟹|u|p−p(⋅)≤Λ(u)≤|u|p+p(⋅);
(iii) |u|p(⋅)≤1⟹|u|p+p(⋅)≤Λ(u)≤|u|p−p(⋅);
(iv) limn→∞|un|p(⋅)=0⇔limn→∞Λ(un)=0;limn→∞|un|p(⋅)=∞⇔limn→∞Λ(un)=∞.
Proposition 2.3. If u,un∈Lp(⋅)(Ω) (n=1,2,...), then the following statements are equivalent:
(i) limn→∞|un−u|p(⋅)=0;
(ii) limn→∞Λ(un−u)=0;
(iii) un→u in measure in Ω and limn→∞Λ(un)=Λ(u).
The variable exponent Sobolev space W1,p(⋅)(Ω) is defined by
W1,p(⋅)(Ω)={u∈Lp(⋅)(Ω):|∇u|∈Lp(⋅)(Ω)}, |
with the norm
‖u‖1,p(⋅)=|u|p(⋅)+|∇u|p(⋅), |
or equivalently
‖u‖1,p(⋅)=inf{λ>0:∫Ω(|∇u(x)λ|p(x)+|u(x)λ|p(x))dx,≤1} |
for all u∈W1,p(⋅)(Ω).
As shown in [46], the smooth functions are in general not dense in W1,p(⋅)(Ω), but if the variable exponent p∈C+(¯Ω) is logarithmic Hölder continuous, that is
|p(x)−p(y)|≤−Mlog(|x−y|),for allx,y∈Ω such that|x−y|≤12, | (2.1) |
then the smooth functions are dense in W1,p(⋅)(Ω) and so the Sobolev space with zero boundary values, denoted by W1,p(⋅)0(Ω), as the closure of C∞0(Ω) does make sense. Therefore, the space W1,p(⋅)0(Ω) can be defined as ¯C∞0(Ω)‖⋅‖1,p(⋅)=W1,p(⋅)0(Ω), and hence, u∈W1,p(⋅)0(Ω) iff there exists a sequence (un) of C∞0(Ω) such that ‖un−u‖1,p(⋅)→0.
As a consequence of Poincaré inequality, ‖u‖1,p(⋅) and |∇u|p(⋅) are equivalent norms on W1,p(⋅)0(Ω) when p∈C+(¯Ω) is logarithmic Hölder continuous. Therefore, for any u∈W1,p(⋅)0(Ω), we can define an equivalent norm ‖u‖ such that
‖u‖=|∇u|p(⋅). |
Proposition 2.4. If 1<p−≤p+<∞, then the spaces Lp(⋅)(Ω) and W1,p(⋅)(Ω) are separable and reflexive Banach spaces.
Proposition 2.5. Let q∈C(¯Ω). If 1≤q(x)<p∗(x) for all x∈¯Ω, then the embedding W1,p(⋅)(Ω)↪Lq(⋅)(Ω) is compact and continuous, where
p∗(x)={Np(x)N−p(x),ifp(x)<N,+∞,ifp(x)≥N. |
Finally, we introduce the anisotropic variable exponent Sobolev spaces.
Let us denote by →p:¯Ω→RN the vectorial function →p(⋅)=(p1(⋅),...,pN(⋅)) with pi∈C+(¯Ω), i∈{1,...,N}. We will use the following notations.
Define →P+,→P−∈RN as
→P+=(p+1,...,p+N), →P−=(p−1,...,p−N), |
and P++,P+−,P−−∈R+ as
P++=max{p+1,...,p+N},P+−=max{p−1,...,p−N}, P−−=min{p−1,...,p−N}, |
Below, we use the definitions of the anisotropic variable exponent Sobolev spaces as given in [12] and assume that the domain Ω⊂RN satisfies all the necessary assumptions given in there.
The anisotropic variable exponent Sobolev space is defined by
W1,→p(⋅)(Ω)={u∈LP++(Ω):∂xiu∈Lpi(⋅)(Ω), i∈{1,...,N}}, |
which is associated with the norm
‖u‖W1,→p(⋅)(Ω)=|u|P++(⋅)+N∑i=1|∂xiu|pi(⋅). |
W1,→p(⋅)(Ω) is a reflexive Banach space under this norm.
The subspace W1,→p(⋅)0(Ω)⊂W1,→p(⋅)(Ω) consists of the functions that are vanishing on the boundary, that is,
W1,→p(⋅)0(Ω)={u∈W1,→p(⋅)(Ω):u=0on∂Ω}, |
We can define the following equivalent norm on W1,→p(⋅)0(Ω)
‖u‖→p(⋅)=N∑i=1|∂xiu|pi(⋅). |
since the smooth functions are dense in W1,→p(⋅)0(Ω), as the variable exponent pi∈C+(¯Ω), i∈{1,...,N} is logarithmic Hölder continuous.
The space W1,→p(⋅)0(Ω) is also a reflexive Banach space (for the theory of the anisotropic Sobolev spaces see, e.g., the monographs [2,47,48] and the papers [12,15]).
Throughout this article, we assume that
N∑i=11p−i>1, | (2.2) |
and define P∗−∈R+ and P−,∞∈R+ by
P∗−=N∑Ni=11p−i−1, P−,∞=max{P+−,P∗−}. |
Proposition 2.6. [[15], Theorem 1] Suppose that Ω⊂RN(N≥3) is a bounded domain with smooth boundary and relation (2.2) is fulfilled. For any q∈C(¯Ω) verifying
1<q(x)<P−,∞forallx∈¯Ω, |
the embedding
W1,→p(⋅)0(Ω)↪Lq(⋅)(Ω), |
is continuous and compact.
We define the singular energy functional J:W1,→p(⋅)0(Ω)→R corresponding to equation (1.1) by
J(u)=∫ΩN∑i=1|∂xiu|pi(x)pi(x)dx−∫Ωg(x)|u|q(x)+1q(x)+1dx+∫Ωf(x)|u|1−β(x)β(x)−1dx. |
Definition 3.1. A function u is called a weak solution to problem (1.1) if u∈W1,→p(⋅)0(Ω) such that u>0 in Ω and
∫Ω[N∑i=1|∂xiu|pi(x)−2∂xiu⋅∂xiφ−[g(x)uq(x)+f(x)u−β(x)]φ]dx=0, | (3.1) |
for all φ∈W1,→p(⋅)0(Ω).
Definition 3.2. Due to the singularity of J on W1,→p(⋅)0(Ω), we apply a constrained minimization for problem (1.1). As such, we introduce the following constrains:
N1={u∈W1,→p(⋅)0(Ω):∫Ω[N∑i=1|∂xiu|pi(x)−g(x)|u|q(x)+1−f(x)|u|1−β(x)]dx≥0}, |
and
N2={u∈W1,→p(⋅)0(Ω):∫Ω[N∑i=1|∂xiu|pi(x)−g(x)|u|q(x)+1−f(x)|u|1−β(x)]dx=0}. |
Remark 1. N2 can be considered as a Nehari manifold, even though in general it may not be a manifold. Therefore, if we set
c0:=infu∈N2J(u), |
then one might expect that c0 is attained at some u∈N2 (i.e., N2≠∅) and that u is a critical point of J.
