We define harmonic maps between sub-Riemannian manifolds by generalizing known definitions for Riemannian manifolds. We establish conditions for when a horizontal map into a Lie group with a left-invariant metric structure is a harmonic map. We show that sub-Riemannian harmonic maps can be abnormal or normal, just as sub-Riemannian geodesics. We illustrate our study by presenting the equations for harmonic maps into the Heisenberg group.
Citation: Erlend Grong, Irina Markina. Harmonic maps into sub-Riemannian Lie groups[J]. Communications in Analysis and Mechanics, 2023, 15(3): 515-532. doi: 10.3934/cam.2023025
We define harmonic maps between sub-Riemannian manifolds by generalizing known definitions for Riemannian manifolds. We establish conditions for when a horizontal map into a Lie group with a left-invariant metric structure is a harmonic map. We show that sub-Riemannian harmonic maps can be abnormal or normal, just as sub-Riemannian geodesics. We illustrate our study by presenting the equations for harmonic maps into the Heisenberg group.
[1] | S. Bochner, Harmonic surfaces in Riemann metric, Trans. Amer. Math. Soc., 47 (1940), 146–154. https://doi.org/10.1090/S0002-9947-1940-0001632-1 doi: 10.1090/S0002-9947-1940-0001632-1 |
[2] | R. Courant, Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces, Interscience Publishers, Inc., New York, N.Y., 1950. |
[3] | R. Osserman, A survey of minimal surfaces. Dover Publications, Inc., New York, 1986. |
[4] | H. B Lawson. Jr, Lectures on minimal submanifolds, Vol. I, volume 9 of Mathematics Lecture Series. Publish or Perish, Inc., Wilmington, Del., second edition, 1980. |
[5] | J. Eells, J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109–160. https://doi.org/10.2307/2373037 doi: 10.2307/2373037 |
[6] | E. Barletta, S. Dragomir, H. Urakawa, Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds, Indiana Univ. Math. J., 50 (2001), 719–746. https://doi.org/10.1512/iumj.2001.50.1931 doi: 10.1512/iumj.2001.50.1931 |
[7] | Y. Dong, Eells-Sampson type theorems for subelliptic harmonic maps from sub-Riemannian manifolds, J. Geom. Anal., 31 (2021), 3608–3655. https://doi.org/10.1007/s12220-020-00408-z doi: 10.1007/s12220-020-00408-z |
[8] | S. Dragomir, D. Perrone, Levi harmonic maps of contact Riemannian manifolds, J. Geom. Anal., 24 (2014), 1233–1275. https://doi.org/10.1007/s12220-012-9371-8 doi: 10.1007/s12220-012-9371-8 |
[9] | J. Jost, C. J. Xu, Subelliptic harmonic maps, Trans. Amer. Math. Soc., 350 (1998), 4633–4649. https://doi.org/10.1090/S0002-9947-98-01992-8 doi: 10.1090/S0002-9947-98-01992-8 |
[10] | Z. R. Zhou, Uniqueness of subelliptic harmonic maps, Ann. Global Anal. Geom., 17 (1999), 581–594. |
[11] | U. Hamenstädt, Some regularity theorems for Carnot-Carathéodory metrics, J. Differential Geom., 32 (1990), 819–850. https://doi.org/10.4310/jdg/1214445536 doi: 10.4310/jdg/1214445536 |
[12] | R. S. Strichartz, Sub-Riemannian geometry, J. Differential Geom., 24 (1986), 221–263. https://doi.org/10.4310/jdg/1214440436 doi: 10.4310/jdg/1214440436 |
[13] | R. Monti, The regularity problem for geodesics of the control distance, In Bruno Pini Mathematical Analysis Seminar 2018, volume 9 of Bruno Pini Math. Anal. Semin., Univ. Bologna, Alma Mater Stud., Bologna, 2018. |
[14] | A. Agrachev, D. Barilari, U. Boscain, A comprehensive introduction to sub-Riemannian geometry, volume 181 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2020. https://doi.org/10.1017/9781108677325 |
[15] | G. He, J. Li, P. Zhao, Liouville-type theorems for $CC$-$F$-harmonic maps into a Carnot group, J. Geom. Anal., 31 (2021), 4024–4050. https://doi.org/10.1007/s12220-020-00424-z doi: 10.1007/s12220-020-00424-z |
[16] | R. Schoen, K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom., 18 (1983), 253–268. https://doi.org/10.4310/jdg/1214437663 doi: 10.4310/jdg/1214437663 |
[17] | R. Petit, Mok-Siu-Yeung type formulas on contact locally sub-symmetric spaces, Ann. Global Anal. Geom., 35 (2009), 1–37. https://doi.org/10.1007/s10455-008-9120-1 doi: 10.1007/s10455-008-9120-1 |
[18] | J. Eells and L. Lemaire. Another report on harmonic maps, Bull. London Math. Soc., 20 (1988), 385–524. https://doi.org/10.1112/blms/20.5.385 doi: 10.1112/blms/20.5.385 |
[19] | W. L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117 (1939), 98–105. https://doi.org/10.1007/BF01450011 doi: 10.1007/BF01450011 |
[20] | P. K. Rashevskii, On joining any two points of a completely nonholonomic space by an admissible line, Math. Ann., 3 (1938), 83–94. |
[21] | R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, volume 91 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2002. |
[22] | L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147–171. https://doi.org/10.1007/BF02392081 doi: 10.1007/BF02392081 |
[23] | A. Agrachev, U. Boscain, J. P. Gauthier, F. Rossi, The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups, J. Funct. Anal., 256 (2009), 2621–2655. https://doi.org/10.1016/j.jfa.2009.01.006 doi: 10.1016/j.jfa.2009.01.006 |
[24] | J. M. Lee, Riemannian manifolds, volume 176 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1997. An introduction to curvature. |
[25] | E. Grong, A. Thalmaier, Stochastic completeness and gradient representations for sub-Riemannian manifolds, Potential Anal., 51 (2019), 219–254. https://doi.org/10.1007/s11118-018-9710-x doi: 10.1007/s11118-018-9710-x |
[26] | E. Grong, Curvature and the equivalence problem in sub-Riemannian geometry, Arch. Math. (Brno), 58 (2022), 295–327. https://doi.org/10.5817/AM2022-5-295 doi: 10.5817/AM2022-5-295 |
[27] | R. W. Sharpe, Differential geometry, volume 166 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1997. Cartan's generalization of Klein's Erlangen program, With a foreword by S. S. Chern. |
[28] | J. M. Lee, Introduction to smooth manifolds, volume 218 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2003. |
[29] | C. Scott, $L^p$ theory of differential forms on manifolds, Trans. Amer. Math. Soc., 347(1995), 2075–2096. https://doi.org/10.1090/S0002-9947-1995-1297538-7 doi: 10.1090/S0002-9947-1995-1297538-7 |
[30] | E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, volume 5 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. https://doi.org/10.1090/cln/005 |
[31] | M. Godoy Molina, E. Grong, Riemannian and sub-Riemannian geodesic flows, J. Geom. Anal., 27 (2017), 1260–1273. https://doi.org/10.1007/s12220-016-9717-8 doi: 10.1007/s12220-016-9717-8 |
[32] | E. Grong, Affine connections and curvature in sub-riemannian geometry, arXiv preprint arXiv: 2001.03817, 2020. |
[33] | B. Helffer, J. Nourrigat, Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, volume 58 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1985. |