In this paper, we prove that a large class of linear evolution partial differential equations defines a Stokes-Dirac structure over Hilbert spaces. To do so, the theory of boundary control system is employed. This definition encompasses problems from mechanics that cannot be handled by the geometric setting given in the seminal paper by van der Schaft and Maschke in 2002. Many worked-out examples stemming from continuum mechanics and physics are presented in detail, and a particular focus is given to the functional spaces in duality at the boundary of the geometrical domain. For each example, the connection between the differential operators and the associated Hilbert complexes is illustrated.
Citation: Andrea Brugnoli, Ghislain Haine, Denis Matignon. Stokes-Dirac structures for distributed parameter port-Hamiltonian systems: An analytical viewpoint[J]. Communications in Analysis and Mechanics, 2023, 15(3): 362-387. doi: 10.3934/cam.2023018
In this paper, we prove that a large class of linear evolution partial differential equations defines a Stokes-Dirac structure over Hilbert spaces. To do so, the theory of boundary control system is employed. This definition encompasses problems from mechanics that cannot be handled by the geometric setting given in the seminal paper by van der Schaft and Maschke in 2002. Many worked-out examples stemming from continuum mechanics and physics are presented in detail, and a particular focus is given to the functional spaces in duality at the boundary of the geometrical domain. For each example, the connection between the differential operators and the associated Hilbert complexes is illustrated.
[1] | C. Beattie, V. Mehrmann, H. Xu, H. Zwart, Linear port-Hamiltonian descriptor systems, Math. Control. Signal., 30 (2018), 1–27. https://doi.org/10.1007/s00498-018-0223-3 doi: 10.1007/s00498-018-0223-3 |
[2] | F. Castaños, D. Gromov, V. Hayward, H. Michalska, Implicit and explicit representations of continuous-time port-Hamiltonian systems, Syst. Control. Lett., 62 (2013), 324–330. https://doi.org/10.1016/j.sysconle.2013.01.007 doi: 10.1016/j.sysconle.2013.01.007 |
[3] | V. Duindam, A. Macchelli, S. Stramigioli, H. Bruyninckx, Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach, Springer-Verlag, Berlin Heidelberg, 2009. https://doi.org/10.1007/978-3-642-03196-0 |
[4] | R. Rashad, F. Califano, A. J. van der Schaft, S. Stramigioli, Twenty years of distributed port-Hamiltonian systems: a literature review, IMA. J. Math. Control. I, 37 (2020), 1400–1422. https://doi.org/10.1093/imamci/dnaa018 doi: 10.1093/imamci/dnaa018 |
[5] | A. J. van der Schaft, Implicit Hamiltonian systems with symmetry, Rep. Math. Phys., 41 (1998), 203–221. https://doi.org/10.1016/S0034-4877(98)80176-6 doi: 10.1016/S0034-4877(98)80176-6 |
[6] | A. J. van der Schaft, Port-Hamiltonian Differential-Algebraic Systems, in Surveys in Differential-Algebraic Equations I, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013,173–226. |
[7] | A. J. van der Schaft, D. Jeltsema, Port-Hamiltonian Systems Theory: An Introductory Overview, Foundations and Trends® in Systems and Control, 1 (2014), 173–378. https://doi.org/10.1561/2600000002 doi: 10.1561/2600000002 |
[8] | R. Altmann, V. Mehrmann, B. Unger, Port-Hamiltonian formulations of poroelastic network models, Math. Comp. Model. Dyn., 27 (2021), 429–452. https://doi.org/10.1080/13873954.2021.1975137 doi: 10.1080/13873954.2021.1975137 |
[9] | R. Altmann, P. Schulze, A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows, Syst. Control. Lett., 100 (2017), 51–55. https://doi.org/10.1016/j.sysconle.2016.12.005 doi: 10.1016/j.sysconle.2016.12.005 |
[10] | F. Califano, R. Rashad, F. P. Schuller, S. Stramigioli, Energetic decomposition of distributed systems with moving material domains: the port-Hamiltonian model of fluid-structure interaction, J. Geom. Phys., 175 (2022), 104477. https://doi.org/10.1016/j.geomphys.2022.104477 doi: 10.1016/j.geomphys.2022.104477 |
[11] | F. L. Cardoso-Ribeiro, D. Matignon, V. Pommier-Budinger, Port-Hamiltonian model of two-dimensional shallow water equations in moving containers, IMA. J. Math. Control. I, 37 (2020), 1348–1366. https://doi.org/10.1093/imamci/dnaa016 doi: 10.1093/imamci/dnaa016 |
[12] | F. L. Cardoso-Ribeiro, D. Matignon, V. Pommier-Budinger, A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system, J. Fluid. Struct., 69 (2017), 402–427. https://doi.org/10.1016/j.jfluidstructs.2016.12.007 doi: 10.1016/j.jfluidstructs.2016.12.007 |
[13] | H. Gernandt, F. E. Haller, T. Reis, A. J. van der Schaft, Port-Hamiltonian formulation of nonlinear electrical circuits, J. Geom. Phys., 159 (2021), 103959. https://doi.org/10.1016/j.geomphys.2020.103959 doi: 10.1016/j.geomphys.2020.103959 |
[14] | A. Macchelli, A. J. van der Schaft, C. Melchiorri, Port-Hamiltonian formulation of infinite-dimensional systems I. Modeling, in 43rd IEEE Conference on Decision and Control (CDC), IEEE, Nassau, Bahamas, 2004, 3762–3767. https://doi.org/10.1109/CDC.2004.1429324 |
[15] | B. Maschke, A. J. van der Schaft, Port-Controlled Hamiltonian Systems: Modelling Origins and System theoretic Properties, IFAC Proceedings Volumes, 25 (1992), 359–365, 2nd IFAC Symposium on Nonlinear Control Systems Design 1992. https://doi.org/10.1016/B978-0-08-041901-5.50064-6 doi: 10.1016/B978-0-08-041901-5.50064-6 |
[16] | A. Serhani, G. Haine, D. Matignon, Anisotropic heterogeneous $n$-D heat equation with boundary control and observation: I. Modeling as port-Hamiltonian system, IFAC-PapersOnLine, 52 (2019), 51–56, 3rd IFAC Workshop on Thermodynamic Foundations for a Mathematical Systems (TFMST). https://doi.org/10.1016/j.ifacol.2019.07.009 doi: 10.1016/j.ifacol.2019.07.009 |
[17] | N. M. T. Vu, L. Lefèvre, B. Maschke, A structured control model for the thermo-magneto-hydrodynamics of plasmas in tokamaks, Math. Comp. Model. Dyn., 22 (2016), 181–206. https://doi.org/10.1080/13873954.2016.1154874 doi: 10.1080/13873954.2016.1154874 |
[18] | W. Zhou, B. Hamroun, F. Couenne, Y. Le Gorrec, Distributed port-Hamiltonian modelling for irreversible processes, Math. Comp. Model. Dyn., 23 (2017), 3–22. https://doi.org/10.1080/13873954.2016.1237970 doi: 10.1080/13873954.2016.1237970 |
[19] | A. Macchelli, Y. Le Gorrec, H. Ramírez, H. Zwart, F. Califano, Control design for linear port-Hamiltonian boundary control systems: an overview, in Stabilization of distributed parameter systems: design methods and applications, vol. 2 of ICIAM 2019 SEMA SIMAI Springer Ser., Springer, Cham, 2021, 57–72. |
[20] | A. Macchelli, C. Melchiorri, Modeling and Control of the Timoshenko Beam. The Distributed Port-Hamiltonian Approach, SIAM. J. Control. Optimi., 43 (2004), 743–767. https://doi.org/10.1137/S0363012903429530 doi: 10.1137/S0363012903429530 |
[21] | J. Toledo, Y. Wu, H. Ramírez, Y. Le Gorrec, Observer-based boundary control of distributed port-Hamiltonian systems, Automatica, 120 (2020), 109–130. https://doi.org/10.1016/j.automatica.2020.109130 doi: 10.1016/j.automatica.2020.109130 |
[22] | A. Brugnoli, D. Alazard, V. Pommier-Budinger, D. Matignon, Port-Hamiltonian formulation and symplectic discretization of plate models Part Ⅰ: Mindlin model for thick plates, Appl. Math. Model., 75 (2019), 940–960. https://doi.org/10.1016/j.apm.2019.04.035 doi: 10.1016/j.apm.2019.04.035 |
[23] | A. Brugnoli, D. Alazard, V. Pommier-Budinger, D. Matignon, Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates, Appl. Math. Model., 75 (2019), 961–981. https://doi.org/10.1016/j.apm.2019.04.036 doi: 10.1016/j.apm.2019.04.036 |
[24] | A. Brugnoli, A port-Hamiltonian formulation of flexible structures. Modelling and structure-preserving finite element discretization, PhD thesis, Université de Toulouse, ISAE-SUPAERO, 2020. |
[25] | A. Serhani, Systèmes couplés d'EDPs, vus comme des systèmes Hamiltoniens à ports avec dissipation : Analyse théorique et simulation numérique, PhD thesis, Université de Toulouse, ISAE-SUPAERO, 2020. |
[26] | J. Cervera, A. J. van der Schaft, A. Baños, Interconnection of port-Hamiltonian systems and composition of Dirac structures, Automatica, 43 (2007), 212–225. https://doi.org/10.1016/j.automatica.2006.08.014 doi: 10.1016/j.automatica.2006.08.014 |
[27] | G. Haine, D. Matignon, F. Monteghetti, Long-time behavior of a coupled heat-wave system using a structure-preserving finite element method, Math. Rep., 24 (2022), 187–215. |
[28] | M. Kurula, H. Zwart, A. J. van der Schaft, J. Behrndt, Dirac structures and their composition on Hilbert spaces, J. Math. Anal. Appl., 372 (2010), 402–422. https://doi.org/10.1016/j.jmaa.2010.07.004 doi: 10.1016/j.jmaa.2010.07.004 |
[29] | R. Ortega, A. J. van der Schaft, B. Maschke, G. Escobar, Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems, Automatica, 38 (2002), 585–596. https://doi.org/10.1016/S0005-1098(01)00278-3 doi: 10.1016/S0005-1098(01)00278-3 |
[30] | A. J. van der Schaft, Interconnection and geometry, in The Mathematics of Systems and Control: from Intelligent Control to Behavioral Systems, University of Groningen, 1999,203–218. |
[31] | M. Schöberl, K. Schlacher, First-order Hamiltonian field theory and mechanics, Math. Comp. Model. Dyn., 17 (2011), 105–121. https://doi.org/10.1080/13873954.2010.537526 doi: 10.1080/13873954.2010.537526 |
[32] | M. Schöberl, A. Siuka, Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators, Automatica, 50 (2014), 607–613. https://doi.org/10.1016/j.automatica.2013.11.035 doi: 10.1016/j.automatica.2013.11.035 |
[33] | T. J. Courant, Dirac Manifolds, T. Am. Math. Soc., 319 (1990), 631–661. https://doi.org/10.1090/S0002-9947-1990-0998124-1 doi: 10.1090/S0002-9947-1990-0998124-1 |
[34] | G. Nishida, M. Yamakita, A higher order Stokes-Dirac structure for distributed-parameter port-Hamiltonian systems, in Proceedings of the 2004 American Control Conference (ACC), vol. 6, 2004, 5004–5009. https://doi.org/10.23919/ACC.2004.1384643 |
[35] | H. Yoshimura, J. E. Marsden, Dirac structures in Lagrangian mechanics Part I: Implicit Lagrangian systems, J. Geom. Phys., 57 (2006), 133–156. https://doi.org/10.1016/j.geomphys.2006.02.009 doi: 10.1016/j.geomphys.2006.02.009 |
[36] | F. Jiménez, H. Yoshimura, Dirac structures in vakonomic mechanics, J. Geom. Phys., 94 (2015), 158–178. https://doi.org/10.1016/j.geomphys.2014.11.002 doi: 10.1016/j.geomphys.2014.11.002 |
[37] | M. Schöberl, K. Schlacher, On the extraction of the boundary conditions and the boundary ports in second-order field theories, J. Geom. Phys., 59 (2018), Paper No. 102902. https://doi.org/10.1063/1.5024847 doi: 10.1063/1.5024847 |
[38] | A. J. van der Schaft, B. M. Maschke, Port-Hamiltonian systems on graphs, SIAM. J. Control. Optim., 51 (2013), 906–937. https://doi.org/10.1137/110840091 doi: 10.1137/110840091 |
[39] | A. J. van der Schaft, B. Maschke, Hamiltonian formulation of distributed-parameter systems with boundary energy flow, J. Geom. Phys., 42 (2002), 166–194. https://doi.org/10.1016/S0393-0440(01)00083-3 doi: 10.1016/S0393-0440(01)00083-3 |
[40] | Y. Le Gorrec, H. Zwart, B. Maschke, Dirac structures and boundary control systems associated with skew-symmetric differential operators, SIAM. J. Control. Optim., 44 (2005), 1864–1892. https://doi.org/10.1137/040611677 doi: 10.1137/040611677 |
[41] | B. Jacob, H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces, Operator Theory: Advances and Applications, Birkhäuser Basel, 2012. https://doi.org/10.1007/978-3-0348-0399-1 |
[42] | N. Skrepek, Well-posedness of linear first order port-Hamiltonian Systems on multidimensional spatial domains, Evol. Equ. Control. The., 10 (2021), 965–1006. https://doi.org/10.3934/eect.2020098 doi: 10.3934/eect.2020098 |
[43] | F. Gay-Balmaz, H. Yoshimura, A Lagrangian variational formulation for nonequilibrium thermodynamics. Part I: Discrete systems, J. Geom. Phys., 111 (2017), 169–193. https://doi.org/10.1016/j.geomphys.2016.08.018 doi: 10.1016/j.geomphys.2016.08.018 |
[44] | F. Gay-Balmaz, H. Yoshimura, A Lagrangian variational formulation for nonequilibrium thermodynamics. Part II: Continuum systems, J. Geom. Phys., 111 (2017), 194–212. https://doi.org/10.1016/j.geomphys.2016.08.019 doi: 10.1016/j.geomphys.2016.08.019 |
[45] | R. F. Curtain, G. Weiss, Well-posedness of triples of operators (in the sense of linear systems theory), in Control and Estimation of Distributed Parameter Systems (Vorau, 1988), Birkhäuser Basel, 1989, 41–59. https://doi.org/10.1090/conm/097/1021030 |
[46] | M. Kurula, H. Zwart, Linear wave systems on n-D spatial domains, International Journal of Control, 88 (2015), 1063–1077. |
[47] | D. Salamon, Infinite-dimensional linear systems with undbounded control and observation: A functional analytic approach, T. Am. Math. Soc., 300 (1987), 383–431. https://doi.org/10.2307/2000351 doi: 10.2307/2000351 |
[48] | O. J. Staffans, Well-posed linear systems, vol. 103 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2005. |
[49] | M. Tucsnak, G. Weiss, Observation and control for operator semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009. https://doi.org/10.1007/978-3-7643-8994-9 |
[50] | M. Tucsnak, G. Weiss, Well-posed systems - The LTI case and beyond, Automatica, 50 (2014), 1757–1779. https://doi.org/10.1016/j.automatica.2014.04.016 doi: 10.1016/j.automatica.2014.04.016 |
[51] | G. Weiss, O. J. Staffans and M. Tucsnak, Well-posed linear systems - a survey with emphasis on conservative systems, Int. J. Ap. Mat. Com-Pol., 11 (2001), 7–33. |
[52] | D. N. Arnold, R. S. Falk, R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numerica, 15 (2006), 1–155. https://doi.org/10.1017/S0962492906210018 doi: 10.1017/S0962492906210018 |
[53] | P. J. Olver, Applications of Lie Groups to Differential Equations, vol. 107 of Graduate Texts in Mathematics, Springer-Verlag New York, 1993. |
[54] | M. Renardy, R. C. Rogers, An introduction to partial differential equations, vol. 13 of Texts in Applied Mathematics, Springer Science & Business Media, 2006. |
[55] | R. Rashad, A. Brugnoli, F. Califano, E. Luesink, S. Stramigioli, Intrinsic nonlinear elasticity: An exterior calculus formulation, arXiv preprint arXiv: 2303.06082. |
[56] | S. A. Wegner, Boundary triplets for skew-symmetric operators and the generation of strongly continuous semigroups, Analysis Mathematica, 43 (2017), 657–686. https://doi.org/10.1007/s10476-017-0509-6 doi: 10.1007/s10476-017-0509-6 |
[57] | P. Monk, Finite element methods for Maxwell's equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. |
[58] | D. N. Arnold, K. Hu, Complexes from Complexes, Found. Comput. Math., 21 (2021), 1739–1774. https://doi.org/10.1007/s10208-021-09498-9 doi: 10.1007/s10208-021-09498-9 |
[59] | D. Pauly, W. Zulehner, The divDiv-complex and applications to biharmonic equations, Applicable Analysis, 99 (2020), 1579–1630. https://doi.org/10.1080/00036811.2018.1542685 doi: 10.1080/00036811.2018.1542685 |
[60] | D. Pauly, W. Zulehner, The elasticity complex: compact embeddings and regular decompositions, Applicable Analysis, (2022), 1–29. https://doi.org/10.1080/00036811.2022.2117497 doi: 10.1080/00036811.2022.2117497 |
[61] | M. Amara, D. Capatina-Papaghiuc, A. Chatti, Bending Moment Mixed Method for the Kirchhoff–Love Plate Model, SIAM. J. Numer. Anal., 40 (2002), 1632–1649. https://doi.org/10.1137/S0036142900379680 doi: 10.1137/S0036142900379680 |
[62] | G. Weiss, O. J. Staffans, Maxwell's equations as a scattering passive linear system, SIAM. J. Control. Optim., 51 (2013), 3722–3756. https://doi.org/10.1137/120869444 doi: 10.1137/120869444 |
[63] | F. L. Cardoso-Ribeiro, D. Matignon, L. Lefèvre, A partitioned finite-element method for power-preserving discretization of open systems of conservation laws, J. IMAMathematical Control and Information, 38 (2021), 493–533. https://doi.org/10.1093/imamci/dnaa038 doi: 10.1093/imamci/dnaa038 |
[64] | G. Haine, D. Matignon, A. Serhani, Numerical analysis of a structure-preserving space-discretization for an anisotropic and heterogeneous boundary controlled ${N}$-dimensional wave equation as a port-Hamiltonian system, Int. J. Numer. Anal. Mod., 20 (2023), 92–133. https://doi.org/10.4208/ijnam2023-1005 doi: 10.4208/ijnam2023-1005 |
[65] | A. Brugnoli, R. Rashad, S. Stramigioli, Dual field structure-preserving discretization of port-Hamiltonian systems using finite element exterior calculus, J. Comput. Phys., 471 (2022), 111601. https://doi.org/10.1016/j.jcp.2022.111601 doi: 10.1016/j.jcp.2022.111601 |
cam-15-03-018-s001.pdf |