Throughout the paper, we assume that the following conditions hold:
(A1) β:¯Ω→(1,∞) is a continuous function such that 1<β−≤β(x)≤β+<∞.
(A2) q:¯Ω→(0,1) is a continuous function such that 0<q−≤q(x)≤q+<1 and q++1≤β−.
(A3) 2≤P−−≤P++<P∗− for almost all x∈¯Ω.
(A4) f∈L1(Ω) is a positive function, that is, f(x)>0 a.e. in Ω.
(A5) g∈L∞(Ω) is a nonnegative function.
Lemma 3.3. For any u∈W1,→p(⋅)0(Ω) satisfying ∫Ωf(x)|u|1−β(x)dx<∞, the functional J is well-defined and coercive on W1,→p(⋅)0(Ω).
Proof. Denote by I1,I2 the indices sets I1={i∈{1,2,...,N}:|∂xiu|pi(⋅)≤1} and I2={i∈{1,2,...,N}:|∂xiu|pi(⋅)>1}. Using Proposition 2.2, it follows
|J(u)|≤1P−−N∑i=1∫Ω|∂xiu|pi(x)dx−|g|∞q++1∫Ω|u|q(x)+1dx+1β−−1∫Ωf(x)|u|1−β(x)dx≤1P−−(∑i∈I1|∂xiu|P−−pi(⋅)+∑i∈I2|∂xiu|P++pi(⋅))−|g|∞q++1min{|u|q++1q(x)+1,|u|q−+1q(x)+1}+1β−−1∫Ωf(x)|u|1−β(x)dx≤1P−−(N∑i=1|∂xiu|P++pi(⋅)+∑i∈I1|∂xiu|P−−pi(⋅))−|g|∞q++1min{|u|q++1q(x)+1,|u|q−+1q(x)+1}+1β−−1∫Ωf(x)|u|1−β(x)dx≤1P−−(N∑i=1|∂xiu|P++pi(⋅)+N)−|g|∞q++1min{|u|q++1q(x)+1,|u|q−+1q(x)+1}+1β−−1∫Ωf(x)|u|1−β(x)dx | (3.2) |
which shows that J is well-defined on W1,→p(⋅)0(Ω).
Applying similar steps and using the generalized mean inequality for ∑Ni=1|∂xiu|P−−pi(⋅) gives
J(u)≥1P++N∑i=1∫Ω|∂xiu|pi(x)dx−|g|∞q−+1∫Ω|u|q(x)+1dx+1β+−1∫Ωf(x)|u|1−β(x)dx≥1P++(∑i∈I1|∂xiu|P++pi(⋅)+∑i∈I2|∂xiu|P−−pi(⋅))−|g|∞q−+1∫Ω|u|q(x)+1dx+1β+−1∫Ωf(x)|u|1−β(x)dx≥NP++(‖u‖P−−→p(⋅)NP−−−1)−|g|∞q−+1‖u‖q++1→p(⋅)+1β+−1∫Ωf(x)|u|1−β(x)dx | (3.3) |
That is, J is coercive (i.e., J(u)→∞ as ‖u‖→p(⋅)→∞), and bounded below on W1,→p(⋅)0(Ω).
Next, we provide a-priori estimate.
Lemma 3.4. Assume that (un)⊂N1 is a nonnegative minimizing sequence for the minimization problem limn→∞J(un)=infN1J. Then, there are positive real numbers δ1,δ2 such that
δ1≤‖un‖→p(⋅)≤δ2 |
Proof. We assume by contradiction that there exists a subsequence (un) (not relabelled) such that un→0 in W1,→p(⋅)0(Ω). Thus, we can assume that ‖un‖→p(⋅)<1 for n large enough, and therefore, |∂xiun|Lpi(⋅)<1. Then, using Proposition 2.2, we have
∫ΩN∑i=1|∂xiun|pi(x)dx≤N∑i=1|∂xiun|p−ipi(⋅)≤N∑i=1|∂xiun|P−−pi(⋅) | (3.4) |
We recall the following elementary inequality: for all r,s>0 and m>0 it holds
rm+sm≤K(r+s)m | (3.5) |
where K:=max{1,21−m}. If we let r=|∂x1un|P−−Lp1(⋅), s=|∂x2un|P−−Lp2(⋅) and m=P−− in (3.5), it reads
|∂x1un|P−−Lp1(⋅)+|∂x2un|P−−Lp2(⋅)≤K(|∂x1un|Lp1(⋅)+|∂x2un|Lp2(⋅))P−− | (3.6) |
where K=max{1,21−P−−}=1. Applying this argument to the following terms in the sum ∑Ni=1|∂xiun|P−−pi(⋅) consecutively leads to
∫ΩN∑i=1|∂xiun|pi(x)dx≤N∑i=1|∂xiun|p−ipi(⋅)≤N∑i=1|∂xiun|P−−pi(⋅)≤(N∑i=1|∂xiun|pi(⋅))P−−≤‖un‖P−−→p(⋅) | (3.7) |
Now, using (3.7) and the reversed Hölder's inequality, we have
(∫Ωf(x)1/β−dx)β−(∫Ω|un|dx)1−β−≤∫Ωf(x)|un|1−β−dx≤∫Ωf(x)|un|1−β(x)dx | (3.8) |
By the assumption, (un)⊂N1. Thus, using (3.8) and Proposition 2.2 leads to
(∫Ωf(x)1/β−dx)β−(∫Ω|un|dx)1−β−≤∫Ωf(x)|un|1−β−dx≤‖un‖P−−→p(⋅)−|g|∞q−+1‖un‖q++1→0 | (3.9) |
Considering the assumption (A2), this can only happen if ∫Ω|un|dx→∞, which is not possible. Therefore, there exists a positive real number δ1 such that ‖un‖→p(⋅)≥δ1.
Now, let's assume, on the contrary, that ‖un‖→p(⋅)>1 for any n. We know, by the coerciveness of J, that the infimum of J is attained, that is, ∞<m:=infu∈W1,→p(⋅)0(Ω)J(u). Moreover, due to the assumption limn→∞J(un)=infN1J, (J(un)) is bounded. Then, applying the same steps as in (3.3), it follows
C‖un‖→p(⋅)+J(un)≥NP++(‖un‖P−−→p(⋅)NP−−−1)−|g|∞q−+1‖un‖q++1→p(⋅)+1β+−1∫Ωf(x)|un|1−β(x)dx |
for some constant C>0. If we drop the nonnegative terms, we obtain
C‖un‖→p(⋅)+J(un)≥1P++(‖un‖P−−→p(⋅)NP−−−1−N)−|g|∞q−+1‖u‖q++1→p(⋅) |
Dividing the both sides of the above inequality by ‖un‖q++1→p(⋅) and passing to the limit as n→∞ leads to a contradiction since we have q−+1<P−−. Therefore, there exists a positive real number δ2 such that ‖un‖→p(⋅)≤δ2.
Lemma 3.5. N1 is closed in W1,→p(⋅)0(Ω).
Proof. Assume that (un)⊂N1 such that un→ˆu(strongly) in W1,→p(⋅)0(Ω). Thus, un(x)→ˆu(x) a.e. in Ω, and ∂xiun→∂xiˆu in Lpi(⋅)(Ω) for i=1,2,...,N. Then, using Fatou's lemma, it reads
∫Ω[N∑i=1|∂xiun|pi(x)−g(x)|un|q(x)+1−f(x)|un|1−β(x)]dx≥0lim infn→∞[∫ΩN∑i=1|∂xiun|pi(x)dx]−∫Ωg(x)|ˆu|q(x)+1dx≥lim infn→∞[∫Ωf(x)|un|1−β(x)dx] |
and hence,
∫Ω[N∑i=1|∂xiˆu|pi(x)−g(x)|ˆu|q(x)+1−f(x)|ˆu|1−β(x)]dx≥0 |
which means ˆu∈N1. N1 is closed in W1,→p(⋅)0(Ω).
Lemma 3.6. For any u∈W1,→p(⋅)0(Ω) satisfying ∫Ωf(x)|u|1−β(x)dx<∞, there exists a unique continuous scaling function u∈W1,→p(⋅)0(Ω)→(0,∞):u⟼t(u) such that t(u)u∈N2, and t(u)u is the minimizer of the functional J along the ray {tu:t>0}, that is, inft>0J(tu)=J(t(u)u).
Proof. Fix u∈W1,→p(⋅)0(Ω) such that ∫Ωf(x)|u|1−β(x)dx<∞. For any t>0, the scaled functional, J(tu), determines a curve that can be characterized by
Φ(t):=J(tu),t∈[0,∞). | (3.10) |
Then, for a t∈[0,∞), tu∈N2 if and only if
Φ′(t)=ddtΦ(t)|t=t(u)=0. | (3.11) |
First, we show that Φ(t) attains its minimum on [0,∞) at some point t=t(u).
Considering the fact 0<∫Ωf(x)|u|1−β(x)dx<∞, we will examine two cases for t.
For 0<t<1:
Φ(t)=J(tu)≥tP++P++N∑i=1∫Ω|∂xiu|pi(x)dx−tq−+1q−+1∫Ωg(x)|u|q(x)+1dx+t1−β−β+−1∫Ωf(x)|u|1−β(x)dx:=Ψ0(t) |
Then, Ψ0:(0,1)→R is continuous. Taking the derivative of Ψ0 gives
Ψ′0(t)=tP++−1N∑i=1∫Ω|∂xiu|pi(x)dx−tq−∫Ωg(x)|u|q(x)+1dx+(1−β−β+−1)t−β−∫Ωf(x)|u|1−β(x)dx | (3.12) |
It is easy to see from (3.12) that Ψ′0(t)<0 when t>0 is small enough. Therefore, Ψ0(t) is decreasing when t>0 is small enough. In the same way,
Φ(t)=J(tu)≤tP−−P−−N∑i=1∫Ω|∂xiu|pi(x)dx−tq++1q++1∫Ωg(x)|u|q(x)+1dx+t1−β+β−−1∫Ωf(x)|u|1−β(x)dx:=Ψ1(t) |
Then, Ψ1:(0,1)→R is continuous. Taking the derivative of Ψ1 gives
Ψ′1(t)=tP−−−1N∑i=1∫Ω|∂xiu|pi(x)dx−tq+∫Ωg(x)|u|q(x)+1dx+(1−β+β+−1)t−β+∫Ωf(x)|u|1−β(x)dx | (3.13) |
But (3.13) also suggests that Ψ′1(t)<0 when t>0 is small enough. Thus, Ψ1(t) is decreasing when t>0 is small enough. Therefore, since Ψ0(t)≤Φ(t)≤Ψ1(t) for 0<t<1, Φ(t) is decreasing when t>0 is small enough.
For t>1: Following the same arguments shows that Ψ′0(t)>0 and Ψ′1(t)>0 when t>1 is large enough, and therefore, both Ψ0(t) and Ψ1(t) are increasing. Thus, Φ(t) is increasing when t>1 is large enough. In conclusion, since Φ(0)=0, Φ(t) attains its minimum on [0,∞) at some point, say t=t(u). That is, ddtΦ(t)|t=t(u)=0. Then, t(u)u∈N2 and inft>0J(tu)=J(t(u)u).
Next, we show that scaling function t(u) is continuous on W1,→p(⋅)0(Ω).
Let un→u in W1,→p(⋅)0(Ω)∖{0}, and tn=t(un). Then, by the definition, tnun∈N2. Defined in this way, the sequence tn is bounded. Assume on the contrary that tn→∞ (up to a subsequence). Then, using the fact tnun∈N2 it follows
∫ΩN∑i=1|∂xitnun|pi(x)dx−∫Ωg(x)|tnun|q(x)+1dx=∫Ωf(x)|tnun|1−β(x)dxtP−−n∫ΩN∑i=1|∂xiun|pi(x)dx−tq−+1n∫Ωg(x)|un|q(x)+1dx≤t1−β−n∫Ωf(x)|un|1−β(x)dx |
which suggests a contradiction when tn→∞. Hence, sequence tn is bounded. Therefore, there exists a subsequence tn (not relabelled) such that tn→t0, t0≥0. On the other hand, from Lemma 3.4, ‖tnun‖→p(⋅)≥δ1>0. Thus, t0>0 and t0u∈N2. By the uniqueness of the map t(u), t0=t(u), which concludes the continuity of t(u). In conclusion, for any ∈W1,→p(⋅)0(Ω) satisfying ∫Ωf(x)|u|1−β(x)dx<∞, the function t(u) scales u∈W1,→p(⋅)0(Ω) continuously to a point such that t(u)u∈N2.
Lemma 3.7. Assume that (un)⊂N1 is the nonnegative minimizing sequence for the minimization problem limn→∞J(un)=infN1J. Then, there exists a subsequence (un) (not relabelled) such that un→u∗ (strongly) in W1,→p(⋅)0(Ω).
Proof. Since (un) is bounded in W1,→p(⋅)0(Ω) and W1,→p(⋅)0(Ω) is reflexive, there exists a subsequence (un), not relabelled, and u∗∈W1,→p(⋅)0(Ω) such that
● un⇀u∗ (weakly) in W1,→p(⋅)0(Ω),
● un→u∗ in Ls(⋅)(Ω), 1<s(x)<P−,∞, for all x∈¯Ω,
● un(x)→u∗(x) a.e. in Ω.
