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A. Backgrounds on boundary control systems

Let us start with the definition of a boundary control system, as given in [49, Chapter 10].

Definition 1 (Boundary control systems). LetZ,X,U be three complex Hilbert spaces such thatZ ⊂ X
with continuous embedding.

Let J ∈ L(Z,X) and G ∈ L(Z,U) be two linear operators.
The couple (J,G) is a boundary control system on (Z,X,U) if the following holds:

(i) G is onto;
(ii) ker G is dense in X,

and if there exists β ∈ C such that

(iii) βI − J restricted to ker G is onto;
(iv) ker(βI − J) ∩ ker G = {0}.

Z is called the solution space, X is the state space andU is the input space.

The following Proposition 4 gathers well-known results. Proofs can be found in [49, Chapter 10]
and the references therein.

Proposition 1. Let (J,G) be a boundary control system on (Z,X,U).
DenoteX1 := ker G, A := J|X1 andX−1 as the completion ofX endowed with the norm

∥∥∥(βI − A)−1·
∥∥∥
X

for some fixed β ∈ ρ(A). Then, the following holds:

1. X1 is a Hilbert space endowed with the graph norm of A, as well as a continuously embedded
closed subspace ofZ (generally not densely embedded);
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2. A ∈ L(X1,X) and can be continuously extended to an operator A|X in L(X,X−1). Furthermore, if
A is skew-adjoint on X, then A|X is skew-adjoint on X−1;

3. for β ∈ C as in Definition 4, β ∈ ρ(A), i.e., in the resolvent set of A, and (βI − A)−1 ∈ L(X,X1),
(βI − A|X)−1 ∈ L(X−1,X).
Furthermore, the graph norm of A on X1 is equivalent to the norm ‖(βI − A) · ‖X;

4. there exists a unique control operator B ∈ L(U,X−1) such that

J = A|X + BG, G(βI − A|X)−1B = IU;

furthermore, the operator
[
IZ
G

]
is a bounded bijection between Z and{(

z
u

)
∈ X ×U | A|Xz + Bu ∈ X

}
;

5. Z = (βI − A|X)−1 (X + BU) = X1 + (βI − A|X)−1BU and B is strictly unbounded, meaning that
X ∩ BU = {0}, and is bounded from below. In particular, for all z ∈ Z, there exists a unique
z0 ∈ X1 and a unique u ∈ U such that z = z0 + (βI − A|X)−1Bu.

B. Proof of Theorem 3

Let us start by showing that (J,G) is a boundary control system on
(
Z1 ×Z2,X1 × X2,U1 ×U2

)
.

The four points of Definition 4 have to be checked.
Point (i): Since γiZi = Ui, i = 1, 2, by assumption (A1), G(Z1 ×Z2) = U1 ×U2 =: U, i.e., point (i)
of Definition 4 holds.

Point (ii): Since X1 := ker G =
{(

e1

e2

)
∈ Z | γ1e1 = 0, γ2e2 = 0

}
= ker γ1 × ker γ2 =: X1

1 × X
2
1, by

assumption (A2), X1 is then dense in X and point (ii) of Definition 4 is satisfied.
Point (iii): By assumptions (A1), (A2) and (A3), Theorem 2 applies and A is skew-adjoint on X; so, in
particular, (βI − A) is onto for all β ∈ C,<eβ , 0; the point (iii) of Definition 4 holds.

Point (iv): Let J :=
[
0 −K
L 0

]
and e ∈ ker(I − J) ∩ X1. Then, we have the following:

e = Ae ∈ X1.

Applying A? = −A, by Theorem 2, one gets

−Ae = A?Ae ∈ X,

from which it is deduced that
e = −A?Ae ∈ X.

Multiplying both sides by e in X, we obtain ‖e‖2X1
= 0. Then, ker(I − J) ∩ X1 =

{(
0
0

)}
and point (iv) of

Definition 4 holds.
This shows that (J,G) is indeed a boundary control system on (Z1 ×Z2,X1 × X2,U1 ×U2). As a

first consequence, the control operator B is uniquely determined, as claimed in Proposition 4, point 4.
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Stokes-Dirac structure: Starting from (2.8) with the definition of C :=
[

0 β2

β1 0

]
, one has the following,

for all z :=
(
z1

z2

)
∈ Z and all x :=

(
x1

x2

)
∈ Z:

(Jz, x)X + (z, Jx)X =
(
−Kz2, x1

)
X1
+

(
Lz1, x2

)
X2
+

(
z1,−Kx2

)
X1
+

(
z2, Lx1

)
X2
,

=
〈
γ1z1, β2x2

〉
U1,(U1)′

+
〈
β1z1, γ2x2

〉
(U2)′,U2

+
〈
β2z2, γ1x1

〉
(U1)′,U1

+
〈
γ2z2, β1x1

〉
U2,(U2)′

,

= 〈Gz,Cx〉U,U′ + 〈Cz,Gx〉U′,U .

From Proposition 4, point 4, J =
[
A|X B

] [IZ
G

]
, and, thus, with the definitions of F and E, one has

the following, for all
(
z
u

)
∈ E and all

(
x
v

)
∈ E:

〈[
A|X B
−C 0

] (
z
u

)
,

(
x
v

)〉
F ,E

+

〈(
z
u

)
,

[
A|X B
−C 0

] (
x
v

)〉
F ,E

= (Jz, x)X + (z, Jx)X − 〈Cz, v〉U′,U − 〈u,Cx〉U,U′ ,

= 〈Gz,Cx〉U,U′ + 〈Cz,Gx〉U′,U
− 〈Cz,Gx〉U′,U − 〈Gz,Cx〉U,U′ ,

= 0.

This yields that J :=
[
A|X B
−C 0

]
∈ L(E,F ) indeed satisfies (2.5).

Applying Theorem 1 shows that the graph of J defined as above is a Stokes-Dirac structure on
B = F × E.

Form of J: Now, it remains to be proven that J =
[
A|X B
−C 0

]
can be written as in (2.11) by showing

that indeed

B =
[

0 B2

B1 0

]
,

with B1 ∈ L(U1,X2
−1), B2 ∈ L(U2,X1

−1), where we recall that Xi
−1 is the projection of X−1 on the i-th

component for i = 1, 2.
The form of B entirely relies on its construction, as given in the proof of [49, Proposition 10.1.2]

B = (J − A)H, where H ∈ L(U,Z) is a bounded right inverse of G (which exists since G is onto).

Since G =
[
γ1 0
0 γ2

]
, H =

[
H1 0
0 H2

]
, where Hi ∈ L(Ui,Zi) is a bounded right inverse of γi for

i = 1, 2. By construction with the operators K and L and the assumption of density of X1 in X,

J − A|X = BG is of the form
[

0 S 2

S 1 0

]
, which yields that B =

[
0 S 2H2

S 1H1 0

]
∈ L(U1 ×U2,X1

−1 ×X
2
−1).

Hence, B1 = S 1H1 is related to γ1, and B2 = S 2H2 is related to γ2. This concludes the proof.
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