In this manuscript, existence and multiplicity results are obtained for a problem involving an anisotropic $ (p, q) $-Laplacian-type operator by means of sub-supersolutions and variational techniques. This problem arises in various applications such as in the study of the enhancement of images, the spread of epidemic disease and in the dynamic of fluids. Under a general condition, the existence of a solution is proved, and the multiplicity of solutions is obtained by considering an additional natural hypothesis.
Citation: Leandro Tavares. Solutions for a class of problems driven by an anisotropic $ (p, q) $-Laplacian type operator[J]. Communications in Analysis and Mechanics, 2023, 15(3): 533-550. doi: 10.3934/cam.2023026
In this manuscript, existence and multiplicity results are obtained for a problem involving an anisotropic $ (p, q) $-Laplacian-type operator by means of sub-supersolutions and variational techniques. This problem arises in various applications such as in the study of the enhancement of images, the spread of epidemic disease and in the dynamic of fluids. Under a general condition, the existence of a solution is proved, and the multiplicity of solutions is obtained by considering an additional natural hypothesis.
[1] | M. R. Hajiaboli, An anisotropic fourth-order diffusion filter for image noise removal, Int. J. Comput. Vis., 92 (2011), 177–191. https://doi.org/10.1007/s11263-010-0330-1 doi: 10.1007/s11263-010-0330-1 |
[2] | S. N. Antontsev, J. I. Diaz, S. Shmarev, Energy Methods for Free Boundary Problems, 48, Birkhäuser Boston, Inc., Boston, MA, 2002. |
[3] | J. Bear, Energy Methods for Free Boundary Problems, American Elsevier, New York, 1972. |
[4] | M. Bendahmane, K. H. Karlsen, Renormalized solutions of an anisotropic reactiondiffusion-advection system with $L^1$ data, Commun. Pure Appl. Anal., 5 (2006), 733–762. https://doi.org/10.3934/cpaa.2006.5.733 doi: 10.3934/cpaa.2006.5.733 |
[5] | L. Cherfils, Y. Ilyasov, On the stationary solutions of generalized reaction diffusion equations with $p \& q-$laplacian, Commun. Pure Appl. Anal., 4 (2005), 9–22. https://doi.org/10.3934/cpaa.2005.4.9 doi: 10.3934/cpaa.2005.4.9 |
[6] | C. He, G. Li, The regularity of weak solutions to nonlinear scalar field elliptic equations containing $p \& q-$laplacians, Ann. Acad. Sci. Fenn. Math., 33 (2008), 337–371. |
[7] | A. Razani, G. M. Figueiredo, A positive solution for an anisotropic $p\& q$-Laplacian, Discrete Contin. Dyn. Syst., Ser. S, 16 (2023), 623–642. https://doi.org/10.3934/dcdss.2022147 doi: 10.3934/dcdss.2022147 |
[8] | A. Razani, G. M. Figueiredo, Degenerated and competing anisotropic $p\& q$-Laplacians with weights, Appl. Anal., 16 (2022), 623–642. https://doi.org/10.1080/00036811.2022.2119137 doi: 10.1080/00036811.2022.2119137 |
[9] | A. Razani, G. M. Figueiredo, Existence of infinitely many solutions for an anisotropic equation using genus theory, Math. Methods Appl. Sci., 45 (2022), 7591–7606. https://doi.org/10.1080/00036811.2022.2119137 doi: 10.1080/00036811.2022.2119137 |
[10] | L. Baldelli, Y. Brizi, R. Filippucci, Multiplicity results for $(p, q)-$Laplacian equations with critical exponent in $\mathbb{R}^N$ and negative energy, Calc. Var. Partial Differ. Equ., 60 (2021), 8. https://doi.org/10.1007/s00526-020-01867-6 doi: 10.1007/s00526-020-01867-6 |
[11] | L. Baldelli, R. Filippucci, Existence of solutions for critical $(p, q)-$ Laplacian equations in $\mathbb{R}^N$, Commun. Contemp. Math., 25 (2023), 2150109. https://doi.org/10.1142/S0219199721501091 doi: 10.1142/S0219199721501091 |
[12] | S. A. Marano, S. J. N Mosconi, Some recent results on the Dirichlet problem for $(p, q)-$Laplace equations, Discrete Contin. Dyn. Syst. Ser. S., 11 (2018), 279–291. https://doi.org/10.3934/dcdss.2018015 doi: 10.3934/dcdss.2018015 |
[13] | R. Arora, A. Fiscella, T. Mukherjee, P. Winkert, On double phase Kirchhoff problems with singular nonlinearity, Adv. Nonlinear Anal., 12 (2023), 20220312. https://doi.org/10.1515/anona-2022-0312 doi: 10.1515/anona-2022-0312 |
[14] | J. Liu, P. Pucci, Existence of solutions for a double-phase variable exponent equation without the Ambrosetti-Rabinowitz condition, Adv. Nonlinear Anal., 12 (2023), 20220292. https://doi.org/10.1515/anona-2022-0292 doi: 10.1515/anona-2022-0292 |
[15] | R. Arora, S. Shmarev, Double-phase parabolic equations with variable growth and nonlinear sources, Adv. Nonlinear Anal., 12 (2023), 304–335. https://doi.org/10.1515/anona-2022-0271 doi: 10.1515/anona-2022-0271 |
[16] | G. C. G. dos Santos, G. Figueiredo, J. R. S. Silva, Multiplicity of Positive Solutions for an Anisotropic Problem via Sub-Supersolution Method and Mountain Pass Theorem, J. Convex Anal., 27 (2020), 1363–1374. |
[17] | K. C. V. de Sousa, L. S. Tavares, Multiple solutions for a class of problems involving the $p(x)-$Laplacian operator, Appl. Anal., 101 (2022), 5415–5423. https://doi.org/10.1080/00036811.2021.1892081 doi: 10.1080/00036811.2021.1892081 |
[18] | L. S. Tavares, J. Vanterler C. Sousa, Solutions for a nonhomogeneous $p\& q$-Laplacian problem via variational methods and sub-supersolution technique, Opuscula Math., 43 (2023), 603–613. https://doi.org/10.7494/OpMath.2023.43.4.603 doi: 10.7494/OpMath.2023.43.4.603 |
[19] | I. Fragalà, F. Gazzola, B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Lineaire, 21 (2011), 715–734. https://doi.org/10.1016/j.anihpc.2003.12.001 doi: 10.1016/j.anihpc.2003.12.001 |
[20] | X. Fan, Anisotropic variable exponent Sobolev spaces and $\overrightarrow{p(x)}-$Laplacian equations, Complex Var. Elliptic Equ., 56 (2011), 623–642. https://doi.org/10.1080/17476931003728412 doi: 10.1080/17476931003728412 |
[21] | R. E. Megginson, An Introduction to Banach Space Theory, Graduate Texts in Mathematics 183, Springer-Verlag, 1998. |
[22] | C. Cheng, J. Xu, Geometric properties of Banach space valued Bochner-Lebesgue spaces with variable exponent, J. Math. Inequal., 7 (2013), 461–475. https://doi.org/10.7153/jmi-07-41 doi: 10.7153/jmi-07-41 |
[23] | L. S. Tavares Multiplicity of solutions for an anisotropic variable exponent problem, Bound Value Probl., 10 (2022). |
[24] | J. Simon, Regularite de la solution d'une equation non lineaire dans $\mathbb{R}^N$, In: Bénilan, P., Robert, J. (eds) Journées d'Analyse Non Linéaire. Lecture Notes in Mathematics, vol 665. Springer, Berlin, Heidelberg (1978). https://doi.org/10.1007/BFb0061807 |
[25] | V. Rሬdulescu, D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CRC Press, Taylor Francis Group, Boca Raton FL, 2015. https://doi.org/10.1201/b18601 |
[26] | H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011. https://doi.org/10.1007/978-0-387-70914-7 |
[27] | G. M. Figueiredo, G. C. G. dos Santos, L. S. Tavares, Existence of solutions for a class of nonlocal problems driven by an anisotropic operator via sub-supersolutions, J. Convex Anal., 29 (2022), 219–320. |
[28] | O. A. Ladyzenskaya, N. N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968. |
[29] | A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. https://doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7 |