Since the norm ‖⋅‖→p(⋅) is a continuous convex functional, it is weakly lower semicontinuous. Using this fact along with the Fatou's lemma, and Lemma 3.4, it reads
infN1J=limn→∞J(un)≥lim infn→∞[∫ΩN∑i=1|∂xiun|pi(x)pi(x)dx]−∫Ωg(x)|u∗|q(x)+1q(x)+1dx+lim infn→∞[∫Ωf(x)|un|1−β(x)β(x)−1dx]≥∫ΩN∑i=1|∂xiu∗|pi(x)pi(x)dx−∫Ωg(x)|u∗|q(x)+1q(x)+1dx+∫Ωf(x)|u∗|1−β(x)β(x)−1dx=J(u∗)≥J(t(u∗)u∗)≥infN2J≥infN1J | (3.14) |
The above result implies, up to subsequences, that
limn→∞‖un‖→p(⋅)=‖u∗‖→p(⋅). | (3.15) |
Thus, (3.15) along with un⇀u∗ in W1,→p(⋅)0(Ω) show that un→u∗ in W1,→p(⋅)0(Ω).
The following is the main result of the present paper.
Theorem 3.8. Assume that the conditions (A1)−(A5) hold. Then, problem (1.1) has at least one positive W1,→p(⋅)0(Ω)-solution if and only if there exists ¯u∈W1,→p(⋅)0(Ω) satisfying ∫Ωf(x)|¯u|1−β(x)dx<∞.
Proof. (⇒): Assume that the function u∈W1,→p(⋅)0(Ω) is a weak solution to problem (1.1). Then, letting u=φ in Definition (3.1) gives
∫Ωf(x)|u|1−β(x)dx=∫ΩN∑i=1|∂xiu|pi(x)dx−∫Ωg(x)|u|q(x)+1dx≤‖u‖PM→p(⋅)−|g|∞|u|qMq(x)+1≤‖u‖PM→p(⋅)<∞, |
where PM:=max{P−−,P++} and qM:=max{q−,q+}, changing according to the base.
(⇐): Assume that there exists ¯u∈W1,→p(⋅)0(Ω) such that ∫Ωf(x)|¯u|1−β(x)dx<∞. Then, by Lemma 3.6, there exists a unique number t(¯u)>0 such that t(¯u)¯u∈N2.
The information we have had about J so far and the closeness of N1 allow us to apply Ekeland's variational principle to the problem infN1J. That is, it suggests the existence of a corresponding minimizing sequence (un)⊂N1 satisfying the following:
(E1) J(un)−infN1J≤1n,
(E2) J(un)−J(ν)≤1n‖un−ν‖→p(⋅),∀ν∈N1.
Due to the fact J(|un|)=J(un), it is not wrong to assume that un≥0 a.e. in Ω. Additionally, considering that (un)⊂N1 and following the same approach as it is done in the (⇒) part, we can obtain that ∫Ωf(x)|un|1−β(x)dx<∞. If all this information and the assumptions (A1), (A2) are taken into consideration, it follows that un(x)>0 a.e. in Ω.
The rest of the proof is split into two cases.
Case Ⅰ: (un)⊂N1∖N2 for n large.
For a function φ∈W1,→p(⋅)0(Ω) with φ≥0, and t>0, we have
0<(un(x)+tφ(x))1−β(x)≤un(x)1−β(x)a.e. inΩ. |
Therefore, using (A1), (A2) gives
∫Ωf(x)(un+tφ)1−β(x)dx≤∫Ωf(x)u1−β(x)ndx≤∫ΩN∑i=1|∂xiun|pi(x)dx−∫Ωg(x)uq(x)+1ndx<∞ | (3.16) |
Then, when t>0 is small enough in (3.16), we obtain
∫Ωf(x)(un+tφ)1−β(x)dx≤∫ΩN∑i=1|∂xi(un+tφ)|pi(x)dx−∫Ωg(x)(un+tφ)q(x)+1dx | (3.17) |
which means that ν:=un+tφ∈N1. Now, using (E2), it reads
1n‖tφ‖→p(⋅)≥J(un)−J(ν)=∫ΩN∑i=1|∂xiun|pi(x)pi(x)dx−∫ΩN∑i=1|∂xi(un+tφ)|pi(x)pi(x)dx−∫Ωg(x)uq(x)+1nq(x)+1dx+∫Ωg(x)(un+tφ)q(x)+1q(x)+1dx+∫Ωf(x)u1−β(x)nβ(x)−1dx−∫Ωf(x)(un+tφ)1−β(x)β(x)−1dx |
Dividing the above inequality by t and passing to the infimum limit as t→0 gives
lim inft→0‖φ‖→p(⋅)n+lim inft→0[∫ΩN∑i=1[|∂xi(un+tφ)|pi(x)−|∂xiun|pi(x)]tpi(x)dx]⏟:=I1−lim inft→0[∫Ωg(x)[(un+tφ)q(x)+1−uq(x)+1n]t(q(x)+1)dx]⏟:=I2≥lim inft→0[∫Ωf(x)[(un+tφ)1−β(x)−u1−β(x)n]t(1−β(x))dx]⏟:=I3 |
Calculation of I1,I2 gives
I1=ddt(∫ΩN∑i=1|∂xi(un+tφ)|pi(x)pi(x)dx)|t=0=∫ΩN∑i=1|∂xiun|pi(x)−2∂xiun⋅∂xiφdx | (3.18) |
and
I2=ddt(∫Ωg(x)(un+tφ)q(x)+1q(x)+1dx)|t=0=∫Ωg(x)uq(x)nφdx. | (3.19) |
For I3: Since for t>0 it holds
u1−β(x)n(x)−(un(x)+tφ(x))1−β(x)≥0,a.e. inΩ |
we can apply Fatou's lemma, that is,
I2=lim inft→0∫Ωf(x)[(un+tφ)1−β(x)−u1−β(x)n]t(1−β(x))dx≥∫Ωlim inft→0f(x)[(un+tφ)1−β(x)−u1−β(x)n]t(1−β(x))dx≥∫Ωf(x)u−β(x)nφdx | (3.20) |
Now, substituting I1,I2,I3 gives
‖φ‖→p(⋅)n+∫ΩN∑i=1|∂xiun|pi(x)−2∂xiun⋅∂xiφdx−∫Ωg(x)uq(x)nφdx≥∫Ωf(x)u−β(x)nφdx |
From Lemma 3.7, we know that un→u∗ in W1,→p(⋅)0(Ω). Thus, also considering Fatou's lemma, we obtain
∫ΩN∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xiφdx−∫Ωg(x)(u∗)q(x)φdx−∫Ωf(x)(u∗)−β(x)φdx≥0, | (3.21) |
for any φ∈W1,→p(⋅)0(Ω) with φ≥0. Letting φ=u∗ in (3.21) shows clearly that u∗∈N1.
Lastly, from Lemma 3.7, we can conclude that
limn→∞J(un)=J(u∗)=infN2J, |
which means
u∗∈N2,(witht(u∗)=1) | (3.22) |
Case Ⅱ: There exists a subsequence of (un) (not relabelled) contained in N2.
