Research article

Global attractors for a nonlinear plate equation modeling the oscillations of suspension bridges

  • Received: 18 May 2023 Revised: 28 June 2023 Accepted: 28 June 2023 Published: 17 July 2023
  • 35L35, 35A01, 35B41

  • This paper is concerned with a nonlinear plate equation modeling the oscillations of suspension bridges. Under mixed boundary conditions consisting of simply supported and free boundary conditions, we obtain the global well-posedness of solutions in suitable function spaces. In addition, we use the perturbed energy method to prove the existence of a bounded absorbing set and establish a stabilizability estimate. Then, we derive the existence of a global attractor by verifying the asymptotic smoothness of the corresponding dissipative dynamical system.

    Citation: Yang Liu. Global attractors for a nonlinear plate equation modeling the oscillations of suspension bridges[J]. Communications in Analysis and Mechanics, 2023, 15(3): 436-456. doi: 10.3934/cam.2023021

    Related Papers:

  • This paper is concerned with a nonlinear plate equation modeling the oscillations of suspension bridges. Under mixed boundary conditions consisting of simply supported and free boundary conditions, we obtain the global well-posedness of solutions in suitable function spaces. In addition, we use the perturbed energy method to prove the existence of a bounded absorbing set and establish a stabilizability estimate. Then, we derive the existence of a global attractor by verifying the asymptotic smoothness of the corresponding dissipative dynamical system.



