In this paper, we consider a Schrödinger operator $ L = -\Delta_{\mathbb{H}}+V $ on the stratified Lie group $ \mathbb{H} $. First, we establish fractional heat kernel estimates related to $ L^{\beta} $, $ \beta\in(0, 1) $. By utilizing kernel estimations and the fractional Carleson measure, we are able to derive a characterization of the Campanato type space $ BMO_{L}^{v}(\mathbb{H}) $. Second, we demonstrate that both Littlewood-Paley $ {\bf g} $-functions and area functions are bounded on $ BMO^{v}_{L}(\mathbb{H}) $. Finally, we also obtain that the above square functions are bounded on the Morrey space $ L^{\gamma, \theta}_{p, \kappa}(\mathbb{H}) $ and the weak Morrey space $ WL^{\gamma, \theta}_{1, \kappa}(\mathbb{H}) $, respectively.
Citation: Zhiyong Wang, Kai Zhao, Pengtao Li, Yu Liu. Boundedness of square functions related with fractional Schrödinger semigroups on stratified Lie groups[J]. Communications in Analysis and Mechanics, 2023, 15(3): 410-435. doi: 10.3934/cam.2023020
In this paper, we consider a Schrödinger operator $ L = -\Delta_{\mathbb{H}}+V $ on the stratified Lie group $ \mathbb{H} $. First, we establish fractional heat kernel estimates related to $ L^{\beta} $, $ \beta\in(0, 1) $. By utilizing kernel estimations and the fractional Carleson measure, we are able to derive a characterization of the Campanato type space $ BMO_{L}^{v}(\mathbb{H}) $. Second, we demonstrate that both Littlewood-Paley $ {\bf g} $-functions and area functions are bounded on $ BMO^{v}_{L}(\mathbb{H}) $. Finally, we also obtain that the above square functions are bounded on the Morrey space $ L^{\gamma, \theta}_{p, \kappa}(\mathbb{H}) $ and the weak Morrey space $ WL^{\gamma, \theta}_{1, \kappa}(\mathbb{H}) $, respectively.
[1] | Z. Shen, $L^{p}$ estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble), 45 (1995), 513–546. https://doi.org/10.5802/aif.1463 doi: 10.5802/aif.1463 |
[2] | P. Auscher, A. Ben, Maximal inequalities and Riesz transform estimates on $L^p$ spaces for Schrödinger operators with nonnegative potentials, Ann. Inst. Fourier (Grenoble), 57 (2007), 1975–2013. https://doi.org/10.5802/aif.2320 doi: 10.5802/aif.2320 |
[3] | B. Bongioanni, E. Harboure, O. Salinas, Commutators of Riesz transforms related to Schrödinger operators, J. Fourier Anal. Appl., 17 (2011), 115–134. https://doi.org/10.1007/s00041-010-9133-6} doi: 10.1007/s00041-010-9133-6 |
[4] | X. Duong, E. Ouhabaz, L. Yan, Endpoint estimates for Riesz transforms of magnetic Schrödinger operators, Ark. Mat., 44 (2006), 261–275. https://doi.org/10.1007/s11512-006-0021-x doi: 10.1007/s11512-006-0021-x |
[5] | Z. Guo, P. Li, L. Peng, $L^p$ boundedness of commutators of Riesz transforms associated to Schrödinger operator, J. Math. Anal. Appl., 341 (2008), 421–432. https://doi.org/10.1016/j.jmaa.2007.05.024 doi: 10.1016/j.jmaa.2007.05.024 |
[6] | K. Kurata, An estimate on the heat kernel of magnetic Schrödinger operators and uniformly elliptic operators with non-negative potentials, J. London Math. Soc., 62 (2000), 885–903. https://doi.org/10.1112/S002461070000137X doi: 10.1112/S002461070000137X |
[7] | Z. Shen, On fundamental solutions of generalized Schrödinger operators, J. Funct. Anal., 167 (1999), 521–564. https://doi.org/10.1006/jfan.1999.3455 doi: 10.1006/jfan.1999.3455 |
[8] | L. Song, L. Yan, Riesz transforms associated to Schrödinger operators on weighted Hardy spaces, J. Funct. Anal., 259 (2010), 1466–1490. https://doi.org/10.1016/j.jfa.2010.05.015 doi: 10.1016/j.jfa.2010.05.015 |
[9] | S. Sugano, Estimates for the Operators $ V^{\alpha}(-\Delta+ V)^{-\beta} $ and $ V^{\alpha}\nabla (-\Delta+ V)^{-\beta} $ with certain non-negative potentials $ V$, Tokyo J. Math., 21 (1998), 441–452. https://doi.org/10.3836/tjm/1270041824 doi: 10.3836/tjm/1270041824 |
[10] | L. Tang, Weighted norm inequalities for Schrödinger type operators, Forum Math., 27 (2015), 2491–2532. https://doi.org/10.1515/forum-2013-0070 doi: 10.1515/forum-2013-0070 |
[11] | Da. Yang, Do. Yang, Y. Zhou, Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrödinger operators, Potential Anal., 30 (2009), 271–300. https://doi.org/10.1007/s11118-009-9116-x doi: 10.1007/s11118-009-9116-x |
[12] | J. Dziubański, J. Zienkiewicz, Hardy space $H^1$ associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Iberoam., 15 (1999), 279–296. https://doi.org/10.4171/RMI/257 doi: 10.4171/RMI/257 |
[13] | J. Dziubański, J. Zienkiewicz, $H^{p}$ spaces for Schrödinger operators, Fourier Analysis and Related Topics, 56 (2002), 45–53. https://doi.org/10.4064/bc56-0-4 doi: 10.4064/bc56-0-4 |
[14] | J. Dziubański, G. Garrigós, T. Martínez, J. Torrea, J. Zienkiewicz, BMO spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z., 249 (2005), 329–356. https://doi.org/10.1007/s00209-004-0701-9 doi: 10.1007/s00209-004-0701-9 |
[15] | H. Li, Estimations $L^p$ des opérateurs de Schrödinger sur les groupes nilpotents, J. Func. Anal., 161 (1999), 152–218. https://doi.org/10.1006/jfan.1998.3347 doi: 10.1006/jfan.1998.3347 |
[16] | C. Lin, H. Liu, Y. Liu, Hardy spaces associated with Schrödinger operators on the Heisenberg group, preprint (2011), arXiv: abs/1106.4960. |
[17] | C. Lin, H. Liu, $BMO_{L}(\mathbb{H}^{n})$ spaces and Carleson measures for Schrödinger operators, Adv. Math., 228 (2011), 1631–1688. https://doi.org/10.1016/j.aim.2011.06.024 doi: 10.1016/j.aim.2011.06.024 |
[18] | X. Duong, L. Yan, C. Zhang, On characterization of Poisson integrals of Schrödinger operators with BMO traces, J. Funct. Anal., 266 (2014), 2053–2085. https://doi.org/10.1016/j.jfa.2013.09.008 doi: 10.1016/j.jfa.2013.09.008 |
[19] | J. Dziubański, J. Zienkiewicz, Hardy spaces $H^1$ for Schrödinger operators with compactly supported potentials, Ann. Mate. Pura Appl., 184 (2005), 315–326. https://doi.org/10.1007/s10231-004-0116-6 doi: 10.1007/s10231-004-0116-6 |
[20] | T. Ma, P. Stinga, J. Torrea, C. Zhang, Regularity properties of Schrödinger operators, J. Math. Anal. Appl., 388 (2012), 817–837. https://doi.org/10.1016/j.jmaa.2011.10.006 doi: 10.1016/j.jmaa.2011.10.006 |
[21] | L. Song, L. Yan, A maximal function characterization for Hardy spaces associated to nonnegative self-adjoint operators satisfying Gaussian estimates, Adv. Math., 287 (2016), 463–484. https://doi.org/10.1016/j.aim.2015.09.026 doi: 10.1016/j.aim.2015.09.026 |
[22] | Y. Wang, Y. Liu, C. Sun, P. Li, Carleson measure characterizations of the Campanato type space associated with Schrödinger operators on stratified Lie groups, Forum Math., 32 (2020), 1337–1373. https://doi.org/10.1515/forum-2019-0224 doi: 10.1515/forum-2019-0224 |
[23] | Da. Yang, Do. Yang, Y. Zhou, Localized Morrey-Campanato spaces on metric measure spaces and applications to Schrödinger operators, Nagoya Math. J., 198 (2010), 77–119. https://doi.org/10.1215/00277630-2009-008 doi: 10.1215/00277630-2009-008 |
[24] | Da. Yang, Y. Zhou, Localized Hardy spaces $H^1$ related to admissible functions on RD-spaces and applications to Schrödinger operators, Trans. Amer. Math. Soc., 363 (2011), 1197–1239. https://doi.org/10.1090/S0002-9947-2010-05201-8 doi: 10.1090/S0002-9947-2010-05201-8 |
[25] | A. Grigor'yan, Heat kernels and function theory on metric measure spaces, Contemp. Math., 338 (2002), 143–172. https://doi.org/10.1090/conm/338/06073 doi: 10.1090/conm/338/06073 |
[26] | A. Grigor'yan, L. Liu, Heat kernel and Lipschitz-Besov sapces, Forum Math., 27 (2015), 3567–3613. https://doi.org/10.1515/forum-2014-0034 doi: 10.1515/forum-2014-0034 |
[27] | C. Miao, B. Yuan, B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations, Nonlinear Anal., 68 (2008), 461–484. https://doi.org/10.1016/j.na.2006.11.011 doi: 10.1016/j.na.2006.11.011 |
[28] | Z. Wang, T. Dai, P. Li, Characterizations of vanishing Campanato classes related to Schrödinger operators via fractional semigroups on stratified groups, Math. Methods Appl. Sci., 44 (2021), 10609–10634. https://doi.org/10.1002/mma.7433 doi: 10.1002/mma.7433 |
[29] | H. Wang, Morrey sapces for Schrödinger operators with certain nonnegative potentials, Littlewood-Paley and Lusin functions on the Heisenberg groups, Banach J. Math. Anal., 14 (2020), 1532–1557. https://doi.org/10.1007/s43037-020-00076-9 doi: 10.1007/s43037-020-00076-9 |
[30] | G. Folland, E.M. Stein, Hardy spaces on homogeneous groups, Princeton Univ. Press, Princeton, 1982. https://doi.org/10.1002/mana.200510548 |
[31] | Z. Wang, C. Zhang, P. Li, Boundedness of operators generated by fractional semigroups associated with Schrödinger operators on Campanato type spaces via $T1$ theorem, Banach J. Math. Anal., 15 (2021), 64. https://doi.org/10.1007/s43037-021-00148-4 doi: 10.1007/s43037-021-00148-4 |
[32] | E. M. Stein, Topics in Haemonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, Princeton, 1970. https://doi.org/10.1112/blms/4.2.252 |
[33] | C. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1983), 126–166. https://doi.org/10.2307/1989904 doi: 10.2307/1989904 |
[34] | D. Adams, J. Xiao, Nonlinear potential analysis on Morrey spaces and their capacities, Indiana Univ. Math. J., 53 (2004), 1629–1663. https://doi.org/10.1512/iumj.2004.53.2470 doi: 10.1512/iumj.2004.53.2470 |
[35] | L. Tang, J. Dong, Boundedness for some Schrödinger type operators on Morrey spaces related to certain nonnegative potentials, J. Math. Anal. Appl., 355 (2009), 101–109. https://doi.org/10.1016/j.jmaa.2009.01.043 doi: 10.1016/j.jmaa.2009.01.043 |
[36] | N. Trong, L. Truong, Generalized Morrey spaces associated to Schrödinger operators and applications, Czech. Math. J., 68 (2018), 953–986. https://doi.org/10.21136/CMJ.2018.0039-17 doi: 10.21136/CMJ.2018.0039-17 |
[37] | V. Guliyev, A. Eroglu, Y. Mammadov, Riesz potential in generalized Morrey spaces on the Heisenberg group, J. Math. Sci. (N.Y.), 189 (2013), 365–382. https://doi.org/10.1007/s10958-013-1193-0 doi: 10.1007/s10958-013-1193-0 |