Heavy metals (HMs) are persistent and toxic environmental pollutants that pose critical risks toward human health and environmental safety. Their efficient elimination from water and wastewater is essential to protect public health, ensure environmental safety, and enhance sustainability. In the recent decade, nanomaterials have been developed extensively for rapid and effective removal of HMs from water and wastewater and to address the certain economical and operational challenges associated with conventional treatment practices, including chemical precipitation, ion exchange, adsorption, and membrane separation. However, the complicated and expensive manufacturing process of nanoparticles and nanotubes, their reduced adsorption capacity due to the aggregation, and challenging recovery from aqueous solutions limited their widespread applications for HM removal practices. Thus, the nanofibers have emerged as promising adsorbents due to their flexible and facile production process, large surface area, and simple recovery. A growing number of chemical modification methods have been devised to promote the nanofibers' adsorption capacity and stability within the aqueous systems. This paper briefly discusses the challenges regarding the effective and economical application of conventional treatment practices for HM removal. It also identifies the practical challenges for widespread applications of nanomaterials such as nanoparticles and nanotubes as HMs adsorbents. This paper focuses on nanofibers as promising HMs adsorbents and reviews the most recent advances in terms of chemical grafting of nanofibers, using the polymers blend, and producing the composite nanofibers to create highly effective and stable HMs adsorbent materials. Furthermore, the parameters that influence the HM removal by electrospun nanofibers and the reusability of adsorbent nanofibers were discussed. Future research needs to address the gap between laboratory investigations and commercial applications of adsorbent nanofibers for water and wastewater treatment practices are also presented.
Citation: Maryam Salehi, Donya Sharafoddinzadeh, Fatemeh Mokhtari, Mitra Salehi Esfandarani, Shafieh Karami. Electrospun nanofibers for efficient adsorption of heavy metals from water and wastewater[J]. Clean Technologies and Recycling, 2021, 1(1): 1-33. doi: 10.3934/ctr.2021001
Heavy metals (HMs) are persistent and toxic environmental pollutants that pose critical risks toward human health and environmental safety. Their efficient elimination from water and wastewater is essential to protect public health, ensure environmental safety, and enhance sustainability. In the recent decade, nanomaterials have been developed extensively for rapid and effective removal of HMs from water and wastewater and to address the certain economical and operational challenges associated with conventional treatment practices, including chemical precipitation, ion exchange, adsorption, and membrane separation. However, the complicated and expensive manufacturing process of nanoparticles and nanotubes, their reduced adsorption capacity due to the aggregation, and challenging recovery from aqueous solutions limited their widespread applications for HM removal practices. Thus, the nanofibers have emerged as promising adsorbents due to their flexible and facile production process, large surface area, and simple recovery. A growing number of chemical modification methods have been devised to promote the nanofibers' adsorption capacity and stability within the aqueous systems. This paper briefly discusses the challenges regarding the effective and economical application of conventional treatment practices for HM removal. It also identifies the practical challenges for widespread applications of nanomaterials such as nanoparticles and nanotubes as HMs adsorbents. This paper focuses on nanofibers as promising HMs adsorbents and reviews the most recent advances in terms of chemical grafting of nanofibers, using the polymers blend, and producing the composite nanofibers to create highly effective and stable HMs adsorbent materials. Furthermore, the parameters that influence the HM removal by electrospun nanofibers and the reusability of adsorbent nanofibers were discussed. Future research needs to address the gap between laboratory investigations and commercial applications of adsorbent nanofibers for water and wastewater treatment practices are also presented.
[1] | Liao J, Chen J, Ru X, et al. (2017) Heavy metals in river surface sediments affected with multiple pollution sources, South China: Distribution, enrichment and source apportionment. J Geochem Explor 176: 9-19. doi: 10.1016/j.gexplo.2016.08.013 |
[2] | Zhaoyong Z, Xiaodong Y, Shengtian Y (2018) Heavy metal pollution assessment, source identification, and health risk evaluation in Aibi Lake of northwest China. Environ Monit Assess 190: 1-13. doi: 10.1007/s10661-017-6437-x |
[3] | Shikazono N, Tatewaki K, Mohiuddin KM, et al. (2012) Sources, spatial variation, and speciation of heavy metals in sediments of the Tamagawa River in Central Japan. Environ Geochem Health 34: 13-26. doi: 10.1007/s10653-011-9409-z |
[4] | Xia F, Zhang M, Qu L, et al. (2018) Risk analysis of heavy metal concentration in surface waters across the rural-urban interface of the Wen-Rui Tang River, China. Environ Pollut 237: 639-649. doi: 10.1016/j.envpol.2018.02.020 |
[5] | Kaizer A, Osakwe S (2011) Physicochemical characteristics and heavy metal levels in water samples from five river systems in Delta State, Nigeria. J Appl Sci Environ Manag 14: 83-87. |
[6] | Islam MS, Ahmed MK, Raknuzzaman M, et al. (2015) Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol Indic 48: 282-291. doi: 10.1016/j.ecolind.2014.08.016 |
[7] | Ouyang W, Wang Y, Lin C, et al. (2018) Heavy metal loss from agricultural watershed to aquatic system: A scientometrics review. Sci Total Environ 637-638: 208-220. doi: 10.1016/j.scitotenv.2018.04.434 |
[8] | Chowdhury S, Mazumder MAJ, Al-Attas O, et al. (2016) Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci Total Environ 569-570: 476-488. doi: 10.1016/j.scitotenv.2016.06.166 |
[9] | Santos-Echeandía J, Prego R, Cobelo-García A (2008) Influence of the heavy fuel spill from the Prestige tanker wreckage in the overlying seawater column levels of copper, nickel and vanadium (NE Atlantic Ocean). J Mar Syst 72: 350-357. doi: 10.1016/j.jmarsys.2006.12.005 |
[10] | Holt MS (2000) Sources of chemical contaminants and routes into the freshwater environment. Food Chem Toxicol 38: 21-27. |
