We detail a calculation of the second order normal form of the Stark effect Hamiltonian after regularization, using the Kustaanheimo-Stiefel mapping. After reduction, we obtain an integrable two degree of freedom system on $ S^2_h \times S^2_h $, which we reduce again to obtain a one degree of freedom Hamiltonian system.
Citation: Richard Cushman. Normalization and reduction of the Stark Hamiltonian[J]. Communications in Analysis and Mechanics, 2023, 15(3): 457-469. doi: 10.3934/cam.2023022
We detail a calculation of the second order normal form of the Stark effect Hamiltonian after regularization, using the Kustaanheimo-Stiefel mapping. After reduction, we obtain an integrable two degree of freedom system on $ S^2_h \times S^2_h $, which we reduce again to obtain a one degree of freedom Hamiltonian system.
[1] | R. Cushman, Normal form for Hamiltonian vector fields with periodic flow, in Differential geometric methods in mathematical physics, (ed. S. Sternberg), Reidel, Dordrecht (1984), 125–145. https://doi.org/10.1007/978-94-015-6874-6_9 |
[2] | R. Cushman, The geometry of the Kustaanheimo-Stiefel mapping, preprint, $\texttt{arXiv: 2205.08485}$. |
[3] | R. H. Cushman, D. A. Sadovskii, Monodromy in the hydrogen atom in crossed fields, Phys. D, 42 (2000), 166–196. https://doi.org/10.1016/S0167-2789(00)00053-1 doi: 10.1016/S0167-2789(00)00053-1 |
[4] | J. Lagrange, Méchanique Analytique, Courcier, Paris, 1788. |
[5] | G. Lantoine, R. P. Russell, Complete closed-form solutions of the Stark problem, Celest. Mech. Dyn. Astr., 109 (2011), 333–366. https://doi.org/10.1007/s10569-010-9331-1 doi: 10.1007/s10569-010-9331-1 |
[6] | J. C. van der Meer, Reduction and regularization of the Kepler problem, Celest. Mech. Dyn. Astr., 133 (2021), 32. https://doi.org/10.1007/s10569-021-10029-5 doi: 10.1007/s10569-021-10029-5 |