In this article, we consider a nonlinear viscoelastic hyperbolic problem with variable exponents. By using the Faedo$ - $Galerkin method and the contraction mapping principle, we obtain the existence of weak solutions under suitable assumptions on the variable exponents $ m(x) $ and $ p(x) $. Then we prove that a solution blows up in finite time with positive initial energy as well as nonpositive initial energy.
Citation: Ying Chu, Bo Wen, Libo Cheng. Existence and blow up for viscoelastic hyperbolic equations with variable exponents[J]. Communications in Analysis and Mechanics, 2024, 16(4): 717-737. doi: 10.3934/cam.2024032
In this article, we consider a nonlinear viscoelastic hyperbolic problem with variable exponents. By using the Faedo$ - $Galerkin method and the contraction mapping principle, we obtain the existence of weak solutions under suitable assumptions on the variable exponents $ m(x) $ and $ p(x) $. Then we prove that a solution blows up in finite time with positive initial energy as well as nonpositive initial energy.
[1] | Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, Siam. J. Appl. Math., 4 (2006), 1383–1406. https://doi.org/10.1137/050624522 doi: 10.1137/050624522 |
[2] | R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processing, Comput. Math. Appl., 56 (2008), 874–882. https://doi.org/10.1016/j.camwa.2008.01.017 doi: 10.1016/j.camwa.2008.01.017 |
[3] | S. Lian, W. Gao, C. Cao, H. Yuan, Study of the solutions to a model porous medium equation with variable exponent of nonlinearity, J. Math. Anal. Appl., 342 (2008), 27–38. https://doi.org/10.1016/j.jmaa.2007.11.046 doi: 10.1016/j.jmaa.2007.11.046 |
[4] | S. Antontsev, S. Shmarev, Blow up of solutions to parabolic equations with nonstandard growth conditions, J. Comput. Appl. Math., 234 (2010), 2633–2645. https://doi.org/10.1016/j.cam.2010.01.026 doi: 10.1016/j.cam.2010.01.026 |
[5] | S. Antontsev, S. Shmarev, Evolution PDEs with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up, Atlantis Press Paris, 2015. |
[6] | B. Tahir, K. Mohamed, B. Masoud, Global existence, blow-up and asymptotic behavior of solutions for a class of $p(x)$-choquard diffusion equations in $R^{N}$, J. Math. Anal. Appl., 506 (2021), 125720. https://doi.org/10.1016/j.jmaa.2021.125720 doi: 10.1016/j.jmaa.2021.125720 |
[7] | S. A. Messaoudi, Blow up in a nonlinearly damped wave equation, Math. Nachr., 231 (2001), 105–111. |
[8] | S. A. Messaoudi, Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl., 320 (2006), 902–915. https://doi.org/10.1016/j.jmaa.2005.07.022 doi: 10.1016/j.jmaa.2005.07.022 |
[9] | H. T. Song, Blow up of arbitrarily positive initial energy solutions for a viscoelastic wave equation, Nonlinear Anal-Real, 26 (2015), 306–314. https://doi.org/10.1016/j.nonrwa.2015.05.015 doi: 10.1016/j.nonrwa.2015.05.015 |
[10] | H. T. Song, Global nonexistence of positive initial energy solutions for a viscoelastic wave equation, Nonlinear Anal, 125 (2015), 260–269. https://doi.org/10.1016/j.na.2015.05.015 doi: 10.1016/j.na.2015.05.015 |
[11] | M. M. Cavalcanti, C. Domingos, J. Ferreira, Existence and uniform decay for a non-linear viscoelastic equation with strong damping, Math. Meth. Appl. Sci., 24 (2001), 1043–1053. https://doi.org/10.1002/mma.250 doi: 10.1002/mma.250 |
[12] | S. A. Messaoudi, A. A.Talahmeh, J. H. Al-Smail, Nonlinear damped wave equation: existence and blow-up, Comput. Math. Appl., 74 (2017), 3024–3041. https://doi.org/10.1016/j.camwa.2017.07.048 doi: 10.1016/j.camwa.2017.07.048 |
[13] | S. H. Park, J. R. Kang, Blow-up of solutions for a viscoelastic wave equation with variable exponents, Math. Meth. Appl. Sci., 42 (2019), 2083–2097. https://doi.org/10.1002/mma.5501 doi: 10.1002/mma.5501 |
[14] | M. Alahyane, A. A. Talahmeh, S. A. Messaoudi, Theoretical and numerical study of the blow up in a nonlinear viscoelastic problem with variable exponents and arbitrary positive energy, Acta. Math. Sci., 42 (2022), 141–154. https://doi.org/10.1007/s10473-022-0107-y doi: 10.1007/s10473-022-0107-y |
[15] | A. Ouaoua, W. Boughamsa, Well-posedness and stability results for a class of nonlinear fourth-order wave equation with variable-exponents, J. Nonlinear. Anal. Appl., 14 (2023), 1769–1785. https://doi.org/10.22075/ijnaa.2022.27129.3507 doi: 10.22075/ijnaa.2022.27129.3507 |
[16] | H. Ding, J. Zhou, Blow-up for the Timoshenko-type equation with variable exponentss, Nonlinear Anal-Real, 71 (2023), 103801. https://doi.org/10.1016/j.nonrwa.2022.103801 doi: 10.1016/j.nonrwa.2022.103801 |
[17] | M. Liao, B. Guo, X Zhu, Bounds for blow-up time to a viscoelastic hyperbolic equation of Kirchhoff type with variable sources, Acta. Appl. Math., 170 (2020), 755–772. https://doi.org/10.1007/s10440-020-00357-3 doi: 10.1007/s10440-020-00357-3 |
[18] | M. Liao, Study of a viscoelastic wave equation with a strong damping and variable exponents, Mediterr. J. Math., 18 (2021), 186. https://doi.org/10.1007/s00009-021-01826-1 doi: 10.1007/s00009-021-01826-1 |
[19] | W. Lian, V. Radulescu, R. Xu, Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations, Adv. Calc. Var., 14 (2021), 589–611. https://doi.org/10.1515/acv-2019-0039 doi: 10.1515/acv-2019-0039 |
[20] | Y. Luo, R. Xu, C. Yang, Global well-posedness for a class of semilinear hyperbolic equations with singular potentials on manifolds with conical singularities, Cal. Var. Partial Dif., 61 (2022), 210. https://doi.org/10.1007/s00526-022-02316-2 doi: 10.1007/s00526-022-02316-2 |
[21] | M. Liao, Z. Tan, Behavior of solutions to a Petrovsky equation with damping and variable-exponent sources, Sci. China. Math., 66 (2023), 285–302. https://doi.org/10.1007/s11425-021-1926-x doi: 10.1007/s11425-021-1926-x |
[22] | Y. Pang, V. Radulescu, R. Xu, Global Existence and Finite Time Blow-up for the m-Laplacian Parabolic Problem, Acta. Math. Sin., 39 (2023), 1497–1524. https://doi.org/10.1007/s10114-023-1619-7 doi: 10.1007/s10114-023-1619-7 |
[23] | L. Diening, P. Harjulehto, P. Hästö, M. R$\mathring{u}$žička, Lebesgue and Sobolev spaces with variable exponents, Springer Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18363-8 |
[24] | X. L. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446. https://doi.org/10.1006/jmaa.2000.7617 doi: 10.1006/jmaa.2000.7617 |
[25] | J. L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, 1969. |