[11] | Salehi M, Aghilinasrollahabadi K, Esfandarani MS (2020) An investigation of stormwater quality variation within an industry sector using the self-reported data collected under the stormwater monitoring program. Water 12: 1-16. doi: 10.3390/w12113185 |
[12] | Aghilinasrollahabadi K, Salehi M, Fujiwara T (2021) Investigate the influence of microplastics weathering on their heavy metals uptake in stormwater. J Hazard Mater 408: 124439. doi: 10.1016/j.jhazmat.2020.124439 |
[13] | Li F, Zhang J, Cao T, et al. (2018) Human health risk assessment of toxic elements in farmland topsoil with source identification in Jilin province, China. Int J Environ Res Public Health 15: 1040. doi: 10.3390/ijerph15051040 |
[14] | Edelstein M, Ben-Hur M (2018) Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci Hortic 234: 431-444. doi: 10.1016/j.scienta.2017.12.039 |
[15] | Le Roux W, Chamier J, Genthe B, et al. (2018) The reach of human health risks associated with metals/metalloids in water and vegetables along a contaminated river catchment: South Africa and Mozambique. Chemosphere 199: 1-9. doi: 10.1016/j.chemosphere.2018.01.160 |
[16] | Akpor OB, Ohiobor GO, Olaolu TD (2015) Heavy metal pollutants in wastewater effluents: sources, effects and remediation. Adv Biosci Bioeng 2: 37-43. |
[17] | Khan K, Lu Y, Khan H, et al. (2013) Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan. J Environ Sci 25: 2003-2013. doi: 10.1016/S1001-0742(12)60275-7 |
[18] | Salehi M, Jafvert CT, Howarter JA, et al. (2018) Investigation of the factors that influence lead accumulation onto polyethylene: Implication for potable water plumbing pipes. J Hazard Mater 347: 242-251. doi: 10.1016/j.jhazmat.2017.12.066 |
[19] | Ahamed T, Brown SP, Salehi M (2020) Investigate the role of biofilm and water chemistry on lead deposition onto and release from polyethylene: an implication for potable water pipes. J Hazard Mater 400: 123253. doi: 10.1016/j.jhazmat.2020.123253 |
[20] | DeSimone D, Sharafoddinzadeh D, Salehi M (2020) Prediction of children's blood lead levels from exposure to lead in schools' drinking water-A case study in Tennessee, USA. Water 12: 1826. doi: 10.3390/w12061826 |
[21] | Proctor CR, Rhoads WJ, Keane T, et al. (2020) Considerations for large building water quality after extended stagnation. AWWA Water Sci 2: e1186. |
[22] | El-Kady AA, Abdel-Wahhab MA (2018) Occurrence of trace metals in foodstuffs and their health impact. Trends Food Sci Technol 75: 36-45. doi: 10.1016/j.tifs.2018.03.001 |
[23] | Al Osman M, Yang F, Massey IY (2019) Exposure routes and health effects of heavy metals on children. Biometals 32: 563-573. doi: 10.1007/s10534-019-00193-5 |
[24] | Rehman K, Fatima F, Waheed I, et al. (2018) Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem 119: 157-184. doi: 10.1002/jcb.26234 |
[25] | Mohammadi AA, Zarei A, Majidi S, et al. (2019) Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX 6: 1642-1651. doi: 10.1016/j.mex.2019.07.017 |
[26] | Edwards M, Triantafyllidou S, Best D (2009) Elevated blood lead in young children due to lead-contaminated drinking water: Washington, DC, 2001-2004. Environ Sci Technol 43: 1618-1623. doi: 10.1021/es802789w |
[27] | Jain NB, Laden F, Guller U, et al. (2005) Relation between blood lead levels and childhood anemia in India. Am J Epidemiol 161: 968-973. doi: 10.1093/aje/kwi126 |
[28] | Mahurpawar M (2015) Effects of heavy metals on human health. Int J Res Granthaalayah 2350: 2394-3629. |
[29] | Martin S, Griswold W (2009) Human health effects of heavy metals. Environ Sci Technol Briefs Citizens 15: 1-6. |
[30] | Lamm SH, Kruse MB (2005) Arsenic ingestion and bladder cancer mortality-What do the dose-response relationships suggest about mechanism? Hum Ecol Risk Assess 11: 433-450. |
[31] | Viet PH, Sampson ML, Buschmann J, et al. (2008) Contamination of drinking water resources in the Mekong delta floodplains: Arsenic and other trace metals pose serious health risks to population. Environ Int 34: 756-764. doi: 10.1016/j.envint.2007.12.025 |
[32] | Volety AK (2008) Effects of salinity, heavy metals and pesticides on health and physiology of oysters in the Caloosahatchee Estuary, Florida. Ecotoxicology 17: 579-590. doi: 10.1007/s10646-008-0242-9 |
[33] | Yoo JW, Cho H, Lee KW, et al. (2021) Combined effects of heavy metals (Cd, As, and Pb): Comparative study using conceptual models and the antioxidant responses in the brackish water flea. Comp Biochem Physiol Part-C Toxicol Pharmacol 239: 108863. doi: 10.1016/j.cbpc.2020.108863 |
[34] | Jakimska A, Konieczka P, Skora K, et al. (2011) Bioaccumulation of metals in tissues of marine animals. J Environ Stud 20: 1117-1125. |
[35] | Kononova ON, Bryuzgina GL, Apchitaeva OV, et al. (2019) Ion exchange recovery of chromium (VI) and manganese (Ⅱ) from aqueous solutions. Arab J Chem 12: 2713-2720. doi: 10.1016/j.arabjc.2015.05.021 |
[36] | Gupta B, Deep A, Tandon SN (2002) Recovery of chromium and nickel from industrial waste. Ind Eng Chem Res 41: 2948-2952. doi: 10.1021/ie010934b |
[37] | Wang D, Li Y, Li Puma G, et al. (2017) Photoelectrochemical cell for simultaneous electricity generation and heavy metals recovery from wastewater. J Hazard Mater 323: 681-689. doi: 10.1016/j.jhazmat.2016.10.037 |
[38] | Baltazar C, Igarashi T, Villacorte-tabelin M, et al. (2018) Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Sci Total Environ 645: 1522-1553. doi: 10.1016/j.scitotenv.2018.07.103 |
[39] | Baltazar C, Sasaki R, Igarashi T, et al. (2017) Simultaneous leaching of arsenite, arsenate, selenite and selenate, and their migration in tunnel-excavated sedimentary rocks: I. Column experiments under intermittent and unsaturated flow. Chemosphere 186: 558-569. |
[40] | Shao H, Freiburg JT, Berger PM, et al. (2020) Mobilization of trace metals from caprock and formation rocks at the Illinois Basin - Decatur Project demonstration site under geological carbon dioxide sequestration conditions. Chem Geol 550: 119758. doi: 10.1016/j.chemgeo.2020.119758 |
[41] | Feng W, Guo Z, Xiao X, et al. (2019) Atmospheric deposition as a source of cadmium and lead to soil-rice system and associated risk assessment. Ecotoxicol Environ Saf 180: 160-167. doi: 10.1016/j.ecoenv.2019.04.090 |
[42] | Feng W, Guo Z, Peng C, et al. (2019) Atmospheric bulk deposition of heavy metal(loid)s in central south China: Fluxes, influencing factors and implication for paddy soils. J Hazard Mater 371: 634-642. doi: 10.1016/j.jhazmat.2019.02.090 |
[43] | Rajamohan R, Rao TS, Anupkumar B, et al. (2010) Distribution of heavy metals in the vicinity of a nuclear power plant, east coast of India: With emphasis on copper concentration and primary productivity. Indian J Mar Sci 39: 182-191. |
[44] | Nieva NE, Borgnino L, García MG (2018) Long term metal release and acid generation in abandoned mine wastes containing metal-sulphides. Environ Pollut 242: 264-276. doi: 10.1016/j.envpol.2018.06.067 |
[45] | Karnchanawong S, Limpiteeprakan P (2009) Evaluation of heavy metal leaching from spent household batteries disposed in municipal solid waste. Waste Manag 29: 550-558. doi: 10.1016/j.wasman.2008.03.018 |
[46] | Ribeiro C, Scheufele FB, Espinoza-Quinones FR, et al. (2018) Biomaterials A comprehensive evaluation of heavy metals removal from battery industry wastewaters by applying bio- residue, mineral and commercial adsorbent materials. Biomaterials 53: 7976-7995. |
[47] | Al-Khashman O, Shawabkeh RA (2009) Metal distribution in urban soil around steel industry beside Queen Alia Airport, Jordan. Environ Geochem Health 31: 717-726. doi: 10.1007/s10653-009-9250-9 |
[48] | Jeong H, Choi JY, Lee J, et al. (2020) Heavy metal pollution by road-deposited sediments and its contribution to total suspended solids in rainfall runoff from intensive industrial areas. Environ Pollut 265: 115028. doi: 10.1016/j.envpol.2020.115028 |
[49] | City D, Das M, Ahmed K, et al. (2009) Heavy metals in industrial effluents (tannery and textile) and adjacent rivers heavy metals in industrial effluents (tannery and textile) and adjacent rivers of Dhaka City, Bangladesh. Terr Aquat Environ Toxicol 5: 8-13. |
[50] | Halimoon N (2010) Removal of heavy metals from textile wastewater using zeolite. Environment Asia 3: 124-130. |
[51] | Saha P, Paul B (2019) Human and ecological risk assessment: an international assessment of heavy metal toxicity related with human health risk in the surface water of an industrialized area by a novel technique. Hum Ecol RISK Assess 25: 966-987. doi: 10.1080/10807039.2018.1458595 |
[52] | Hepburn E, Northway A, Bekele D, et al. (2018) A method for separation of heavy metal sources in urban groundwater using multiple lines of evidence. Environ Pollut 241: 787-799. doi: 10.1016/j.envpol.2018.06.004 |
[53] | Ning CC, Gao PD, Wang BQ, et al. (2017) Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. J Integr Agric 16: 1819-1831. doi: 10.1016/S2095-3119(16)61476-4 |
[54] | Fan Y, Li Y, Li H, et al. (2018) Evaluating heavy metal accumulation and potential risks in soil-plant systems applied with magnesium slag-based fertilizer. Chemosphere 197: 382-388. doi: 10.1016/j.chemosphere.2018.01.055 |
[55] | Defarge N, Vendômois JS De, Séralini GE (2018) Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicol Rep 5: 156-163. doi: 10.1016/j.toxrep.2017.12.025 |
[56] | Clark BN, Masters SV, Edwards M (2015) Lead release to drinking water from galvanized steel pipe coatings. Environ Eng Sci 32: 713-721. doi: 10.1089/ees.2015.0073 |
[57] | McFadden M, Giani R, Kwan P, et al. (2011) Contributions to drinking water lead from galvanized iron corrosion scales. J Am Water Works Assoc 103: 76-89. |
[58] | Salehi M, Li X, Whelton AJ (2017) Metal accumulation in representative plastic drinking water plumbing systems. J Am Water Works Assoc 109: E479-E493. |
[59] | Salehi M, Abouali M, Wang M, et al. (2018) Case study: Fixture water use and drinking water quality in a new residential green building. Chemosphere 195: 80-89. doi: 10.1016/j.chemosphere.2017.11.070 |
[60] | Salehi M, Odimayomi T, Ra K, et al. (2020) An investigation of spatial and temporal drinking water quality variation in green residential plumbing. J Build Environ 169: 106566. doi: 10.1016/j.buildenv.2019.106566 |
[61] | Sakson G, Brzezinska A, Zawilski M (2018) Emission of heavy metals from an urban catchment into receiving water and possibility of its limitation on the example of Lodz city. Environ Monit Assess 190: 1-15. doi: 10.1007/s10661-018-6648-9 |
[62] | Chief K, Artiola JF, Beamer P, et al. (2016) Understanding the Gold King Mine Spill. Superfund Res, The University of Arizona. |
[63] | Nemati M, Hosseini SM, Shabanian M (2017) Novel electrodialysis cation exchange membrane prepared by 2- acrylamido-2-methylpropane sulfonic acid; Heavy metal ions removal. J Hazard Mater 337: 90-104. doi: 10.1016/j.jhazmat.2017.04.074 |
[64] | Abdullah N, Yusof N, Lau WJ, et al. (2019) Recent trends of heavy metal removal from water/wastewater by membrane technologies. J Ind Eng Chem 76: 17-38. doi: 10.1016/j.jiec.2019.03.029 |
[65] | Wang N, Qiu Y, Hu K, et al. (2021) One-step synthesis of cake-like biosorbents from plant biomass for the effective removal and recovery heavy metals: Effect of plant species and roles of xanthation. Chemosphere 266: 129129. doi: 10.1016/j.chemosphere.2020.129129 |
[66] | Rahman ML, Wong ZJ, Sarjadi MS, et al. (2021) Poly(hydroxamic acid) ligand from palm-based waste materials for removal of heavy metals from electroplating wastewater. J Appl Polym Sci 138: 49671. doi: 10.1002/app.49671 |
[67] | Kurniawan TA, Chan GYS, Lo W hung, et al. (2006) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ 366: 409-426. doi: 10.1016/j.scitotenv.2005.10.001 |
[68] | Bottero JY, Rose J, Wiesner MR (2006) Nanotechnologies: Tools for sustainability in a new wave of water treatment processes. Integr Environ Assess Manag 2: 391-395. doi: 10.1002/ieam.5630020411 |
[69] | Grün AY, App CB, Breidenbach A, et al. (2018) Effects of low dose silver nanoparticle treatment on the structure and community composition of bacterial freshwater biofilms. PLoS One 13: e0199132. |
[70] | Xu J, Cao Z, Zhang Y, et al. (2018) Chemosphere A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere 195: 351-364. doi: 10.1016/j.chemosphere.2017.12.061 |
[71] | Lu C, Chiu H (2006) Adsorption of zinc (Ⅱ) from water with purified carbon nanotubes. Chemical Eng Sci 61: 1138-1145. doi: 10.1016/j.ces.2005.08.007 |
[72] | Deliyanni EA, Bakoyannakis DN, Zouboulis AI, et al. (2003) Sorption of As (V) ions by akaganeite-type nanocrystals. Chemosphere 50: 155-163. doi: 10.1016/S0045-6535(02)00351-X |
[73] | Tavker N, Yadav VK, Yadav KK, et al. (2021) Removal of cadmium and chromium by mixture of silver nanoparticles and nano-fibrillated cellulose isolated from waste peels of citrus sinensis. Polymers 13: 1-14. doi: 10.3390/polym13020234 |