For a function φ∈W1,p(x)0(Ω) with φ≥0, t>0, and un∈N2, we have
∫Ωf(x)(un+tφ)1−β(x)dx≤∫Ωf(x)u1−β(x)ndx=∫ΩN∑i=1|∂xiu|pi(x)dx−∫Ωg(x)uq(x)+1ndx<∞, | (3.23) |
and hence, there exists a unique continuous scaling function, denoted by θn(t):=t(un+tφ)>0, corresponding to (un+tφ) so that θn(t)(un+tφ)∈N2 for n=1,2,.... Obviously, θn(0)=1. Since θn(t)(un+tφ)∈N2, we have
0=∫ΩN∑i=1|∂xiθn(t)(un+tφ)|pi(x)dx−∫Ωg(x)(θn(t)(un+tφ))q(x)+1dx−∫Ωf(x)(θn(t)(un+tφ))1−β(x)dx≥∫ΩN∑i=1|∂xiθn(t)(un+tφ)|pi(x)dx−θqM+1n(t)∫Ωg(x)(un+tφ)q(x)+1dx−θ1−βmn(t)∫Ωf(x)(un+tφ)1−β(x)dx, | (3.24) |
and
0=∫ΩN∑i=1|∂xiun|pi(x)dx−∫Ωg(x)uq(x)+1ndx−∫Ωf(x)u1−β(x)ndx. | (3.25) |
where βm:=min{β−,β+}. Then, using (3.24) and (3.25) together gives
0≥[−(q++1)[θn(0)+τ1(θn(t)−θn(0))]qm∫Ωg(x)(un+tφ)q(x)+1dx−(1−βm)[θn(0)+τ2(θn(t)−θn(0))]−βm∫Ωf(x)(un+tφ)1−β(x)dx](θn(t)−θn(0))+∫ΩN∑i=1|∂xiθn(t)(un+tφ)|pi(x)dx−∫ΩN∑i=1|∂xi(un+tφ)|pi(x)dx+∫ΩN∑i=1|∂xi(un+tφ)|pi(x)dx−∫ΩN∑i=1|∂xiun|pi(x)dx−[∫Ωg(x)(un+tφ)q(x)+1dx−∫Ωg(x)uq(x)+1ndx]−[∫Ωf(x)(un+tφ)1−β(x)dx−∫Ωf(x)u1−β(x)ndx] | (3.26) |
for some constants τ1,τ2∈(0,1). To proceed, we assume that θ′n(0)=ddtθn(t)|t=0∈[−∞,∞]. In case this limit does not exist, we can consider a subsequence tk>0 of t such that tk→0 as k→∞.
Next, we show that θ′n(0)≠∞.
Dividing the both sides of (3.26) by t and passing to the limit as t→0 leads to
0≥[P−−∫ΩN∑i=1|∂xiun|pi(x)dx+(βm−1)∫Ωf(x)u1−β(x)ndx−(q++1)∫Ωg(x)uq(x)+1ndx]θ′n(0)+P−−∫ΩN∑i=1|∂xiun|pi(x)−2∂xiun⋅∂xiφdx−(q++1)∫Ωg(x)uq(x)nφdx+(βm−1)∫Ωf(x)u−β(x)nφdx | (3.27) |
or
0≥[(P−−−q+−1)∫ΩN∑i=1|∂xiun|pi(x)dx+(βm+q+)∫Ωf(x)u1−β(x)ndx]θ′n(0)+P−−∫ΩN∑i=1|∂xiun|pi(x)−2∂xiun⋅∂xiφdx−(q++1)∫Ωg(x)uq(x)nφdx+(βm−1)∫Ωf(x)u−β(x)nφdx | (3.28) |
which, along with Lemma 3.4, concludes that −∞≤θ′n(0)<∞, and hence, θ′n(0)≤¯c, uniformly in all large n.
Next, we show that θ′n(0)≠−∞.
First, we apply Ekeland's variational principle to the minimizing sequence (un)⊂N2(⊂N1). Thus, letting ν:=θn(t)(un+tφ) in (E2) gives
1n[|θn(t)−1|‖un‖→p(⋅)+tθn(t)‖φ‖→p(⋅)]≥J(un)−J(θn(t)(un+tφ))=∫ΩN∑i=1|∂xiun|pi(x)pi(x)dx−∫Ωg(x)uq(x)+1nq(x)+1dx+∫Ωf(x)u1−β(x)nβ(x)−1dx−∫ΩN∑i=1|∂xiθn(t)(un+tφ)|pi(x)pi(x)dx+∫Ωg(x)[θn(t)(un+tφ)]q(x)+1q(x)+1dx−∫Ωf(x)[θn(t)(un+tφ)]1−β(x)β(x)−1dx≥∫ΩN∑i=1|∂xiun|pi(x)pi(x)dx−∫ΩN∑i=1|∂xiθn(t)(un+tφ)|pi(x)pi(x)dx−∫Ωg(x)uq(x)+1nq(x)+1dx+∫Ωg(x)[θn(t)(un+tφ)]q(x)+1q(x)+1dx−1β−−1∫ΩN∑i=1|∂xiθn(t)(un+tφ)|pi(x)dx | (3.29) |
If we use Lemma 3.4 to manipulate the norm ‖u+tφ‖→p(⋅), the integral in the last line of (3.29) can be written as follows
1β−−1∫ΩN∑i=1|∂xiθn(t)(un+tφ)|pi(x)dx≤θPMn(t)β−−1∫ΩN∑i=1|∂xi(un+tφ)|pi(x)dx≤θPMn(t)β−−1‖un+tφ‖PM→p(⋅)≤2P++−1θPMn(t)CPM(δ2)‖φ‖PM→p(⋅)β−−1t | (3.30) |
Then,
1n[|θn(t)−1|‖un‖→p(⋅)+tθn(t)‖φ‖→p(⋅)]+∫ΩN∑i=1[|∂xi(un+tφ)|pi(x)−|∂xiun|pi(x)]pi(x)dx+2P++−1θPMn(t)CPM(δ2)‖φ‖PM→p(⋅)β−−1t≥[(1q−+1)[θn(0)+τ1(θn(t)−θn(0))]qm∫Ωg(x)(un+tφ)q(x)+1dx](θn(t)−θn(0))≥−∫ΩN∑i=1[|∂xiθn(t)(un+tφ)|pi(x)−|∂xi(un+tφ)|pi(x)]pi(x)dx+1q−+1∫Ωg(x)[(un+tφ)q(x)+1−uq(x)+1n]dx | (3.31) |
Dividing by t and passing to the limit as t→0 gives
1n‖φ‖→p(⋅)+2P++−1θPMn(t)CPM(δ2)‖φ‖PM→p(⋅)β−−1≥[(−1+1q−+1)∫ΩN∑i=1|∂xiun|pi(x)dx−1q−+1∫Ωf(x)u1−β(x)ndx−‖un‖→p(⋅)nsgn[θn(t)−1]]θ′n(0)−∫ΩN∑i=1|∂xiun|pi(x)−2∂xiun⋅∂xiφdx+∫Ωg(x)uq(x)ndx | (3.32) |
which concludes that θ′n(0)≠−∞. Thus, θ′n(0)≥c_ uniformly in large n.
In conclusion, there exists a constant, C0>0 such that |θ′n(0)|≤C0 when n≥N0,N0∈N.
Next, we show that u∗∈N2.
Using (E2) again, we have
1n[|θn(t)−1|‖un‖→p(⋅)+tθn(t)‖φ‖→p(⋅)]≥J(un)−J(θn(t)(un+tφ))=∫ΩN∑i=1|∂xiun|pi(x)pi(x)dx−∫Ωg(x)uq(x)+1nq(x)+1dx+∫Ωf(x)u1−β(x)nβ(x)−1dx−∫ΩN∑i=1|∂xiθn(t)(un+tφ)|pi(x)pi(x)dx+∫Ωg(x)[θn(t)(un+tφ)]q(x)+1q(x)+1dx−∫Ωf(x)[θn(t)(un+tφ)]1−β(x)β(x)−1dx=−∫ΩN∑i=1|∂xi(un+tφ)|pi(x)pi(x)dx+∫ΩN∑i=1|∂xiun|pi(x)pi(x)dx−∫Ωf(x)(un+tφ)1−β(x)β(x)−1dx+∫Ωf(x)u1−β(x)nβ(x)−1dx−∫ΩN∑i=1|∂xiθn(t)(un+tφ)|pi(x)pi(x)dx+∫ΩN∑i=1|∂xi(un+tφ)|pi(x)pi(x)dx−∫Ωf(x)[θn(t)(un+tφ)]1−β(x)β(x)−1dx+∫Ωf(x)(un+tφ)1−β(x)β(x)−1dx∫Ωg(x)[θn(t)(un+tφ)]q(x)+1q(x)+1dx−∫Ωg(x)(un+tφ)q(x)+1q(x)+1dx−∫Ωg(x)uq(x)+1nq(x)+1dx+∫Ωg(x)(un+tφ)q(x)+1q(x)+1dx | (3.33) |
Dividing by t and passing to the limit as t→0 gives
1n[|θ′n(0)|‖un‖→p(⋅)+‖φ‖→p(⋅)]≥−∫ΩN∑i=1|∂xiun|pi(x)−2∂xiun⋅∂xiφdx+∫Ωf(x)u−β(x)nφdx+∫Ωg(x)uq(x)nφdx[−∫ΩN∑i=1|∂xiun|pi(x)dx+∫Ωg(x)uq(x)+1ndx+∫Ωf(x)u1−β(x)ndx]θ′n(0)=−∫ΩN∑i=1|∂xiun|pi(x)−2∂xiun⋅∂xiφdx+∫Ωg(x)uq(x)nφdx+∫Ωf(x)u−β(x)nφdx | (3.34) |
If we consider that |θ′n(0)|≤C0 uniformly in n, we obtain that ∫Ωf(x)u−β(x)ndx<∞. Therefore, for n→∞ it reads
∫ΩN∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xiφdx−∫Ωg(x)(u∗)q(x)φdx−∫Ωf(x)(u∗)−β(x)φdx≥0 | (3.35) |
for all φ∈W1,→p(⋅)0(Ω), φ≥0. Letting φ=u∗ in (3.35) shows clearly that u∗∈N1.
This means, as with the Case Ⅰ, that we have
u∗∈N2 | (3.36) |
By taking into consideration the results (3.21), (3.22), (3.35), and (3.36), we infer that u∗∈N2 and (3.35) holds, in the weak sense, for both cases. Additionally, since u∗≥0 and u∗≠0, by the strong maximum principle for weak solutions, we must have u∗(x)>0almost everywhere inΩ.
Next, we show that u∗∈W1,→p(⋅)0(Ω) is a weak solution to problem (1.1).
For a random function ϕ∈W1,→p(⋅)0(Ω), and ε>0, let φ=(u∗+εϕ)+=max{0,u∗+εϕ}. We split Ω into two sets as follows:
Ω≥={x∈Ω:u∗(x)+εϕ(x)≥0}, | (3.37) |
and
Ω<={x∈Ω:u∗(x)+εϕ(x)<0}. | (3.38) |
If we replace φ with (u∗+εϕ) in (3.35), it follows
0≤∫ΩN∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xiφdx−∫Ω[g(x)(u∗)q(x)+f(x)(u∗)−β(x)]φdx=∫Ω≥N∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xi(u∗+εϕ)dx−∫Ω≥[g(x)(u∗)q(x)(u)∗+f(x)(u∗)−β(x)](u∗+εϕ)dx=∫Ω−∫Ω<[N∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xi(u∗+εϕ)−[g(x)(u∗)q(x)+f(x)(u∗)−β(x)](u∗+εϕ)]dx=∫ΩN∑i=1|∂xiu∗|pi(x)dx+ε∫ΩN∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xiϕdx−∫Ωf(x)(u∗)1−β(x)dx−ε∫Ωf(x)(u∗)−β(x)ϕdx−∫Ωg(x)(u∗)q(x)+1dx−ε∫Ωg(x)(u∗)q(x)ϕdx−∫Ω<[N∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xi(u∗+εϕ)−[g(x)(u∗)q(x)+f(x)(u∗)−β(x)](u∗+εϕ)]dx | (3.39) |
Since u∗∈N2, we have
0≤ε[∫ΩN∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xiϕ−[g(x)(u∗)q(x)+f(x)(u∗)−β(x)]ϕ]dx−ε∫Ω<N∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xiϕdx+ε∫Ω<g(x)(u∗)q(x)ϕdx+ε∫Ω<f(x)(u∗)−β(x)ϕdx | (3.40) |
Dividing by ε and passing to the limit as ε→0, and considering that |Ω<|→0 as ε→0 gives
∫ΩN∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xiϕdx−∫Ωg(x)(u∗)q(x)ϕdx≥∫Ωf(x)(u∗)−β(x)ϕdx,∀ϕ∈W1,→p(⋅)0(Ω) | (3.41) |
However, since the function ϕ∈W1,→p(⋅)0(Ω) is chosen randomly, it follows that
∫ΩN∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xiϕdx−∫Ωg(x)(u∗)q(x)ϕdx=∫Ωf(x)(u∗)−β(x)ϕdx | (3.42) |
which concludes that u∗∈W1,→p(⋅)0(Ω) is a weak solution to problem (1.1).
Suppose that
{g(x)=ekcos(|x|),andf(x)=(1−|x|)kβ(x),x∈B1(0)⊂RN,k>0. |
Then equation (1.1) becomes
{−N∑i=1∂xi(|∂xiu|pi(x)−2∂xiu)=(1−|x|)kβ(x)u−β(x)+ekcos(|x|)uq(x) in B1(0),u>0 in B1(0),u=0 on ∂B1(0). | (4.1) |
Theorem 4.1. Assume that the conditions (A1)−(A3) hold. If 1<β+<1+k+1α and α>1/2, then, problem (4.1) has at least one positive W1,→p(⋅)0(B1(0))-solution.
Proof. Function f(x)=(1−|x|)kβ(x)≤(1−|x|)kβ− is clearly non-negative and bounded above within the unit ball B1(0) since |x|<1. Hence, f(x)∈L1(B1(0)).
Now, let's choose ¯u=(1−|x|)α. Since ¯u is also non-negative and bounded within B(0,1), it is in ¯u∈LP++(B(0,1)). Indeed,
N∑i=1∫B1(0)((1−|x|)α)pi(x)dx≤N[∫B1(0)((1−|x|)α)P−−dx+∫B1(0)((1−|x|)α)P++dx]<∞. |
Next, we show that ∂xi¯u∈Lpi(⋅)(B1(0)) for i∈{1,...,N}. Fix i∈{1,...,N}. Then
∂xi(1−|x|)α=α(1−|x|)α−1−xi|x| |
Considering that x∈B1(0), we obtain
∫B1(0)|∂xi(1−|x|)α|pi(x)dx≤αPM∫B1(0)(1−|x|)(α−1)P−−dx |
Therefore,
N∑i=1∫B1(0)|∂xi(1−|x|)α|pi(x)dx≤NαPMN∑i=1∫B(0,1)(1−|x|)(α−1)P−−dx<∞ |
if α>P−−−1P−−. Thus, ∂xi¯u∈Lpi(⋅)(B1(0)) for i∈{1,...,N}, and as a result, ¯u∈W1,→p(⋅)0(B1(0)).
Finally, we show that ∫B(0,1)(1−|x|)k(1−|x|)α(1−β(x))β(x)dx<∞. Then,
∫B1(0)(1−|x|)k(1−|x|)α(1−β(x))β(x)dx≤1β−∫B1(0)(1−|x|)k+α(1−β+)dx<∞. |
Thus, by Theorem 3.8, problem (4.1) has at least one positive W1,→p(⋅)0(B1(0))-solution.
The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported by Athabasca University Research Incentive Account [140111 RIA].
The author declares there is no conflict of interest.
[1] | D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: Foundations and harmonic analysis, Birkhäuser Basel, 2013. https://doi.org/10.1007/978-3-0348-0548-3 |
[2] | L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18363-8 |
[3] | M. Ruzicka, Electrorheological fluids: modeling and mathematical theory, Springer Berlin, Heidelberg, 2007. https://doi.org/10.1007/BFb0104029 |
[4] |
B. Cekic, A. Kalinin, R. Mashiyev, M. Avci, Lp(x)(Ω)-estimates of vector fields and some applications to magnetostatics problems, J. Math. Anal. Appl., 389 (2012), 838–851. https://doi.org/10.1016/j.jmaa.2011.12.029 doi: 10.1016/j.jmaa.2011.12.029
![]() |
[5] |
Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM. J. Appl. Math., 66 (2006), 1383–1406. https://doi.org/10.1137/0506245 doi: 10.1137/0506245
![]() |
[6] |
M. Avci, Ni-serrin type equations arising from capillarity phenomena with non-standard growth, Bound. Value. Probl., 55 (2013), 1–13. https://doi.org/10.1186/1687-2770-2013-55 doi: 10.1186/1687-2770-2013-55
![]() |
[7] |
S. Heidarkhani, S. Moradi, M. Avci, Critical points approaches to a nonlocal elliptic problem driven by a p(x)-biharmonic operator, Georgian. Math. J., 29 (2022), 55–69. https://doi.org/10.1515/gmj-2021-2115 doi: 10.1515/gmj-2021-2115
![]() |
[8] |
Z. Yucedag, Existence of solutions for p(x)-laplacian equations without Ambrosetti–Rabinowitz type condition, B. Malays. Math. Sci. So., 38 (2015), 1023–1033. https://doi.org/10.1007/s40840-014-0057-1 doi: 10.1007/s40840-014-0057-1
![]() |
[9] | G. A. Afrouzi, N. T. Chung, S. Mahdavi, Existence and multiplicity of solutions for anisotropic elliptic systems with non-standard growth conditions, Electron. J. Differ. Eq., 32 (2012), 1–15. |
[10] |
M. M. Boureanu, Multiple solutions for two general classes of anisotropic systems with variable exponents, J. Anal. Math., 150 (2023), 1–51. https://doi.org/10.1007/s11854-023-0287-y doi: 10.1007/s11854-023-0287-y
![]() |
[11] |
M. S. B. Elemine Vall, A. Ahmed, Multiplicity of solutions for a class of Neumann elliptic systems in anisotropic Sobolev spaces with variable exponent, Adv. Oper. Theory, 4 (2019), 497–513. https://doi.org/10.15352/aot.1808-1409 doi: 10.15352/aot.1808-1409
![]() |
[12] |
X. Fan, Anisotropic variable exponent sobolev spaces and-laplacian equations, Complex Var Elliptic, 56 (2011), 623–642. https://doi.org/10.1080/17476931003728412 doi: 10.1080/17476931003728412
![]() |
[13] |
J. Henríquez-Amador, A. Vélez-Santiago, Generalized anisotropic neumann problems of ambrosetti–prodi type with nonstandard growth conditions, J. Math. Anal. Appl., 494 (2021), 124668. https://doi.org/10.1016/j.jmaa.2020.124668 doi: 10.1016/j.jmaa.2020.124668
![]() |
[14] | B. Kone, S. Ouaro, S. Traore, Weak solutions for anisotropic nonlinear elliptic equations with variable exponents, Electron. J. Diffe. Eq., 144 (2009), 1–11. |
[15] |
M. Mihăilescu, P. Pucci, V. Rădulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340 (2008), 687–698. https://doi.org/10.1016/j.jmaa.2007.09.015 doi: 10.1016/j.jmaa.2007.09.015
![]() |
[16] |
I. Fragalà, F. Gazzola, B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 715–734. https://doi.org/10.1016/j.anihpc.2003.12.001 doi: 10.1016/j.anihpc.2003.12.001
![]() |
[17] |
L. Kozhevnikova, On solutions of anisotropic elliptic equations with variable exponent and measure data, Complex Var Elliptic, 66 (2020), 333–367. https://doi.org/10.1080/17476933.2019.1579206 doi: 10.1080/17476933.2019.1579206
![]() |
[18] |
N. Mokhtar, F. Mokhtari, Anisotropic nonlinear elliptic systems with variable exponents and degenerate coercivity, Appl. Anal., 100 (2021), 2347–2367. https://doi.org/10.1080/00036811.2023.2240333 doi: 10.1080/00036811.2023.2240333
![]() |
[19] |
A. R. Leggat, S.EH Miri, An existence result for a singular-regular anisotropic system, Rend. Circ. Mat. Palermo, Ⅱ, 72 (2023), 977–-996. https://doi.org/10.1007/s12215-022-00718-x doi: 10.1007/s12215-022-00718-x
![]() |
[20] |
N. S. Papageorgiou, C. Vetro, F. Vetro, Singular Anisotropic Problems with Competition Phenomena, J Geom Anal, 33 (2023), 173. https://doi.org/10.1007/s12220-023-01227-8 doi: 10.1007/s12220-023-01227-8
![]() |
[21] |
M. Bohner, G. Caristi, A. Ghobadi, S. Heidarkhani Three solutions for discrete anisotropic Kirchhoff-type problems, Dem. Math, 56 (2023), 20220209. https://doi.org/10.1515/dema-2022-0209 doi: 10.1515/dema-2022-0209
![]() |
[22] |
S. EH Miri, On an anisotropic problem with singular nonlinearity having variable exponent, Ric Mat, 66 (2017), 415–424. https://doi.org/10.1007/s11587-016-0309-5 doi: 10.1007/s11587-016-0309-5
![]() |
[23] | M. Naceri, Singular anisotropic elliptic problems with variable exponents, Mem. Differ. Equ. Math., 85 (2022), 119–132. |
[24] |
N. S. Papageorgiou, A. Scapellato, Positive solutions for anisotropic singular dirichlet problems, B. Malays. Math. Sci. So., 45 (2022), 1141–1168. https://doi.org/10.1007/s40840-022-01249-5 doi: 10.1007/s40840-022-01249-5
![]() |
[25] |
D. D. Repovš, K. Saoudi, The nehari manifold approach for singular equations involving the p(x)-laplace operator, Complex Var Elliptic, 68 (2006), 135–149. https://doi.org/10.1080/17476933.2021.1980878 doi: 10.1080/17476933.2021.1980878
![]() |
[26] |
K. Kefi, V. D. Rădulescu, On a p(x)-biharmonic problem with singular weights, Z. Angew. Math. Phys., 68 (2017), 1–13. https://doi.org/10.1007/s00033-017-0827-3 doi: 10.1007/s00033-017-0827-3
![]() |
[27] |
Q. Zhang, Existence of solutions for p(x)-laplacian equations with singular coefficients in Rn, J. Math. Anal. Appl., 348 (2008), 38–50. https://doi.org/10.1016/j.jmaa.2008.06.026 doi: 10.1016/j.jmaa.2008.06.026
![]() |
[28] |
A. Mokhtari, K. Saoudi, N. Chung, A fractional p(x,⋅)-laplacian problem involving a singular term, Indian J. Pure Ap Mat, 53 (2021), 100–111. https://doi.org/10.1007/s13226-021-00037-4 doi: 10.1007/s13226-021-00037-4
![]() |
[29] |
C. Luning, W. Perry, An iterative method for solution of a boundary value problem in non-newtonian fluid flow, J Non-Newton Fluid, 15 (1984), 145–154. https://doi.org/10.1016/0377-0257(84)80002-6 doi: 10.1016/0377-0257(84)80002-6
![]() |
[30] |
J. Hernandez, F. J. Mancebo, J. M. Vega, Positive solutions for singular nonlinear elliptic equations, P. Roy. Soc. Edinb. A., 137 (2007), 41–62. https://doi.org/10.1017/S030821050500065X doi: 10.1017/S030821050500065X
![]() |
[31] |
C. O. Alves, D. P. Covei, Existence of solution for a class of nonlocal elliptic problem via sub–supersolution method, Nonlinear Anal-Real, 23 (2015), 1–8. https://doi.org/10.1016/j.nonrwa.2014.11.003 doi: 10.1016/j.nonrwa.2014.11.003
![]() |
[32] | M. Avci, Positive ground state solutions to a nonlocal singular elliptic problem, Canad. J. Appl. Math., 1 (2019), 1–14. |
[33] |
J. Diaz, J. Hernández, J. Rakotoson, On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms, Milan J Math, 79 (2011), 233–245. https://doi.org/10.1007/s00032-011-0151-x doi: 10.1007/s00032-011-0151-x
![]() |
[34] |
J. Shi, M. Yao, On a singular nonlinear semilinear elliptic problem, P. Roy. Soc. Edinb. A., 128 (1998), 1389—1401. https://doi.org/10.1017/S0308210500027384 doi: 10.1017/S0308210500027384
![]() |
[35] |
Y. Haitao, Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem, J. Differ. Equations., 189 (2003), 487–512. https://doi.org/10.1016/S0022-0396(02)00098-0 doi: 10.1016/S0022-0396(02)00098-0
![]() |
[36] |
S. Yijing, W. Shaoping, L. Yiming, Combined effects of singular and superlinear nonlinearities in some singular boundary value problems, J. Differ. Equations., 176 (2001), 511–531. https://doi.org/10.1006/jdeq.2000.3973 doi: 10.1006/jdeq.2000.3973
![]() |
[37] |
S. Yijing, Z. Duanzhi, The role of the power 3 for elliptic equations with negative exponents, Calc. Var. Partial. Dif., 49 (2014), 909–922. https://doi.org/10.1007/s00526-013-0604-x doi: 10.1007/s00526-013-0604-x
![]() |
[38] |
S. Yijing, Compatibility phenomena in singular problems, P. Roy. Soc. Edinb. A., 143 (2013), 1321–1330. https://doi.org/10.1017/S030821051100117X doi: 10.1017/S030821051100117X
![]() |
[39] |
A. C. Lazer, P. J. McKenna, On a singular nonlinear elliptic boundary-value problem, P. Am. Math. Soc., 111 (1991), 721–730. https://doi.org/10.2307/2048410 doi: 10.2307/2048410
![]() |
[40] |
Z. Zhang, J. Cheng, Existence and optimal estimates of solutions for singular nonlinear dirichlet problems, Nonlinear Anal-Theor, 57 (2004), 473–484. https://doi.org/10.1016/j.na.2004.02.025 doi: 10.1016/j.na.2004.02.025
![]() |
[41] |
L. Boccardo, L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial. Dif., 37 (2010), 363–380. https://doi.org/10.1007/s00526-009-0266-x doi: 10.1007/s00526-009-0266-x
![]() |
[42] |
G. Tarantello, On nonhomogeneous elliptic equations involving critical sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 281–304. https://doi.org/10.1016/S0294-1449(16)30238-4 doi: 10.1016/S0294-1449(16)30238-4
![]() |
[43] |
I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. https://doi.org/10.1016/0022-247X(74)90025-0 doi: 10.1016/0022-247X(74)90025-0
![]() |
[44] |
X. Fan, D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl., 263 (2001), 424–446. https://doi.org/10.1006/jmaa.2000.7617 doi: 10.1006/jmaa.2000.7617
![]() |
[45] | V. D. Radulescu, D. D. Repovs, Partial differential equations with variable exponents: variational methods and qualitative analysis, CRC press, 2015. https://doi.org/10.1201/b18601 |
[46] | V. Zhikov, Lavrentiev phenomenon and homogenization for some variational problems, Composite media and homogenization theory. Proceedings of the second workshop, 1995,273–288. |
[47] | J. Rákosník, Some remarks to anisotropic sobolev spaces Ⅰ, Beiträgezur Analysis, 13 (1979), 55–88. |
[48] | J. Rákosník, Some remarks to anisotropic sobolev spaces Ⅱ, Beiträgezur Analysis, 15 (1981), 127–140. |
1. | Mustafa Avci, On a $p(x)$-Kirchhoff Problem with Variable Singular and Sublinear Exponents, 2024, -1, 1027-5487, 10.11650/tjm/240904 | |
2. | Mustafa Avci, On a p(x)-Kirchhoff-type Equation with Singular and Superlinear Nonlinearities, 2024, 0971-3514, 10.1007/s12591-024-00702-0 | |
3. | Mustafa Avci, Singular p(x) -Laplacian equation with application to boundary layer theory , 2025, 0003-6811, 1, 10.1080/00036811.2025.2473492 |