In the present paper, we study an anisotropic $ \overset{\rightarrow }{p}(\cdot) $-Laplace equation with combined effects of variable singular and sublinear nonlinearities. Using the Ekeland's variational principle and a constrained minimization, we show the existence of a positive solution for the case where the variable singularity $ \beta(x) $ assumes its values in the interval $ (1, \infty) $.
Citation: Mustafa Avci. On an anisotropic $ \overset{\rightarrow }{p}(\cdot) $-Laplace equation with variable singular and sublinear nonlinearities[J]. Communications in Analysis and Mechanics, 2024, 16(3): 554-577. doi: 10.3934/cam.2024026
In the present paper, we study an anisotropic $ \overset{\rightarrow }{p}(\cdot) $-Laplace equation with combined effects of variable singular and sublinear nonlinearities. Using the Ekeland's variational principle and a constrained minimization, we show the existence of a positive solution for the case where the variable singularity $ \beta(x) $ assumes its values in the interval $ (1, \infty) $.
[1] | D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: Foundations and harmonic analysis, Birkhäuser Basel, 2013. https://doi.org/10.1007/978-3-0348-0548-3 |
[2] | L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Springer Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18363-8 |
[3] | M. Ruzicka, Electrorheological fluids: modeling and mathematical theory, Springer Berlin, Heidelberg, 2007. https://doi.org/10.1007/BFb0104029 |
[4] | B. Cekic, A. Kalinin, R. Mashiyev, M. Avci, $L^{p(x)}(\Omega)$-estimates of vector fields and some applications to magnetostatics problems, J. Math. Anal. Appl., 389 (2012), 838–851. https://doi.org/10.1016/j.jmaa.2011.12.029 doi: 10.1016/j.jmaa.2011.12.029 |
[5] | Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM. J. Appl. Math., 66 (2006), 1383–1406. https://doi.org/10.1137/0506245 doi: 10.1137/0506245 |
[6] | M. Avci, Ni-serrin type equations arising from capillarity phenomena with non-standard growth, Bound. Value. Probl., 55 (2013), 1–13. https://doi.org/10.1186/1687-2770-2013-55 doi: 10.1186/1687-2770-2013-55 |
[7] | S. Heidarkhani, S. Moradi, M. Avci, Critical points approaches to a nonlocal elliptic problem driven by a $p(x)$-biharmonic operator, Georgian. Math. J., 29 (2022), 55–69. https://doi.org/10.1515/gmj-2021-2115 doi: 10.1515/gmj-2021-2115 |
[8] | Z. Yucedag, Existence of solutions for $p(x)$-laplacian equations without Ambrosetti–Rabinowitz type condition, B. Malays. Math. Sci. So., 38 (2015), 1023–1033. https://doi.org/10.1007/s40840-014-0057-1 doi: 10.1007/s40840-014-0057-1 |
[9] | G. A. Afrouzi, N. T. Chung, S. Mahdavi, Existence and multiplicity of solutions for anisotropic elliptic systems with non-standard growth conditions, Electron. J. Differ. Eq., 32 (2012), 1–15. |
[10] | M. M. Boureanu, Multiple solutions for two general classes of anisotropic systems with variable exponents, J. Anal. Math., 150 (2023), 1–51. https://doi.org/10.1007/s11854-023-0287-y doi: 10.1007/s11854-023-0287-y |
[11] | M. S. B. Elemine Vall, A. Ahmed, Multiplicity of solutions for a class of Neumann elliptic systems in anisotropic Sobolev spaces with variable exponent, Adv. Oper. Theory, 4 (2019), 497–513. https://doi.org/10.15352/aot.1808-1409 doi: 10.15352/aot.1808-1409 |
[12] | X. Fan, Anisotropic variable exponent sobolev spaces and-laplacian equations, Complex Var Elliptic, 56 (2011), 623–642. https://doi.org/10.1080/17476931003728412 doi: 10.1080/17476931003728412 |