    加载中


    [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
    [2] M. Al-Gwaiz, V. Benci, F. Gazzola, Bending and stretching energies in a rectangular plate modeling suspension bridges, Nonlinear Anal., 106 (2014), 18–34. https://doi.org/10.1016/j.na.2014.04.011 doi: 10.1016/j.na.2014.04.011
    [3] G. Arioli, F. Gazzola, A new mathematical explanation of what triggered the catastrophic torsional mode of the Tacoma Narrows Bridge, Appl. Math. Model., 39 (2015), 901–912. https://doi.org/10.1016/j.apm.2014.06.022 doi: 10.1016/j.apm.2014.06.022
    [4] U. Battisti, E. Berchio, A. Ferrero, F. Gazzola, Energy transfer between modes in a nonlinear beam equation, J. Math. Pures Appl., 108 (2017), 885–917. https://doi.org/10.1016/j.matpur.2017.05.010 doi: 10.1016/j.matpur.2017.05.010
    [5] E. Berchio, A. Ferrero, F. Gazzola, Structural instability of nonlinear plates modelling suspension bridges: mathematical answers to some long-standing questions, Nonlinear Anal. Real World Appl., 28 (2016), 91–125. https://doi.org/10.1016/j.nonrwa.2015.09.005 doi: 10.1016/j.nonrwa.2015.09.005
    [6] D. Bonheure, F. Gazzola, E. M. Dos Santos, Periodic solutions and torsional instability in a nonlinear nonlocal plate equation, SIAM J. Math. Anal., 51 (2019), 3052–3091. https://doi.org/10.1137/18M1221242 doi: 10.1137/18M1221242
    [7] I. Chueshov, I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Mem. Amer. Math. Soc., Providence, RI, 2008. https://doi.org/10.1090/memo/0912
    [8] V. Ferreira Jr, F. Gazzola, E. M. dos Santos, Instability of modes in a partially hinged rectangular plate, J. Differential Equations, 261 (2016), 6302–6340. https://doi.org/10.1016/j.jde.2016.08.037 doi: 10.1016/j.jde.2016.08.037
    [9] A. Ferrero, F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges, Discrete Contin. Dyn. Syst., 35 (2015), 5879–5908. https://doi.org/10.3934/dcds.2015.35.5879 doi: 10.3934/dcds.2015.35.5879
    [10] F. Gazzola, Mathematical Models for Suspension Bridges: Nonlinear Structural Instability, in: MS & A. Modeling, Simulation and Applications, vol. 15, Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-15434-3
    [11] F. Gazzola, M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 185–207. https://doi.org/10.1016/j.anihpc.2005.02.007 doi: 10.1016/j.anihpc.2005.02.007
    [12] J. B. Han, R. Z. Xu, C. Yang, Continuous dependence on initial data and high energy blowup time estimate for porous elastic system, Commun. Anal. Mech., 15 (2023), 214–244. https://doi.org/10.3934/cam.2023012 doi: 10.3934/cam.2023012
    [13] A. Haraux, E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems, Arch. Rational Mech. Anal., 100 (1988), 191–206. https://doi.org/10.1007/BF00282203 doi: 10.1007/BF00282203
    [14] A. C. Lazer, P. J. McKenna, Large scale oscillatory behaviour in loaded asymmetric systems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 243–274. https://doi.org/10.1016/S0294-1449(16)30368-7 doi: 10.1016/S0294-1449(16)30368-7
    [15] A. C. Lazer, P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537–578. https://doi.org/10.1137/1032120 doi: 10.1137/1032120
    [16] W. Lian, R. Z. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613–632. https://doi.org/10.1515/anona-2020-0016 doi: 10.1515/anona-2020-0016
    [17] Y. Liu, B. Moon, V. D. Rǎdulescu, R. Z. Xu, C. Yang, Qualitative properties of solution to a viscoelastic Kirchhoff-like plate equation, J. Math. Phys., 64 (2023), 051511. https://doi.org/10.1063/5.0149240 doi: 10.1063/5.0149240
    [18] Y. Liu, J. Mu, Y. J. Jiao, A class of fourth order damped wave equations with arbitrary positive initial energy, Proc. Edinburgh Math. Soc., 62 (2019), 165–178. https://doi.org/10.1017/S0013091518000330 doi: 10.1017/S0013091518000330
    [19] Y. B. Luo, R. Z. Xu, C. Yang, Global well-posedness for a class of semilinear hyperbolic equations with singular potentials on manifolds with conical singularities, Calc. Var. Partial Differential Equations, 61 (2022), 210. https://doi.org/10.1007/s00526-022-02316-2 doi: 10.1007/s00526-022-02316-2
    [20] Q. F. Ma, S. H. Wang, C. K. Zhong, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J., 51 (2002), 1541–1559. https://doi.org/10.1512/iumj.2002.51.2255 doi: 10.1512/iumj.2002.51.2255
    [21] P. J. McKenna, W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Ration. Mech. Anal., 98 (1987), 167–177. https://doi.org/10.1007/BF00251232 doi: 10.1007/BF00251232
    [22] P. J. McKenna, W. Walter, Travelling waves in a suspension bridge, SIAM J. Appl. Math., 50 (1990), 703–715. https://doi.org/10.1137/0150041 doi: 10.1137/0150041
    [23] J. Y. Park, J. R. Kang, Global attractors for the suspension bridge equations with nonlinear damping, Quart. Appl. Math., 69 (2011), 465–475. https://doi.org/10.1090/S0033-569X-2011-01259-1 doi: 10.1090/S0033-569X-2011-01259-1
    [24] R. Scott, In the Wake of Tacoma: Suspension Bridges and the Quest for Aerodynamic Stability, ASCE Press, Reston, VA, 2001. https://doi.org/10.1061/9780784405420
    [25] J. Simon, Compact sets in the space $L^p(0, T; B)$, Ann. Mat. Pura Appl., 146 (1986), 65–96. https://doi.org/10.1007/BF01762360 doi: 10.1007/BF01762360
    [26] W. A. Strauss, On continuity of functions with values in various Banach spaces, Pacific J. Math., 19 (1966), 543–551. https://doi.org/10.2140/pjm.1966.19.543 doi: 10.2140/pjm.1966.19.543
    [27] E. Ventsel, T. Krauthammer, Thin Plates and Shells: Theory, Analysis, and Applications, Marcel Dekker, New York, 2001. https://doi.org/10.1115/1.1483356
    [28] Y. D. Wang, Finite time blow-up and global solutions for fourth order damped wave equations, J. Math. Anal. Appl., 418 (2014), 713–733. https://doi.org/10.1016/j.jmaa.2014.04.015 doi: 10.1016/j.jmaa.2014.04.015
    [29] X. C. Wang, R. Z. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudoparabolic equation, Adv. Nonlinear Anal., 10 (2021), 261–288. https://doi.org/10.1515/anona-2020-0141 doi: 10.1515/anona-2020-0141
    [30] H. Y. Xu, Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials, Commun. Anal. Mech., 15 (2023), 132–161. https://doi.org/10.3934/cam.2023008 doi: 10.3934/cam.2023008
    [31] R. Z. Xu, J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763. https://doi.org/10.1016/j.jfa.2013.03.010 doi: 10.1016/j.jfa.2013.03.010
    [32] R. Z. Xu, X. C. Wang, Y. B. Yang, S. H. Chen, Global solutions and finite time blow-up for fourth order nonlinear damped wave equation, J. Math. Phys., 59 (2018), 061503. https://doi.org/10.1063/1.5006728 doi: 10.1063/1.5006728
    [33] R. Z. Xu, M. Y. Zhang, S. H. Chen, Y. B. Yang, J. H. Shen, The initial-boundary value problems for a class of six order nonlinear wave equation, Discrete Contin. Dyn. Syst., 37 (2017), 5631–5649. https://doi.org/10.3934/dcds.2017244 doi: 10.3934/dcds.2017244
    [34] Y. Yang, Z. B. Fang, On a strongly damped semilinear wave equation with time-varying source and singular dissipation, Adv. Nonlinear Anal., 12 (2022), 20220267. https://doi.org/10.1515/anona-2022-0267 doi: 10.1515/anona-2022-0267
    [35] W. H. Yang, J. Zhou, Global attractors of the degenerate fractional Kirchhoff wave equation with structural damping or strong damping, Adv. Nonlinear Anal., 11 (2022), 993–1029. https://doi.org/10.1515/anona-2022-0226 doi: 10.1515/anona-2022-0226
    [36] C. K. Zhong, Q. Z. Ma, C. Y. Sun, Existence of strong solutions and global attractors for the suspension bridge equations, Nonlinear Anal., 67 (2007), 442–454. https://doi.org/10.1016/j.na.2006.05.018 doi: 10.1016/j.na.2006.05.018
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1162) PDF downloads(182) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog