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A. Backgrounds on boundary control systems

Let us start with the definition of a boundary control system, as given in [49, Chapter 10].

Definition 1 (Boundary control systems). Let Z, X, U be three complex Hilbert spaces such that Z C X
with continuous embedding.

Let J € L(Z,X) and G € L(Z,U) be two linear operators.
The couple (J,G) is a boundary control system on (Z, X, U) if the following holds:

(i) G is onto;
(ii) ker G is dense in X,

and if there exists 8 € C such that

(iii) BI — J restricted to ker G is onto;
(iv) ker(BI — J) Nker G = {0}.

Z is called the solution space, X is the state space and U is the input space.

The following Proposition 4 gathers well-known results. Proofs can be found in [49, Chapter 10]
and the references therein.

Proposition 1. Let (J,G) be a boundary control system on (Z, X, U).
Denote X, := ker G, A := J|x, and X_, as the completion of X endowed with the norm ||(,BI —A)™! ||X
for some fixed 3 € p(A). Then, the following holds:

1. X, is a Hilbert space endowed with the graph norm of A, as well as a continuously embedded
closed subspace of Z (generally not densely embedded);
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2. A € L(X,,X) and can be continuously extended to an operator Aly in L(X,X_,). Furthermore, if
A is skew-adjoint on X, then Aly is skew-adjoint on X_;

3. for B € C as in Definition 4, B € p(A), i.e., in the resolvent set of A, and (BI — A)™' € L(X, X)),
BI - Alx)™" € LIX_1, X).
Furthermore, the graph norm of A on X, is equivalent to the norm ||(BI — A) - ||x,

4. there exists a unique control operator B € L(U, X_,) such that

J = Alx + BG, GBI - Alx)"'B = Iy;

Iz

furthermore,  the operator G

is a bounded bijection between Z and

{(z) e XXU | Alxz+ Bu eX};

5.Z=@I-Ax) " (X+BU) = X, + (BI — Alx)"'BU and B is strictly unbounded, meaning that
X N BU = {0}, and is bounded from below. In particular, for all 7 € Z, there exists a unique
20 € X, and a unique u € U such that z = zo + (BI — Alx) ™' Bu.

B. Proof of Theorem 3

Let us start by showing that (J, G) is a boundary control system on (Z‘ x Z5 X' x X2, U x (LIZ).
The four points of Definition 4 have to be checked.
Point (i): Since y'Z' = U', i = 1,2, by assumption (A1), G(Z' x Z?) = U' x U? =: U, i.e., point (i)
of Definition 4 holds. 1

Point (ii): Since X| := kerG = {(;) €Z | vl =0,y%* = O} = kery' x kery? =: X] x X3, by

assumption (A2), X, is then dense in X and point (ii) of Definition 4 is satisfied.
Point (iii): By assumptions (A1), (A2) and (A3), Theorem 2 applies and A is skew-adjoint on X; so, in
particular, (81 — A) is onto for all 8 € C, ReB # 0; the point (iii) of Definition 4 holds.

Point (iv): Let J := [2 _OK ] and e € ker(/ — J) N X;. Then, we have the following:
e =Ae € X;.

Applying A* = —A, by Theorem 2, one gets

—Ae =A*Ae € X,

from which it is deduced that
e=-A"Ae c X.

Multiplying both sides by e in X, we obtain ||e||§(l =0. Then, kerd — /)N X| = {(8)} and point (iv) of

Definition 4 holds.
This shows that (J, G) is indeed a boundary control system on (Z' x Z%, X! x X2, U' x U?). As a
first consequence, the control operator B is uniquely determined, as claimed in Proposition 4, point 4.
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Stokes-Dirac structure: Starting from (2.8) with the definition of C := [O B

B0 ], one has the following,

1

1
forall z := (;) € Zandall x := (;) S

(Jz, 0)x + (2, J)x = (—Kzz, xl)XI + (Lzl,xz)xz + (zl, —sz)X] + (zz,Lxl)
= <71Z1,,32x2> +<ﬁlzl,72x2>(,u2),ﬂ2
(Gz,Cx) (C 2<62Z2’71)C1>('Lﬂ>m] +<7222"8 1xl>ruz,<fuz)"
LX)y +CZ, GX)qp qq -

X2’

rul ’(ﬂl )/

1 ) ..
Z , and, thus, with the definitions of F and &, one has

From Proposition 4, point 4, J = [A| X B] G

the following, for all (LZ{) € &and all (j) €&

(e oll)-Ch),, e ol

(Jz, X)x + (2, Ix)x —(Cz,V)qp s — U, CX)qyqp,

(Gz,Cx)qpar +(C2, GX)qpr 4
- <CZ’ Gx)‘ll’,’ll - <GZ’ Cx>‘L{,‘ZJ”

= 0.

This yields that J:= [élg g

Applying Theorem 1 shows that the graph of J defined as above is a Stokes-Dirac structure on
B=F x&.

] € L(&E,F) indeed satisfies (2.5).

Form of 7: Now, it remains to be proven that J = [flg ]g] can be written as in (2.11) by showing
that indeed )
0 B
o=l 5]

with B' € L(U"', X?)), B> € L(U?*, X" ), where we recall that X" | is the projection of X_; on the i-th
component for i = 1, 2.
The form of B entirely relies on its construction, as given in the proof of [49, Proposition 10.1.2]
B = (J—-A)H, where H € L(U, Z) is a bounded right inverse of G (which exists since G is onto).
1 1
Since G = [7(/) 7(/)], H = [I;I) I-(I)z]’ where H' € L(U', Z') is a bounded right inverse of ' for
i = 1,2. By construction with the operators K and L and the assumption of density of X; in X,

: 0 S? L 0 S’H? | > vl )
J —Alx = BG is of the form , which yields that B = gl 0 € LU XU, X xX2)).

St 0
Hence, B' = S'H' is related to y!, and B?> = S2H? is related to y*. This concludes the proof.
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