[13] | J. Henríquez-Amador, A. Vélez-Santiago, Generalized anisotropic neumann problems of ambrosetti–prodi type with nonstandard growth conditions, J. Math. Anal. Appl., 494 (2021), 124668. https://doi.org/10.1016/j.jmaa.2020.124668 doi: 10.1016/j.jmaa.2020.124668 |
[14] | B. Kone, S. Ouaro, S. Traore, Weak solutions for anisotropic nonlinear elliptic equations with variable exponents, Electron. J. Diffe. Eq., 144 (2009), 1–11. |
[15] | M. Mihăilescu, P. Pucci, V. Rădulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340 (2008), 687–698. https://doi.org/10.1016/j.jmaa.2007.09.015 doi: 10.1016/j.jmaa.2007.09.015 |
[16] | I. Fragalà, F. Gazzola, B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 715–734. https://doi.org/10.1016/j.anihpc.2003.12.001 doi: 10.1016/j.anihpc.2003.12.001 |
[17] | L. Kozhevnikova, On solutions of anisotropic elliptic equations with variable exponent and measure data, Complex Var Elliptic, 66 (2020), 333–367. https://doi.org/10.1080/17476933.2019.1579206 doi: 10.1080/17476933.2019.1579206 |
[18] | N. Mokhtar, F. Mokhtari, Anisotropic nonlinear elliptic systems with variable exponents and degenerate coercivity, Appl. Anal., 100 (2021), 2347–2367. https://doi.org/10.1080/00036811.2023.2240333 doi: 10.1080/00036811.2023.2240333 |
[19] | A. R. Leggat, S.EH Miri, An existence result for a singular-regular anisotropic system, Rend. Circ. Mat. Palermo, Ⅱ, 72 (2023), 977–-996. https://doi.org/10.1007/s12215-022-00718-x doi: 10.1007/s12215-022-00718-x |
[20] | N. S. Papageorgiou, C. Vetro, F. Vetro, Singular Anisotropic Problems with Competition Phenomena, J Geom Anal, 33 (2023), 173. https://doi.org/10.1007/s12220-023-01227-8 doi: 10.1007/s12220-023-01227-8 |
[21] | M. Bohner, G. Caristi, A. Ghobadi, S. Heidarkhani Three solutions for discrete anisotropic Kirchhoff-type problems, Dem. Math, 56 (2023), 20220209. https://doi.org/10.1515/dema-2022-0209 doi: 10.1515/dema-2022-0209 |
[22] | S. EH Miri, On an anisotropic problem with singular nonlinearity having variable exponent, Ric Mat, 66 (2017), 415–424. https://doi.org/10.1007/s11587-016-0309-5 doi: 10.1007/s11587-016-0309-5 |
[23] | M. Naceri, Singular anisotropic elliptic problems with variable exponents, Mem. Differ. Equ. Math., 85 (2022), 119–132. |
[24] | N. S. Papageorgiou, A. Scapellato, Positive solutions for anisotropic singular dirichlet problems, B. Malays. Math. Sci. So., 45 (2022), 1141–1168. https://doi.org/10.1007/s40840-022-01249-5 doi: 10.1007/s40840-022-01249-5 |
[25] | D. D. Repovš, K. Saoudi, The nehari manifold approach for singular equations involving the $p(x)$-laplace operator, Complex Var Elliptic, 68 (2006), 135–149. https://doi.org/10.1080/17476933.2021.1980878 doi: 10.1080/17476933.2021.1980878 |
[26] | K. Kefi, V. D. Rădulescu, On a $p(x)$-biharmonic problem with singular weights, Z. Angew. Math. Phys., 68 (2017), 1–13. https://doi.org/10.1007/s00033-017-0827-3 doi: 10.1007/s00033-017-0827-3 |
[27] | Q. Zhang, Existence of solutions for $p(x)$-laplacian equations with singular coefficients in $\mathbb{R}^{n}$, J. Math. Anal. Appl., 348 (2008), 38–50. https://doi.org/10.1016/j.jmaa.2008.06.026 doi: 10.1016/j.jmaa.2008.06.026 |
[28] | A. Mokhtari, K. Saoudi, N. Chung, A fractional $p(x, \cdot)$-laplacian problem involving a singular term, Indian J. Pure Ap Mat, 53 (2021), 100–111. https://doi.org/10.1007/s13226-021-00037-4 doi: 10.1007/s13226-021-00037-4 |
[29] | C. Luning, W. Perry, An iterative method for solution of a boundary value problem in non-newtonian fluid flow, J Non-Newton Fluid, 15 (1984), 145–154. https://doi.org/10.1016/0377-0257(84)80002-6 doi: 10.1016/0377-0257(84)80002-6 |