[74] | Shahrashoub M, Bakhtiari S (2021) The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: Industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies. Microporous Mesoporous Mater 311: 110692. doi: 10.1016/j.micromeso.2020.110692 |
[75] | Li Z, Gong Y, Zhao D, et al. (2021) Enhanced removal of zinc and cadmium from water using carboxymethyl cellulose-bridged chlorapatite nanoparticles. Chemosphere 263: 128038. doi: 10.1016/j.chemosphere.2020.128038 |
[76] | Ademola Bode-Aluko C, Pereao O, Kyaw HH, et al. (2021) Photocatalytic and antifouling properties of electrospun TiO2 polyacrylonitrile composite nanofibers under visible light. Mater Sci Eng B Solid-State Mater Adv Technol 264: 114913. doi: 10.1016/j.mseb.2020.114913 |
[77] | Li QH, Dong M, Li R, et al. (2021) Enhancement of Cr(VI) removal efficiency via adsorption/photocatalysis synergy using electrospun chitosan/g-C3N4/TiO2 nanofibers. Carbohydr Polym 253. |
[78] | Hamad AA, Hassouna MS, Shalaby TI, et al. (2020) Electrospun cellulose acetate nanofiber incorporated with hydroxyapatite for removal of heavy metals. Int J Biol Macromol 151: 1299-1313. doi: 10.1016/j.ijbiomac.2019.10.176 |
[79] | Lu X, Wang C, Wei Y (2009) One-dimensional composite nanomaterials: Synthesis by electrospinning and their applications. Nano Micro Small 5: 2349-2370. |
[80] | Peng S, Jin G, Li L, et al. (2016) Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem Soc Rev 45: 1225-1241. doi: 10.1039/C5CS00777A |
[81] | Zhang Y, Duan X (2020) Chemical precipitation of heavy metals from wastewater by using the synthetical magnesium hydroxy carbonate. Water Sci Technol 81: 1130-1136. doi: 10.2166/wst.2020.208 |
[82] | Stec M, Jagustyn B, Słowik K, et al. (2020) Influence of high chloride concentration on pH control in hydroxide precipitation of heavy metals. J Sustain Metall 6: 239-249. doi: 10.1007/s40831-020-00270-x |
[83] | Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4: 361-377. doi: 10.1016/j.arabjc.2010.07.019 |
[84] | Xu H, Min X, Wang Y, et al. (2020) Stabilization of arsenic sulfide sludge by hydrothermal treatment. Hydrometallurgy 191: 105229. doi: 10.1016/j.hydromet.2019.105229 |
[85] | Carro L, Barriada JL, Herrero R, et al. (2015) Interaction of heavy metals with Ca-pretreated Sargassum muticum algal biomass: Characterization as a cation exchange process. Chem Eng J 264: 181-187. doi: 10.1016/j.cej.2014.11.079 |
[86] | Carolin CF, Kumar PS, Saravanan A, et al. (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Biochem Pharmacol 5: 2782-2799. |
[87] | Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: A review. J Environ Manage 92: 407-418. doi: 10.1016/j.jenvman.2010.11.011 |
[88] | Keng PS, Lee SL, Ha ST, et al. (2014) Removal of hazardous heavy metals from aqueous environment by low-cost adsorption materials. Environ Chem Lett 12: 15-25. doi: 10.1007/s10311-013-0427-1 |
[89] | Ma J, Qin G, Zhang Y, et al. (2018) Heavy metal removal from aqueous solutions by calcium silicate powder from waste coal fly-ash. J Clean Prod 182: 776-782. doi: 10.1016/j.jclepro.2018.02.115 |
[90] | Zhao M, Xu Y, Zhang C, et al. (2016) New trends in removing heavy metals from wastewater. Appl Microbiol Biotechnol 100: 6509-6518. doi: 10.1007/s00253-016-7646-x |
[91] | Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308: 438-462. doi: 10.1016/j.cej.2016.09.029 |
[92] | Hayati B, Maleki A, Najafi F, et al. (2017) Super high removal capacities of heavy metals (Pb2+ and Cu2+) using CNT dendrimer. J Hazard Mater 336: 146-157. doi: 10.1016/j.jhazmat.2017.02.059 |
[93] | Jellali S, Azzaz AA, Jeguirim M, et al. (2021) Use of lignite as a low-cost material for cadmium and copper removal from aqueous solutions: Assessment of adsorption characteristics and exploration of involved mechanisms. Water 13: 164. doi: 10.3390/w13020164 |
[94] | Wang S, Terdkiatburana T, Tadé MO (2008) Adsorption of Cu(Ⅱ), Pb(Ⅱ) and humic acid on natural zeolite tuff in single and binary systems. Sep Purif Technol 62: 64-70. doi: 10.1016/j.seppur.2008.01.004 |
[95] | Brown PA, Gill SA, Allen SJ (2000) Metal removal from wastewater using peat. Water Res 34: 3907-3916. doi: 10.1016/S0043-1354(00)00152-4 |
[96] | Sadovsky D, Brenner A, Astrachan B, et al. (2016) Biosorption potential of cerium ions using Spirulina biomass. J Rare Earths 34: 644-652. doi: 10.1016/S1002-0721(16)60074-1 |
[97] | Ho YS, McKay G (2003) Sorption of dyes and copper ions onto biosorbents. Process Biochem 38: 1047-1061. doi: 10.1016/S0032-9592(02)00239-X |
[98] | Javanbakht V, Alavi SA, Zilouei H (2014) Mechanisms of heavy metal removal using microorganisms as biosorbent. Water Sci Technol 69: 1775-1787. doi: 10.2166/wst.2013.718 |
[99] | Huang Y, Wu D, Wang X, et al. (2016) Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafiltration and flocculation. Sep Purif Technol 158: 124-136. doi: 10.1016/j.seppur.2015.12.008 |
[100] | Wang R, Guan S, Sato A, et al. (2013) Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J Memb Sci 446: 376-382. doi: 10.1016/j.memsci.2013.06.020 |
[101] | Jia TZ, Lu JP, Cheng XY, et al. (2019) Surface enriched sulfonated polyarylene ether benzonitrile (SPEB) that enhances heavy metal removal from polyacrylonitrile (PAN) thin-film composite nanofiltration membranes. J Memb Sci 580: 214-223. doi: 10.1016/j.memsci.2019.03.015 |
[102] | Bakalár T, Búgel M, Gajdošová L (2009) Heavy metal removal using reverse osmosis. Acta Montan Slovaca 14: 250-253. |
[103] | Abdullah N, Tajuddin MH, Yusof N (2019) Forward osmosis (FO) for removal of heavy metals. Nanotechnol. Water Wastewater Treat 2019: 177-204. |
[104] | Abdullah N, Yusof N, Lau WJ, et al. (2019) Recent trends of heavy metal removal from water/wastewater by membrane technologies. J Ind Eng Chem 76: 13-38. doi: 10.1016/j.jiec.2019.03.029 |
[105] | Huang J, Yuan F, Zeng G, et al. (2017) Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere 173: 199-206. doi: 10.1016/j.chemosphere.2016.12.137 |
[106] | Fang X, Li J, Li X, et al. (2017) Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal. Chem Eng J 314: 38-49. doi: 10.1016/j.cej.2016.12.125 |
[107] | Landaburu-aguirre J, Pongr E, Keiski RL (2009) The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: statistical design of experiments. Desalination 240: 262-269. doi: 10.1016/j.desal.2007.11.077 |
[108] | Reza M, Emami S, Amiri MK, et al. (2021) Removal efficiency optimization of Pb2+ in a nanofiltration process by MLP-ANN and RSM. Korean J Chem Eng 38: 316-325. doi: 10.1007/s11814-020-0698-8 |
[109] | Azimi A, Azari A, Rezakazemi M, et al. (2017) Removal of heavy metals from industrial wastewaters: a review. Chem Bio Eng Rev 4: 37-59. |
[110] | Abdullah N, Tajuddin MH, Yusof N (2019) Forward osmosis (FO) for removal of heavy metals. Nanotechnol Water Wastewater Treat 2019: 177-204. doi: 10.1016/B978-0-12-813902-8.00010-1 |
[111] | Chung T, Li X, Ong RC, et al. (2012) Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications. Curr Opin Chem Eng 1: 246-257. doi: 10.1016/j.coche.2012.07.004 |
[112] | Behdarvand F, Valamohammadi E, Tofighy MA, et al. (2021) Polyvinyl alcohol/polyethersulfone thin-film nanocomposite membranes with carbon nanomaterials incorporated in substrate for water treatment. J Environ Chem Eng 9: 104650. doi: 10.1016/j.jece.2020.104650 |
[113] | Leaper S, Abdel-Karim A, Gorgojo P (2021) The use of carbon nanomaterials in membrane distillation membranes: a review. Front Chem Sci Eng 1-20. |
[114] | Liu X, Hu Q, Fang Z, et al. (2009) Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25: 3-8. doi: 10.1021/la802754t |
[115] | Türkmen D, Erkut Y, Öztürk N, et al. (2009) Poly (hydroxyethyl methacrylate) nanobeads containing imidazole groups for removal of Cu (Ⅱ) ions. Mater Sci Eng 29: 2072-2078. doi: 10.1016/j.msec.2009.04.005 |
[116] | Saeed K, Haider S, Oh T, et al. (2008) Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J Memb Sci 322: 400-405. doi: 10.1016/j.memsci.2008.05.062 |
[117] | Huang S, Chen D (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J Hazard Mater 163: 174-179. doi: 10.1016/j.jhazmat.2008.06.075 |
[118] | Madadrang CJ, Kim HY, Gao G, et al. (2012) Adsorption Behavior of EDTA-Graphene Oxide for Pb (Ⅱ) Removal. ACS Appl Mater Interfaces 4: 1186-1193. doi: 10.1021/am201645g |
[119] | Perez-aguilar NV, Diaz-flores PE, Rangel-mendez JR (2011) The adsorption kinetics of cadmium by three different types of carbon nanotubes. J Colloid Interface Sci 364: 279-287. doi: 10.1016/j.jcis.2011.08.024 |
[120] | Alsaadi MA, Mamun AA, Alam Z (2016) Removal of cadmium from water by CNT-PAC composite: effect of functionalization. Nano 11: 1650011. doi: 10.1142/S1793292016500119 |
[121] | Leudjo A, Pillay K, Yangkou X (2017) Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from wastewater: A review. Carbohydr Polym 159: 94-107. doi: 10.1016/j.carbpol.2016.12.027 |
[122] | Dichiara AB, Webber MR, Gorman WR, et al. (2015) Removal of copper ions from aqueous solutions via adsorption on carbon nanocomposites. ACS Appl Mater Interfaces 7: 15674-15680. doi: 10.1021/acsami.5b04974 |
[123] | Ahmad SZN, Wan Salleh WN, Ismail AF, et al. (2020) Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere 248: 126008. doi: 10.1016/j.chemosphere.2020.126008 |
[124] | Baby R, Saifullah B, Hussein MZ (2019) Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Res Lett 14: 1-17. doi: 10.1186/s11671-019-3167-8 |
[125] | Ali S, Aziz S, Rehman U, et al. (2019) Efficient removal of zinc from water and wastewater effluents by hydroxylated and carboxylated carbon nanotube membranes: Behaviors and mechanisms of dynamic filtration. J Hazard Mater 365: 64-73. doi: 10.1016/j.jhazmat.2018.10.089 |
[126] | Bankole MT, Abdulkareem AS, Mohammed IA, et al. (2019) Selected heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents. Sci Rep 9: 1-19. doi: 10.1038/s41598-018-37899-4 |
[127] | Qu Y, Deng J, Shen W, et al. (2015) Responses of microbial communities to single-walled carbon nanotubes in phenol wastewater treatment systems. Environ Sci Technol 49: 4627-4635. doi: 10.1021/es5053045 |
[128] | Li Y, Liu F, Xia B, et al. (2010) Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. J Hazard Mater 177: 876-880. doi: 10.1016/j.jhazmat.2009.12.114 |
[129] | Park S, Kim Y (2010) Adsorption behaviors of heavy metal ions onto electrochemically oxidized activated carbon fibers. Mater Sci Eng A 391: 121-123. doi: 10.1016/j.msea.2004.08.074 |
[130] | Yang J, Hou B, Wang J, et al. (2019) Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 9: 424. doi: 10.3390/nano9030424 |
[131] | Sitko R, Turek E, Zawisza B, et al. (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalt Trans 42: 5682-5689. doi: 10.1039/c3dt33097d |
[132] | Xu T, Qu R, Zhang Y, et al. (2021) Preparation of bifunctional polysilsesquioxane/carbon nanotube magnetic composites and their adsorption properties for Au (Ⅲ). Chem Eng J 410: 128225. doi: 10.1016/j.cej.2020.128225 |
[133] | Li S, Wang W, Liang F, et al. (2017) Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. J Hazard Mater 322: 163-171. doi: 10.1016/j.jhazmat.2016.01.032 |
[134] | Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J Hazard Mater 267: 194-205. doi: 10.1016/j.jhazmat.2013.12.062 |
[135] | Karabelli D, Ünal S, Shahwan T, et al. (2011) Preparation and characterization of alumina-supported iron nanoparticles and its application for the removal of aqueous Cu2+ ions. Chem Eng J 168: 979-984. doi: 10.1016/j.cej.2011.01.015 |
[136] | Huang P, Ye Z, Xie W, et al. (2013) Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles. Water Res 47: 4050-4058. doi: 10.1016/j.watres.2013.01.054 |
[137] | Shaba EY, Jacob JO, Tijani JO, et al. (2021) A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Appl Water Sci 11: 1-41. doi: 10.1007/s13201-021-01370-z |
[138] | Wu Q, Zhao J, Qin G, et al. (2013) Photocatalytic reduction of Cr (VI) with TiO2 film under visible light. Appl Catal B Environ 142-143: 142-148. doi: 10.1016/j.apcatb.2013.04.056 |
[139] | Sun Q, Li H, Niu B, et al. (2015) Nano-TiO2 immobilized on diatomite: characterization and photocatalytic reactivity for Cu2+ removal from aqueous solution. Procedia Eng 102: 1935-1943. doi: 10.1016/j.proeng.2015.01.334 |
[140] | Sheela T, Nayaka YA, Viswanatha R, et al. (2012) Kinetics and thermodynamics studies on the adsorption of Zn(Ⅱ), Cd(Ⅱ) and Hg(Ⅱ) from aqueous solution using zinc oxide nanoparticles. Powder Technol 217: 163-170. doi: 10.1016/j.powtec.2011.10.023 |
[141] | Mahdavi S, Jalali M, Afkhami A (2013) Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles. Chem Eng Commun 200: 448-470. doi: 10.1080/00986445.2012.686939 |
[142] | Lai CH, Chen CY (2001) Removal of metal ions and humic acid from water by iron-coated filter media. Chemosphere 44: 1177-1184. doi: 10.1016/S0045-6535(00)00307-6 |
[143] | Oliveira LCA, Petkowicz DI, Smaniotto A, et al. (2004) Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Res 38: 3699-3704. doi: 10.1016/j.watres.2004.06.008 |
[144] | Yavuz CT, Mayo JT, Yu WW, et al. (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314: 964-967. doi: 10.1126/science.1131475 |
[145] | Chang Y, Chen D (2005) Preparation and adsorption properties of monodisperse chitosanbound Fe3O4 magnetic nanoparticles for removal of Cu(Ⅱ) ions. J Colloid Interface Sci 283: 446-451. doi: 10.1016/j.jcis.2004.09.010 |
[146] | Liu J, Zhao Z, Jiang G (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42: 6949-6954. doi: 10.1021/es800924c |
[147] | Bian Y, Bian Z, Zhang J, et al. (2015) Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal. Appl Surf Sci 329: 269-275. doi: 10.1016/j.apsusc.2014.12.090 |
[148] | Yoon Y, Park WK, Hwang T, et al. (2016) Comparative evaluation of magnetite-graphene oxide and magnetite-reduced graphene oxide composite for As(Ⅲ) and As(V) removal. J Hazard Mater 304: 196-204. doi: 10.1016/j.jhazmat.2015.10.053 |
[149] | Mokhtari F, Salehi M, Zamani F, et al. (2016) Advances in electrospinning: The production and application of nanofibres and nanofibrous structures. Text Prog 48: 119-219. doi: 10.1080/00405167.2016.1201934 |
[150] | Yang Z, Peng H, Wang W, et al. (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116: 2658-2667. |
[151] | Esfandarani MS, Johari MS (2010) Producing porous nanofibers. Nanocon 2010. Olomouc, Czech Republic, Oct 12th-14th. |
[152] | Guseva I, Bateson TF, Bouvard V, et al. (2016) Human exposure to carbon-based fibrous nanomaterials: A review. Int J Hyg Environ Health 219: 166-175. doi: 10.1016/j.ijheh.2015.12.005 |
[153] | Ming Z, Feng S, Yilihamu A, et al. (2018) Toxicity of carbon nanotubes to white rot fungus Phanerochaete chrysosporium. Ecotoxicol Environ Saf 162: 225-234. doi: 10.1016/j.ecoenv.2018.07.011 |
[154] | Zang L, Lin R, Dou T, et al. (2019) Electrospun superhydrophilic membranes for effective removal of Pb(ii) from water. Nanoscale Adv 1: 389-394. doi: 10.1039/C8NA00044A |
[155] | Liu L, Luo X, Ding L, et al. (2019) Application of nanotechnology in the removal of heavy metal from water. In: Luo X, Deng F, Nanomaterials for the Removal of Pollutants and Resources Reutilization, Elsevier Inc., 83-147. |
[156] | Chitpong N, Husson SM (2017) Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters. J Memb Sci 523: 418-429. doi: 10.1016/j.memsci.2016.10.020 |
[157] | Feng Q, Wu D, Zhao Y, et al. (2018) Electrospun AOPAN/RC blend nanofiber membrane for efficient removal of heavy metal ions from water. J Hazard Mater 344: 819-828. doi: 10.1016/j.jhazmat.2017.11.035 |
[158] | Karthik R, Meenakshi S (2015) Removal of Cr(VI) ions by adsorption onto sodium alginate-polyaniline nanofibers. Int J Biol Macromol 72: 711-717. doi: 10.1016/j.ijbiomac.2014.09.023 |
[159] | Chitpong N, Husson SM (2017) High-capacity, nanofiber-based ion-exchange membranes for the selective recovery of heavy metals from impaired waters. Sep Purif Technol 179: 94-103. doi: 10.1016/j.seppur.2017.02.009 |
[160] | Avila M, Burks T, Akhtar F, et al. (2014) Surface functionalized nanofibers for the removal of chromium (VI) from aqueous solutions. Chem Eng J 245: 201-209. doi: 10.1016/j.cej.2014.02.034 |
[161] | Esfandarani MS, Johari MS, Amrollahi R, et al. (2011) Laser induced surface modification of clay-PAN composite nanofibers. Fibers Polym 12: 715-720. doi: 10.1007/s12221-011-0715-y |
[162] | Saleem H, Trabzon L, Kilic A, et al. (2020) Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination. Desalination 478: 114178. doi: 10.1016/j.desal.2019.114178 |
[163] | Huang L, Manickam SS, McCutcheon JR (2013) Increasing strength of electrospun nanofiber membranes for water filtration using solvent vapor. J Memb Sci 436: 213-220. doi: 10.1016/j.memsci.2012.12.037 |
[164] | Zhuang S, Zhu K, Wang J (2021) Fibrous chitosan/cellulose composite as an efficient adsorbent for Co(Ⅱ) removal. J Clean Prod 285: 124911. doi: 10.1016/j.jclepro.2020.124911 |
[165] | Kakoria A, Sinha-Ray S, Sinha-Ray S (2021) Industrially scalable Chitosan/Nylon-6 (CS/N) nanofiber-based reusable adsorbent for efficient removal of heavy metal from water. Polymer 213: 123333. doi: 10.1016/j.polymer.2020.123333 |
[166] | ZabihiSahebi A, Koushkbaghi S, Pishnamazi M, et al. (2019) Synthesis of cellulose acetate/chitosan/SWCNT/Fe3O4/TiO2 composite nanofibers for the removal of Cr(VI), As(V), Methylene blue and Congo red from aqueous solutions. Int J Biol Macromol 140: 1296-1304. doi: 10.1016/j.ijbiomac.2019.08.214 |
[167] | Surgutskaia NS, Martino AD, Zednik J, et al. (2020) Efficient Cu2+, Pb2+ and Ni2+ ion removal from wastewater using electrospun DTPA-modified chitosan/polyethylene oxide nanofibers. Sep Purif Technol 247: 116914. doi: 10.1016/j.seppur.2020.116914 |
[168] | Li Y, Li M, Zhang J, et al. (2019) Adsorption properties of the double-imprinted electrospun crosslinked chitosan nanofibers. Chinese Chem Lett 30: 762-766. doi: 10.1016/j.cclet.2018.11.005 |
[169] | Yang D, Li L, Chen B, et al. (2019) Functionalized chitosan electrospun nano fiber membranes for heavy-metal removal. Polymer 163: 74-85. doi: 10.1016/j.polymer.2018.12.046 |
[170] | Rezaul M, Omer M, Alharth NH, et al. (2019) Composite nanofibers membranes of poly (vinyl alcohol)/ chitosan for selective lead (Ⅱ) and cadmium (Ⅱ) ions removal from wastewater. Ecotoxicol Environ Saf 169: 479-486. doi: 10.1016/j.ecoenv.2018.11.049 |
[171] | Brandes R, Brouillette F, Chabot B (2021) Phosphorylated cellulose/electrospun chitosan nanofibers media for removal of heavy metals from aqueous solutions. J Appl Polym Sci 138: 50021. doi: 10.1002/app.50021 |
[172] | Begum S, Yuhana NY, Saleh NM, et al. (2021) Review of chitosan composite as a heavy metal adsorbent: Material preparation and properties. Carbohydr Polym 259: 117613. doi: 10.1016/j.carbpol.2021.117613 |
[173] | Ki CS, Gang EH, Um IC, et al. (2007) Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. J Memb Sci 302: 20-26. doi: 10.1016/j.memsci.2007.06.003 |
[174] | O'Connell DW, Birkinshaw C, O'Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: A review. Bioresour Technol 99: 6709-6724. doi: 10.1016/j.biortech.2008.01.036 |
[175] | Habiba U, Afifi AM, Salleh A, et al. (2017) Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J Hazard Mater 322: 182-194. doi: 10.1016/j.jhazmat.2016.06.028 |
[176] | Phan DN, Lee H, Huang B, et al. (2019) Fabrication of electrospun chitosan/cellulose nanofibers having adsorption property with enhanced mechanical property. Cellulose 26: 1781-1793. doi: 10.1007/s10570-018-2169-5 |
[177] | Homayoni H, Ravandi SAH, Valizadeh M (2009) Electrospinning of chitosan nanofibers: Processing optimization. Carbohydr Polym 77: 656-661. doi: 10.1016/j.carbpol.2009.02.008 |
[178] | Li L, Li Y, Cao L, et al. (2015) Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning. Carbohydr Polym 125: 206-213. doi: 10.1016/j.carbpol.2015.02.037 |
[179] | Managheb M, Zarghami S, Mohammadi T, et al. (2021) Enhanced dynamic Cu(Ⅱ) ion removal using hot-pressed chitosan/poly (vinyl alcohol) electrospun nanofibrous affinity membrane (ENAM). Process Saf Environ Prot 146: 329-337. doi: 10.1016/j.psep.2020.09.013 |
[180] | Pereao O, Uche C, Bublikov PS, et al. (2021) Chitosan/PEO nanofibers electrospun on metallized track-etched membranes: fabrication and characterization. Mater Today Chem 20: 100416. doi: 10.1016/j.mtchem.2020.100416 |
[181] | Razzaz A, Ghorban S, Hosayni L, et al. (2016) Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J Taiwan Inst Chem Eng 58: 333-343. doi: 10.1016/j.jtice.2015.06.003 |
[182] | Yang D, Li L, Chen B, et al. (2019) Functionalized chitosan electrospun nanofiber membranes for heavy-metal removal. Polymer 163: 74-85. doi: 10.1016/j.polymer.2018.12.046 |
[183] | Li Y, Qiu T, Xu X (2013) Preparation of lead-ion imprinted crosslinked electro-spun chitosan nanofiber mats and application in lead ions removal from aqueous solutions. Eur Polym J 49: 1487-1494. doi: 10.1016/j.eurpolymj.2013.04.002 |
[184] | Chitpong N, Husson SM (2017) Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters. J Memb Sci 523: 418-429. doi: 10.1016/j.memsci.2016.10.020 |
[185] | Huang M, Tu H, Chen J, et al. (2018) Chitosan-rectorite nanospheres embedded aminated polyacrylonitrile nanofibers via shoulder-to-shoulder electrospinning and electrospraying for enhanced heavy metal removal. Appl Surf Sci 437: 294-303. doi: 10.1016/j.apsusc.2017.12.150 |
[186] | Li L, Li Y, Cao L, et al. (2015) Enhanced chromium(VI) adsorption using nanosized chitosan fibers tailored by electrospinning. Carbohydr Polym 125: 206-213. doi: 10.1016/j.carbpol.2015.02.037 |
[187] | Li Y, Zhang J, Xu C, et al. (2016) Crosslinked chitosan nanofiber mats fabricated by one-step electrospinning and ion-imprinting methods for metal ions adsorption. Sci China Chem 59: 95-105. doi: 10.1007/s11426-015-5526-3 |
[188] | Li Y, Xu C, Qiu T, et al. (2014) Crosslinked electro-spun chitosan nanofiber mats with Cd(Ⅱ) as template ions for adsorption applications. J Nanosci Nanotechnol 15: 4245-4254. doi: 10.1166/jnn.2015.10197 |
[189] | Haider S, Park SY (2009) Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) ions from an aqueous solution. J Memb Sci 328: 90-96. doi: 10.1016/j.memsci.2008.11.046 |
[190] | Yang D, Li L, Chen B, et al. (2019) Functionalized chitosan electrospun nano fiber membranes for heavy-metal removal. Polymer 163: 74-85. doi: 10.1016/j.polymer.2018.12.046 |
[191] | Stephen M, Catherine N, Brenda M, et al. (2011) Oxolane-2, 5-dione modified electrospun cellulose nanofibers for heavy metals adsorption. J Hazard Mater 192: 922-927. doi: 10.1016/j.jhazmat.2011.06.001 |
[192] | Thamer BM, Aldalbahi A, Moydeen AM, et al. (2019) Fabrication of functionalized electrospun carbon nanofibers for enhancing lead-ion adsorption from aqueous solutions. Sci Rep 9: 1-15. doi: 10.1038/s41598-019-55679-6 |
[193] | Pereao OK, Bode-Aluko C, Ndayambaje G, et al. (2017) Electrospinning: polymer nanofibre adsorbent applications for metal ion removal. J Polym Environ 25: 1175-1189. doi: 10.1007/s10924-016-0896-y |
[194] | Kampalanonwat P, Supaphol P (2010) Preparation and adsorption behavior of aminated electrospun polyacrylonitrile nanofiber mats for heavy metal ion removal. ACS Appl Mater Interfaces 2: 3619-3627. doi: 10.1021/am1008024 |
[195] | Chen C, Li F, Guo Z, et al. (2019) Preparation and performance of aminated polyacrylonitrile nanofibers for highly efficient copper ion removal. Colloids Surf A 568: 334-344. doi: 10.1016/j.colsurfa.2019.02.020 |
[196] | Martín DM, Faccini M, García MA, et al. (2018) Highly efficient removal of heavy metal ions from polluted water using ion- selective polyacrylonitrile nano fibers. J Environ Chem Eng 6: 236-245. doi: 10.1016/j.jece.2017.11.073 |
[197] | Zhao R, Li X, Sun B, et al. (2015) Preparation of phosphorylated polyacrylonitrile-based nanofiber mat and its application for heavy metal ion removal. Chem Eng J 268: 290-299. doi: 10.1016/j.cej.2015.01.061 |
[198] | Saeed K, Park SY, Oh TJ (2011) Preparation of hydrazine-modified polyacrylonitrile nanofibers for the extraction of metal ions from aqueous media. J Appl Polym Sci 121: 869-873. doi: 10.1002/app.33614 |
[199] | Hu Y, Wu XY, He X, et al. (2019) Phosphorylated polyacrylonitrile-based electrospun nanofibers for removal of heavy metal ions from aqueous solution. Polym Adv Technol 30: 545-551. doi: 10.1002/pat.4490 |
[200] | Zheng P, Shen S, Pu Z, et al. (2015) Electrospun fluorescent polyarylene ether nitrile nanofibrous mats and application as an adsorbent for Cu2+ removal. Fibers Polym 16: 2215-2222. doi: 10.1007/s12221-015-5425-4 |
[201] | Wang X, Min M, Liu Z, et al. (2011) Poly(ethyleneimine) nanofibrous affinity membrane fabricated via one step wet-electrospinning from poly(vinyl alcohol)-doped poly(ethyleneimine) solution system and its application. J Memb Sci 379: 191-199. doi: 10.1016/j.memsci.2011.05.065 |
[202] | Sang Y, Li F, Gu Q, et al. (2008) Heavy metal-contaminated groundwater treatment by a novel nanofiber membrane. Desalination 223: 349-360. doi: 10.1016/j.desal.2007.01.208 |
[203] | Martín DM, Ahmed MM, Rodríguez M, et al. (2017) Aminated Polyethylene Terephthalate (PET) nanofibers for the selective removal of Pb(Ⅱ) from polluted water. Materials 10: 1352. doi: 10.3390/ma10121352 |
[204] | Ma Z, Ji H, Teng Y, et al. (2011) Engineering and optimization of nano- and mesoporous silica fibers using sol-gel and electrospinning techniques for sorption of heavy metal ions. J Colloid Interface Sci 358: 547-553. doi: 10.1016/j.jcis.2011.02.066 |
[205] | Saxena N, Prabhavathy C, De S, et al. (2009) Flux enhancement by argon-oxygen plasma treatment of polyethersulfone membranes. Sep Purif Technol 70: 160-165. doi: 10.1016/j.seppur.2009.09.011 |
[206] | Bahramzadeh A, Zahedi P, Abdouss M (2016) Acrylamide-plasma treated electrospun polystyrene nanofibrous adsorbents for cadmium and nickel ions removal from aqueous solutions. J Appl Polym Sci 133: 42944. doi: 10.1002/app.42944 |
[207] | Yarandpour MR, Rashidi A, Eslahi N, et al. (2018) Mesoporous PAA/dextran-polyaniline core-shell nanofibers: Optimization of producing conditions, characterization and heavy metal adsorptions. J Taiwan Inst Chem Eng 93: 566-581. doi: 10.1016/j.jtice.2018.09.002 |
[208] | Wang J, Pan K, He Q, et al. (2013) Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution. J Hazard Mater 244: 121-129. doi: 10.1016/j.jhazmat.2012.11.020 |
[209] | Zhang S, Shi Q, Christodoulatos C, et al. (2019) Adsorptive filtration of lead by electrospun PVA / PAA nanofiber membranes in a fixed-bed column. Chem Eng J 370: 1262-1273. doi: 10.1016/j.cej.2019.03.294 |
[210] | Gore P, Khraisheh M, Kandasubramanian B (2018) Nanofibers of resorcinol-formaldehyde for effective adsorption of As (Ⅲ) ions from mimicked effluents. Environ Sci Pollut Res 25: 11729-11745. doi: 10.1007/s11356-018-1304-z |
[211] | Allafchian AR, Shiasi A, Amiri R (2017) Preparing of poly (acrylonitrile co maleic acid) nanofiber mats for removal of Ni (Ⅱ) and Cr (VI) ions from water. J Taiwan Inst Chem Eng 80: 563-569. doi: 10.1016/j.jtice.2017.08.029 |
[212] | Aliabadi M, Irani M, Ismaeili J, et al. (2014) Design and evaluation of chitosan/ hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution. J Taiwan Inst Chem Eng 45: 518-526. doi: 10.1016/j.jtice.2013.04.016 |
[213] | Jiang M, Han T, Wang J, et al. (2018) Removal of heavy metal chromium using cross-linked chitosan composite nano fiber mats. Int J Biol Macromol 120: 213-221. doi: 10.1016/j.ijbiomac.2018.08.071 |
[214] | Feng Q, Wu D, Zhao Y, et al. (2018) Electrospun AOPAN/RC blend nanofiber membrane for efficient removal of heavy metal ions from water. J Hazard Mater 344: 819-828. doi: 10.1016/j.jhazmat.2017.11.035 |
[215] | Lin Y, Cai W, Tian X, et al. (2011) Polyacrylonitrile/ferrous chloride composite porous nanofibers and their strong Cr-removal performance. J Mater Chem 21: 991-997. doi: 10.1039/C0JM02334E |
[216] | Huang M, Tu H, Chen J, et al. (2018) Chitosan-rectorite nanospheres embedded aminated polyacrylonitrile nanofibers via shoulder-to-shoulder electrospinning and electrospraying for enhanced heavy metal removal. Appl Surf Sci 437: 294-303. doi: 10.1016/j.apsusc.2017.12.150 |
[217] | Irani M, Reza A, Ali M (2012) Removal of cadmium from aqueous solution using mesoporous PVA/TEOS/APTES composite nanofiber prepared by sol-gel/electrospinning. Chem Eng J 200-202: 192-201. doi: 10.1016/j.cej.2012.06.054 |
[218] | Li L, Wang F, Lv Y, et al. (2018) Halloysite nanotubes and Fe3O4 nanoparticles enhanced adsorption removal of heavy metal using electrospun membranes. Appl Clay Sci 161: 225-234. doi: 10.1016/j.clay.2018.04.002 |
[219] | Min L, Yang L, Wu R, et al. (2019) Enhanced adsorption of arsenite from aqueous solution by an iron-doped electrospun chitosan nanofiber mat: Preparation, characterization and performance. J Colloid Interface Sci 535: 255-264. doi: 10.1016/j.jcis.2018.09.073 |
[220] | Xiao S, Ma H, Shen M, et al. (2011) Excellent copper (Ⅱ) removal using zero-valent iron nanoparticle-immobilized hybrid electrospun polymer nanofibrous mats. Colloids Surfaces A Physicochem Eng Asp 381: 48-54. doi: 10.1016/j.colsurfa.2011.03.005 |
[221] | Wu S, Li F, Wang H, et al. (2010) Effects of poly (vinyl alcohol) (PVA) content on preparation of novel thiol-functionalized mesoporous PVA/SiO2 composite nano fiber membranes and their application for adsorption of heavy metal ions from aqueous solution. Polymer 51: 6203-6211. doi: 10.1016/j.polymer.2010.10.015 |
[222] | Aliahmadipoor P, Ghazanfari D, Gohari RJ, et al. (2020) Preparation of PVDF/FMBO composite electrospun nanofiber for effective arsenate removal from water. RSC Adv 10: 24653-24662. doi: 10.1039/D0RA02723E |
[223] | Haddad MY, Alharbi HF (2019) Enhancement of heavy metal ion adsorption using electrospun polyacrylonitrile nanofibers loaded with ZnO nanoparticles. J Appl Polym Sci 136: 47209. doi: 10.1002/app.47209 |
[224] | Sahoo SK, Panigrahi GK, Sahoo JK, et al. (2021) Electrospun magnetic polyacrylonitrile-GO hybrid nanofibers for removing Cr(VI) from water. J Mol Liq 326: 115364. doi: 10.1016/j.molliq.2021.115364 |
[225] | Liu F, Wang X, Chen B, et al. (2017) Removal of Cr (VI) using polyacrylonitrile/ferrous chloride composite nanofibers. J Taiwan Inst Chem Eng 70: 401-410. doi: 10.1016/j.jtice.2016.10.043 |
[226] | Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34: 451-465. doi: 10.1016/S0032-9592(98)00112-5 |
[227] | Toor M, Jin B (2012) Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye. Chem Eng J 187: 79-88. doi: 10.1016/j.cej.2012.01.089 |
[228] | Neghlani PK, Rafizadeh M, Taromi FA (2011) Preparation of aminated-polyacrylonitrile nanofiber membranes for the adsorption of metal ions: Comparison with microfibers. J Hazard Mater 186: 182-189. doi: 10.1016/j.jhazmat.2010.10.121 |
[229] | Zhang J, Xue CH, Ma HR, et al. (2020) Fabrication of PAN electrospun nanofibers modified by tannin for effective removal of trace Cr(Ⅲ) in organic complex from wastewater. Polymers 12: 1-17. |
[230] | Morillo Martín D, Faccini M, García MA, et al. (2018) Highly efficient removal of heavy metal ions from polluted water using ion-selective polyacrylonitrile nanofibers. J Environ Chem Eng 6: 236-245. doi: 10.1016/j.jece.2017.11.073 |
[231] | Zhang S, Shi Q, Korfiatis G, et al. (2020) Chromate removal by electrospun PVA/PEI nanofibers: Adsorption, reduction, and effects of co-existing ions. Chem Eng J 387: 124179. doi: 10.1016/j.cej.2020.124179 |
[232] | Yarandpour MR, Rashidi A, Eslahi N, et al. (2018) Mesoporous PAA/dextran-polyaniline core-shell nanofibers: Optimization of producing conditions, characterization and heavy metal adsorptions. J Taiwan Inst Chem Eng 93: 566-581. doi: 10.1016/j.jtice.2018.09.002 |
[233] | Zhu F, Zheng YM, Zhang BG, et al. (2021) A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. J Hazard Mater 401: 123608. doi: 10.1016/j.jhazmat.2020.123608 |
[234] | Xu Y, Li X, Xiang HF, et al. (2020) Large-Scale Preparation of polymer nanofibers for air filtration by a new multineedle electrospinning device. J Nanomater 2020: 1-7. |
[235] | Wang X, Lin T, Wang X (2014) Scaling up the production rate of nanofibers by needleless electrospinning from multiple ring. Fibers Polym 15: 961-965. doi: 10.1007/s12221-014-0961-x |
[236] | Kenry, Lim CT (2017) Nanofiber technology: current status and emerging developments. Prog Polym Sci 70: 1-17. doi: 10.1016/j.progpolymsci.2017.03.002 |
[237] | Tlili I, Alkanhal TA (2019) Nanotechnology for water purification: Electrospun nanofibrous membrane in water and wastewater treatment. J Water Reuse Desalin 9: 232-247. doi: 10.2166/wrd.2019.057 |