Research article

A characteristics approach to shock formation in 2D Euler with azimuthal symmetry and entropy

  • Received: 16 December 2024 Revised: 03 January 2025 Accepted: 10 February 2025 Published: 04 March 2025
  • 35Q31, 35L67

  • We provide a detailed analysis of the shock formation process for the non-isentropic 2d Euler equations in azimuthal symmetry. We prove that from an open set of smooth and generic initial data, solutions of the Euler equations form a first singularity or gradient blow-up. This first singularity is termed a Hölder $ C^{\frac{1}{3}} $ pre-shock, and our analysis provides the first detailed description of this cusp solution. The novelty of this work relative to [1] is that we herein consider a much larger class of initial data, allow for a non-constant initial entropy, allow for a non-trivial sub-dominant Riemann variable, and introduce a host of new identities to avoid apparent derivative loss due to entropy gradients. The method of proof is also new and robust, exploring the transversality of the three different characteristic families to transform space derivatives into time derivatives. Our main result provides a fractional series expansion of the Euler solution about the pre-shock, whose coefficients are computed from the initial data.

    Citation: Isaac Neal, Steve Shkoller, Vlad Vicol. A characteristics approach to shock formation in 2D Euler with azimuthal symmetry and entropy[J]. Communications in Analysis and Mechanics, 2025, 17(1): 188-236. doi: 10.3934/cam.2025009

    Related Papers:

  • We provide a detailed analysis of the shock formation process for the non-isentropic 2d Euler equations in azimuthal symmetry. We prove that from an open set of smooth and generic initial data, solutions of the Euler equations form a first singularity or gradient blow-up. This first singularity is termed a Hölder $ C^{\frac{1}{3}} $ pre-shock, and our analysis provides the first detailed description of this cusp solution. The novelty of this work relative to [1] is that we herein consider a much larger class of initial data, allow for a non-constant initial entropy, allow for a non-trivial sub-dominant Riemann variable, and introduce a host of new identities to avoid apparent derivative loss due to entropy gradients. The method of proof is also new and robust, exploring the transversality of the three different characteristic families to transform space derivatives into time derivatives. Our main result provides a fractional series expansion of the Euler solution about the pre-shock, whose coefficients are computed from the initial data.



    加载中


    [1] T. Buckmaster, T. D. Drivas, S. Shkoller, V. Vicol, Simultaneous development of shocks and cusps for 2D Euler with azimuthal symmetry from smooth data, Ann. PDE, 8 (2022). https://doi.org/10.1007/s40818-022-00141-6 doi: 10.1007/s40818-022-00141-6
    [2] T. Buckmaster, S. Shkoller, V. Vicol, Formation of shocks for 2D isentropic compressible Euler, Commun. Pur. Appl. Math., 75 (2022), 2069–2120. https://doi.org/10.1002/cpa.21956 doi: 10.1002/cpa.21956
    [3] P. D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys., 5 (1964), 611–613. https://doi.org/10.1063/1.1704154 doi: 10.1063/1.1704154
    [4] T. P. Liu, Development of singularities in the nonlinear waves for quasi-linear hyperbolic partial differential equations, J. Differ. Equations, 33 (1979), 92–111. https://doi.org/10.1016/0022-0396(79)90082-2 doi: 10.1016/0022-0396(79)90082-2
    [5] T. C. Sideris, Formation of singularities in three-dimensional compressible fluids, Commun. Math. Phys., 101 (1985), 475–485. https://doi.org/10.1007/BF01210741 doi: 10.1007/BF01210741
    [6] G. Chen, R. Pan, S. Zhu, Singularity formation for the compressible Euler equations, SIAM J. Math. Anal., 49 (2017), 2591–2614. https://doi.org/10.1137/16M1062818 doi: 10.1137/16M1062818
    [7] G. Chen, Optimal density lower bound on nonisentropic gas dynamics, J. Differ. Equations, 268 (2020), 4017–4028. https://doi.org/10.1016/j.jde.2019.10.017 doi: 10.1016/j.jde.2019.10.017
    [8] C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, 2005. https://doi.org/10.1007/978-3-662-49451-6
    [9] G. Q. Chen, D. Wang, The Cauchy problem for the Euler equations for compressible fluids, in Handbook of mathematical fluid dynamics, Vol. I (eds. S. Friedlander, and D. Serre), North-Holland, Amsterdam (2002), 421–543. https://doi.org/10.1016/s1874-5792(02)80012-x
    [10] T. P. Liu, Shock Waves, American Mathematical Society, Providence, RI, 2021.
    [11] J. Rauch, BV estimates fail for most quasilinear hyperbolic systems in dimensions greater than one, Commun. Math. Phys., 106 (1986), 481–484. https://doi.org/10.1007/BF01207258 doi: 10.1007/BF01207258
    [12] M. P. Lebaud, Description de la formation d'un choc dans le $p$-système, Journal de mathématiques pures et appliquées, 73 (1994), 523–566.
    [13] S. Chen, L. Dong, Formation and construction of shock for $p$-system, Sci. China Ser. A-Math., 44 (2001), 1139–1147. https://doi.org/10.1007/BF02877431 doi: 10.1007/BF02877431
    [14] D. X. Kong, Formation and propagation of singularities for $2\times2$ quasilinear hyperbolic systems, Trans. Amer. Math. Soc., 354 (2002), 3155–3179. https://doi.org/10.1090/S0002-9947-02-02982-3 doi: 10.1090/S0002-9947-02-02982-3
    [15] T. Buckmaster, T. D. Drivas, S. Shkoller, V. Vicol, Formation and development of singularities for the compressible Euler equations, in Proceedings of the International Congress of Mathematicians 2022, EMS Press, Berlin, 5 (2023), 3636–3659. https://doi.org/10.4171/ICM2022/87
    [16] D. Christodoulou, The formation of shocks in 3-dimensional fluids, European Mathematical Society, 2007. https://doi.org/10.4171/031
    [17] D. Christodoulou, The shock development problem, European Mathematical Society, 2019. https://doi.org/10.4171/192
    [18] H. Yin, Formation and construction of a shock wave for 3-d compressible Euler equations with the spherical initial data, Nagoya Math. J., 175 (2004), 125–164. https://doi.org/10.1017/S002776300000893X doi: 10.1017/S002776300000893X
    [19] D. Christodoulou, A. Lisibach, Shock development in spherical symmetry, Ann. PDE, 2 (2016). https://doi.org/10.1007/s40818-016-0009-1 doi: 10.1007/s40818-016-0009-1
    [20] J. Luk, J. Speck, Shock formation in solutions to the 2d compressible Euler equations in the presence of non-zero vorticity, Invent. Mathe., 214 (2018), 1–169. https://doi.org/10.1007/s00222-018-0799-8 doi: 10.1007/s00222-018-0799-8
    [21] J. Luk, J. Speck, The stability of simple plane-symmetric shock formation for 3d compressible Euler flow with vorticity and entropy, Anal PDE, 17 (2024), 831–941. https://doi.org/10.2140/apde.2024.17.831 doi: 10.2140/apde.2024.17.831
    [22] T. Buckmaster, S. Shkoller, V. Vicol, Formation of point shocks for 3D compressible Euler, Comm. Pur. Appl. Math., 76 (2023), 2073–2191. https://doi.org/10.1002/cpa.22068 doi: 10.1002/cpa.22068
    [23] T. Buckmaster, S. Shkoller, V. Vicol, Shock formation and vorticity creation for 3D Euler, Comm. Pur. Appl. Math., 76 (2023), 1965–2072. https://doi.org/10.1002/cpa.22067 doi: 10.1002/cpa.22067
    [24] S. Shkoller, V. Vicol, The geometry of maximal development and shock formation for the Euler equations in multiple space dimensions, Invent. Math., 237 (2024), 871–1252. https://doi.org/10.1007/s00222-024-01269-x doi: 10.1007/s00222-024-01269-x
    [25] L. Abbrescia, J. Speck, The emergence of the singular boundary from the crease in $3d$ compressible Euler flow, preprint, arXiv: 2207.07107.
    [26] L. D. Landau, E. M. Lifshitz, Fluid Mechanics, Vol. 6, Elsevier, 1987. https://doi.org/10.1016/C2013-0-03799-1
    [27] R. J. Walker, Algebraic Curves, Springer-Verlag, 1950.
    [28] E. Brieskorn, H. Knörrer, Plane algebraic curves, Springer Basel, 1986. https://doi.org/10.1007/978-3-0348-5097-1
    [29] S. Kumagai, An implicit function theorem: comment, J Optim Theory Appl, 31 (1980), 285–288. https://doi.org/10.1007/BF00934117 doi: 10.1007/BF00934117
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2) PDF downloads(1) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog