Research article

Boundary Riesz potential estimates for parabolic equations with measurable nonlinearities

  • Received: 25 April 2024 Revised: 25 October 2024 Accepted: 25 October 2024 Published: 21 January 2025
  • Primary: 35B65; Secondary: 35K55, 46E30, 35R05

  • We obtain a boundary pointwise gradient estimate on a parabolic half cube $ Q_{2R} \cap \{ (x^{1}, x', t) \in \mathbb{R}^{n+1} : x^{1} > 0 \} $ for nonlinear parabolic equations with measurable nonlinearities, which are only assumed to be measurable in $ x^{1} $-variable. The estimates are obtained in terms of Riesz potential of the right-hand side measure and the oscillation of the boundary data, where the boundary data is given on $ Q_{2R} \cap \{ (x^{1}, x', t) \in \mathbb{R}^{n+1} : x^{1} = 0 \} $.

    Citation: Ho-Sik Lee, Youchan Kim. Boundary Riesz potential estimates for parabolic equations with measurable nonlinearities[J]. Communications in Analysis and Mechanics, 2025, 17(1): 61-99. doi: 10.3934/cam.2025004

    Related Papers:

  • We obtain a boundary pointwise gradient estimate on a parabolic half cube $ Q_{2R} \cap \{ (x^{1}, x', t) \in \mathbb{R}^{n+1} : x^{1} > 0 \} $ for nonlinear parabolic equations with measurable nonlinearities, which are only assumed to be measurable in $ x^{1} $-variable. The estimates are obtained in terms of Riesz potential of the right-hand side measure and the oscillation of the boundary data, where the boundary data is given on $ Q_{2R} \cap \{ (x^{1}, x', t) \in \mathbb{R}^{n+1} : x^{1} = 0 \} $.



    加载中


    [1] F. Duzaar, G. Mingione, Gradient estimates via non-linear potentials, Amer. J. Math., 133 (2011), 1093–1149. https://doi.org/10.1353/ajm.2011.0023 doi: 10.1353/ajm.2011.0023
    [2] T. Kuusi, G. Mingione, Potential estimates and gradient boundedness for nonlinear parabolic systems, Rev. Mat. Iberoam., 28 (2012), 535–576. https://doi.org/10.4171/RMI/684 doi: 10.4171/RMI/684
    [3] T. Kuusi, G. Mingione, The Wolff gradient bound for degenerate parabolic equations, J. Eur. Math. Soc., 16 (2014), 835–892. https://doi.org/10.4171/JEMS/449 doi: 10.4171/JEMS/449
    [4] T. Kuusi, G. Mingione, Riesz potentials and nonlinear parabolic equations, Arch. Ration. Mech. Anal., 212 (2014), 727–780. https://doi.org/10.1007/s00205-013-0695-8 doi: 10.1007/s00205-013-0695-8
    [5] Y. Kim, Y. Youn, Boundary Riesz potential estimates for elliptic equations with measurable nonlinearities, Nonlinear Anal., 194 (2020), 111445. https://doi.org/10.1016/j.na.2019.02.001 doi: 10.1016/j.na.2019.02.001
    [6] Y. Kim, Riesz potential type estimates for nonlinear elliptic equations, J. Differential Equations, 263 (2017), 6844–6884. https://doi.org/10.1016/j.jde.2017.07.031 doi: 10.1016/j.jde.2017.07.031
    [7] S. S. Byun, L. G. Softova, Parabolic obstacle problem with measurable data in generalized Morrey spaces, Z. Anal. Anwend., 35 (2016), 153–171. https://doi.org/10.4171/zaa/1559 doi: 10.4171/zaa/1559
    [8] S. S. Byun, D. Palagachev, L. G. Softova, Global gradient estimates in weighted Lebesgue spaces for parabolic operators, Ann. Acad. Sci. Fenn. Math., 41 (2016), 67–83. https://doi.org/10.5186/aasfm.2016.4102 doi: 10.5186/aasfm.2016.4102
    [9] H. Xu, Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials, Commun. Anal. Mech., 15 (2023), 132–161. https://doi.org/10.3934/cam.2023008 doi: 10.3934/cam.2023008
    [10] G. M. Lieberman, Second order parabolic differential equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. https://doi.org/10.1142/3302
    [11] Q. Han, F. Lin, Elliptic partial differential equations, Second edition, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2011.
    [12] S. S. Byun, Y. Kim, Elliptic equations with measurable nonlinearities in nonsmooth domains, Adv. Math., 288 (2016), 152–200. https://doi.org/10.1016/j.aim.2015.10.015 doi: 10.1016/j.aim.2015.10.015
    [13] S. S. Byun, Y. Kim, Riesz potential estimates for parabolic equations with measurable nonlinearities, Int. Math. Res. Not., 2018 (2018), 6737–6779. https://doi.org/10.1093/imrn/rnx080 doi: 10.1093/imrn/rnx080
    [14] E. DiBenedetto, Degenerate parabolic equations, Universitext, Springer-Verlag, New York, 1993. https://doi.org/10.1007/978-1-4612-0895-2
    [15] E. Giusti, Direct methods in the calculus of variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003. https://doi.org/10.1142/9789812795557
    [16] G. Mingione, The Calderón-Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci., 6 (2007), 195–261. https://doi.org/10.2422/2036-2145.2007.2.01 doi: 10.2422/2036-2145.2007.2.01
    [17] T. Kuusi, G. Mingione, New perturbation methods for nonlinear parabolic problems, J. Math. Pures Appl., 98 (2012), 390–427. https://doi.org/10.1016/j.matpur.2012.02.004 doi: 10.1016/j.matpur.2012.02.004
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(692) PDF downloads(39) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog