This paper focuses on the spectral analysis of equations that describe the oscillations of a heavy pendulum partially filled with a homogeneous incompressible viscoelastic fluid. The constitutive equation of the fluid follows the simpler Oldroyd model. By examining the eigenvalues of the linear operator that describes the dynamics of the coupled system, it was demonstrated that under appropriate assumptions the equilibrium configuration remains stable in the linear approximation. Moreover, when the viscosity coefficient is sufficiently large the spectrum comprises three branches of eigenvalues with potential cluster points at $ 0 $, $ \beta $ and $ \infty $ where $ \beta $ represents the viscoelastic parameter of the fluid. These three branches of eigenvalues correspond to frequencies associated with various types of waves.
Citation: Hilal Essaouini, Pierre Capodanno. Analysis of small oscillations of a pendulum partially filled with a viscoelastic fluid[J]. Communications in Analysis and Mechanics, 2023, 15(3): 388-409. doi: 10.3934/cam.2023019
This paper focuses on the spectral analysis of equations that describe the oscillations of a heavy pendulum partially filled with a homogeneous incompressible viscoelastic fluid. The constitutive equation of the fluid follows the simpler Oldroyd model. By examining the eigenvalues of the linear operator that describes the dynamics of the coupled system, it was demonstrated that under appropriate assumptions the equilibrium configuration remains stable in the linear approximation. Moreover, when the viscosity coefficient is sufficiently large the spectrum comprises three branches of eigenvalues with potential cluster points at $ 0 $, $ \beta $ and $ \infty $ where $ \beta $ represents the viscoelastic parameter of the fluid. These three branches of eigenvalues correspond to frequencies associated with various types of waves.
[1] | N. D. Kopachevsky, S. G. Krein, Operator approch to linear problems of Hydrodynamics, Birkh$\ddot{\text{a}}$user, Basel, 2001. https://doi.org/10.1007/978-3-0348-8342-9 |
[2] | N. D. Kopachevsky, S. G. Krein, Operator approch to linear problems of Hydrodynamics, Birkh$\ddot{\text{a}}$user, Basel, 2003. https://doi.org/10.1007/978-3-0348-8063-3 |
[3] | N. N. Moiseyev, V. V. Rumyantsev, Dynamics stability of bodies containing fluid, Springer Verlag, Berlin, 1968. https://doi.org/10.1007/978-3-642-86452-0 |
[4] | H. Essaouini, L. El Bakkali, P. Capodanno, Analysis of the small oscillations of a heavy viscous liquid in a rigid container closed by an elastic membrane, Int. J. Adv. Eng. Sci. Ap., 2 (2017), 3–25. |
[5] | H. Essaouini, J. Elbahaoui, L. El Bakkali, P. Capodanno, Mathematical analysis of the small oscillations of a heavy heterogeneous viscous liquid in an open immovable container, Eng. Math. Lett., 1 (2014), 1–17. |
[6] | D. O. Tsvetkov, Analysis of the Oscillations of Stratified Liquid with Elastic Ice, Journal of Advances in Applied and Computational Mathematics, 8 (2021), 87–97. https://doi.org/10.15377/2409-5761.2021.08.6 doi: 10.15377/2409-5761.2021.08.6 |
[7] | N. D. Kopachevsky, D. O. Tsvetkov, Small Motions of an Ideal Stratified Fluid in a Basin Covered by Ice, J. Math. Sci., 263 (2022), 887–905. https://doi.org/10.1007/s10958-022-05971-0 doi: 10.1007/s10958-022-05971-0 |
[8] | A. S. Magdy, Sloshing waves in a heated viscoelastic fluid layer in an excited rectangular tank, Phys. Lett. A., 378 (2014), 3289–-3300. https://doi.org/10.1016/j.physleta.2014.09.033 doi: 10.1016/j.physleta.2014.09.033 |
[9] | H. Essaouini, L. El Bakkali, P. Capodanno, Mathematical study of the small oscillations of two non mixing fluids the lower inviscid, the upper viscoelastic, in an open container, J. Math. Fluid. Mech, 19 (2017), 645–657. https://doi.org/10.1007/s00021-016-0300-7 doi: 10.1007/s00021-016-0300-7 |
[10] | N. D. Kopachevsky, Problems on Small Motions of a System of Two Viscoelastic Fluids in Fixed Vessels, J. Math. Sci., 263 (2022), 860–886. https://doi.org/10.1007/s10958-022-05970-1 doi: 10.1007/s10958-022-05970-1 |
[11] | N. D. Kopachevsky, E. V. Syomkina, On small motions of hydraulic systems containing a viscoelastic fluid, J. Math. Sci., 267 (2022), 716–759. https://doi.org/10.1007/s10958-022-06165-4 doi: 10.1007/s10958-022-06165-4 |
[12] | N. D. Kopachevsky, To the Problem on Small Motions of the System of Two Viscoelastic Fluids in a Fixed Vessel, Contemporary Mathematics Fundamental Directions, 64 (2018), 547–572. https://doi.org/10.22363/2413-3639-2018-64-3-547-572 doi: 10.22363/2413-3639-2018-64-3-547-572 |
[13] | E. V. Plokhaya, On Small Motions of Hydrodynamic Systems Containing a Viscoelastic Fluid, Lobachevskii. J. Math., 42 (2021), 996–1013. https://doi.org/10.1134/S1995080221050140 doi: 10.1134/S1995080221050140 |
[14] | D. A. Zakora, N. D. Kopachevsky, To the Problem of Small Oscillations of a System of Two Viscoelastic Fluids Filling Immovable Vessel: Model Problem, J. Math. Sci., 265 (2022), 888–912. https://doi.org/10.1007/s10958-022-06092-4 doi: 10.1007/s10958-022-06092-4 |
[15] | H. Essaouini, P. Capodanno, Analysis of the Small Oscillations of Two Nonmixing Fluids, the Upper Inviscid, the Lower Viscoelastic, in a Fixed Open Container, J. Math. Fluid. Mech, 22 (2020), 14. https://doi.org/10.1007/s00021-020-00513-7 doi: 10.1007/s00021-020-00513-7 |
[16] | H. Essaouini, P. Capodanno, Mathematical Study of the Small Oscillations of a Pendulum Completely Filled by a Viscoelastic Fluid, Russian Journal of Nonlinear Dynamics, 16 (2020), 309–324. https://doi.org/ 10.20537/nd200206 doi: 10.20537/nd200206 |
[17] | C. S. Zhu, X. Q. Fang, J. X. Liu, H. Y. Li, Surface energy effect on nonlinear free vibration behavior of orthotropic piezoelectric cylindrical nano-shells, Eur. J. Mech. A-Solid., 66 (2017), 423–432. https://doi.org/10.1016/j.euromechsol.2017.08.001 doi: 10.1016/j.euromechsol.2017.08.001 |
[18] | X. Q. Fang, H. W. Ma, C. S. Zhu, Non-local multi-fields coupling response of a piezoelectric semiconductor nanofiber under shear force, Mech. Adv. Mater. Struc., (2023), https://doi.org/10.1080/15376494.2022.2158503 doi: 10.1080/15376494.2022.2158503 |
[19] | P. Capodanno, D. Vivona, Mathematical study of the small oscillations of a pendulum containing a viscous liquid, Mech. Res. Commun., 30 (2003), 3–8. https://doi.org/10.1016/S0093-6413(02)00307-5 doi: 10.1016/S0093-6413(02)00307-5 |
[20] | F. Riesz, B. SZ. Nagy, Leçons d'analyse fonctionnelle, Gauthier villars, Paris, 1968. |
[21] | J. L. Lions, Equations différentielles opérationnelles et problèmes aux limites, Springer-Verlag, Berlin, 1961. https://doi.org/10.1007/978-3-662-25839-2-2 |