[30] | J. Hernandez, F. J. Mancebo, J. M. Vega, Positive solutions for singular nonlinear elliptic equations, P. Roy. Soc. Edinb. A., 137 (2007), 41–62. https://doi.org/10.1017/S030821050500065X doi: 10.1017/S030821050500065X |
[31] | C. O. Alves, D. P. Covei, Existence of solution for a class of nonlocal elliptic problem via sub–supersolution method, Nonlinear Anal-Real, 23 (2015), 1–8. https://doi.org/10.1016/j.nonrwa.2014.11.003 doi: 10.1016/j.nonrwa.2014.11.003 |
[32] | M. Avci, Positive ground state solutions to a nonlocal singular elliptic problem, Canad. J. Appl. Math., 1 (2019), 1–14. |
[33] | J. Diaz, J. Hernández, J. Rakotoson, On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms, Milan J Math, 79 (2011), 233–245. https://doi.org/10.1007/s00032-011-0151-x doi: 10.1007/s00032-011-0151-x |
[34] | J. Shi, M. Yao, On a singular nonlinear semilinear elliptic problem, P. Roy. Soc. Edinb. A., 128 (1998), 1389—1401. https://doi.org/10.1017/S0308210500027384 doi: 10.1017/S0308210500027384 |
[35] | Y. Haitao, Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem, J. Differ. Equations., 189 (2003), 487–512. https://doi.org/10.1016/S0022-0396(02)00098-0 doi: 10.1016/S0022-0396(02)00098-0 |
[36] | S. Yijing, W. Shaoping, L. Yiming, Combined effects of singular and superlinear nonlinearities in some singular boundary value problems, J. Differ. Equations., 176 (2001), 511–531. https://doi.org/10.1006/jdeq.2000.3973 doi: 10.1006/jdeq.2000.3973 |
[37] | S. Yijing, Z. Duanzhi, The role of the power 3 for elliptic equations with negative exponents, Calc. Var. Partial. Dif., 49 (2014), 909–922. https://doi.org/10.1007/s00526-013-0604-x doi: 10.1007/s00526-013-0604-x |
[38] | S. Yijing, Compatibility phenomena in singular problems, P. Roy. Soc. Edinb. A., 143 (2013), 1321–1330. https://doi.org/10.1017/S030821051100117X doi: 10.1017/S030821051100117X |
[39] | A. C. Lazer, P. J. McKenna, On a singular nonlinear elliptic boundary-value problem, P. Am. Math. Soc., 111 (1991), 721–730. https://doi.org/10.2307/2048410 doi: 10.2307/2048410 |
[40] | Z. Zhang, J. Cheng, Existence and optimal estimates of solutions for singular nonlinear dirichlet problems, Nonlinear Anal-Theor, 57 (2004), 473–484. https://doi.org/10.1016/j.na.2004.02.025 doi: 10.1016/j.na.2004.02.025 |
[41] | L. Boccardo, L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial. Dif., 37 (2010), 363–380. https://doi.org/10.1007/s00526-009-0266-x doi: 10.1007/s00526-009-0266-x |
[42] | G. Tarantello, On nonhomogeneous elliptic equations involving critical sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 9 (1992), 281–304. https://doi.org/10.1016/S0294-1449(16)30238-4 doi: 10.1016/S0294-1449(16)30238-4 |
[43] | I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. https://doi.org/10.1016/0022-247X(74)90025-0 doi: 10.1016/0022-247X(74)90025-0 |
[44] | X. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446. https://doi.org/10.1006/jmaa.2000.7617 doi: 10.1006/jmaa.2000.7617 |
[45] | V. D. Radulescu, D. D. Repovs, Partial differential equations with variable exponents: variational methods and qualitative analysis, CRC press, 2015. https://doi.org/10.1201/b18601 |
[46] | V. Zhikov, Lavrentiev phenomenon and homogenization for some variational problems, Composite media and homogenization theory. Proceedings of the second workshop, 1995,273–288. |
[47] | J. Rákosník, Some remarks to anisotropic sobolev spaces Ⅰ, Beiträgezur Analysis, 13 (1979), 55–88. |
[48] | J. Rákosník, Some remarks to anisotropic sobolev spaces Ⅱ, Beiträgezur Analysis, 15 (1981), 127–140. |