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Abstract: We provide a detailed analysis of the shock formation process for the non-isentropic 2d
Euler equations in azimuthal symmetry. We prove that from an open set of smooth and generic initial
data, solutions of the Euler equations form a first singularity or gradient blow-up. This first singularity
is termed a Hölder C

1
3 pre-shock, and our analysis provides the first detailed description of this cusp

solution. The novelty of this work relative to [1] is that we herein consider a much larger class of initial
data, allow for a non-constant initial entropy, allow for a non-trivial sub-dominant Riemann variable, and
introduce a host of new identities to avoid apparent derivative loss due to entropy gradients. The method
of proof is also new and robust, exploring the transversality of the three different characteristic families to
transform space derivatives into time derivatives. Our main result provides a fractional series expansion
of the Euler solution about the pre-shock, whose coefficients are computed from the initial data.
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1. Introduction

Investigating shock formation and development is one of the central problems of hyperbolic PDE.
Establishing shock formation (gradient blowup) from smooth initial data, in a constructive manner, is
crucial for analyzing the dynamics of the resulting discontinuous shock waves. A precise description of
the solution at the pre-shock (the spacetime set where smooth solutions first form cusps) is what allows
for a full characterization of singularity propagation, especially in multiple space dimensions (see § 1.2
for details).

This paper establishes shock formation for smooth solutions of the non-isentropic two-dimensional
compressible Euler equations in azimuthal symmetry. When compared to [2] this work gives a detailed
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description of the solution near the pre-shock as a fractional power series. This paper also goes
beyond [1] by establishing shock formation in the non-isentropic setting, and with minimal constraints
imposed on the initial data (see § 1.2 for details).

Beyond the result itself, we develop a new robust proof strategy for establishing shock formation for
a complex system of hyperbolic PDEs with multiple wave speeds. Instead of appealing to modulated
self-similar analysis (cf. [1, 2]), we use new variables that satisfy pointwise and integral identities and
accurately capture the compressible Euler dynamics (see § 1.3 for details).

1.1. The compressible Euler equations

The Euler equations of gas dynamics consist of the three conservation laws for momentum, mass,
and energy, given respectively by

∂t(ρu) + div(ρu ⊗ u + pI) = 0 , (1.1a)
∂tρ + div(ρu) = 0 , (1.1b)

∂tE + div((p + E)u) = 0 . (1.1c)

In two space dimensions, the focus of this paper, u : R2 × R → R2 denotes the velocity vector field,
ρ : R2 × R→ R+ denotes the strictly positive density function, E : R2 × R→ R denotes the total energy
function, and p : R2 × R→ R denotes the pressure function which is related to (u, ρ, E) by the identity
p = (γ − 1)(E − 1

2ρ |u|
2), where γ > 1 denotes the adiabatic exponent. For the analysis of the shock

formation process, it is convenient to replace conservation of energy (1.1c) with transport of entropy

∂tS + u · ∇S = 0 . (1.1d)

Here, S : R2 × R→ R denotes the specific entropy, and the equation-of-state for pressure is written as

p(ρ, S ) = 1
γ
ργeS . (1.2)

In preparation for reducing the equations to a more symmetric form, using Riemann-type variables,
we introduce the adiabatic exponent

α =
γ−1

2

so that the (rescaled) sound speed reads

σ = 1
α

√
∂p
∂ρ

= 1
α
e

S
2 ρα . (1.3)

With this notation, the ideal gas equation of state (1.2) becomes

p = α2

γ
ρσ2 . (1.4)

The Euler equations (1.1a), (1.1b), and (1.1d), as a system for (u, σ, S ), are then given by

∂tu + (u · ∇)u + ασ∇σ = α
2γσ

2∇S , (1.5a)

∂tσ + (u · ∇)σ + ασ div u = 0 , (1.5b)
∂tS + (u · ∇)S = 0 . (1.5c)
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We let ω = ∇⊥ ·u denote the scalar vorticity, and define the specific vorticity by ζ = ω
ρ

. A straightforward
computation shows that ζ is a solution to

∂tζ + (u · ∇)ζ = α
γ
σ
ρ
∇⊥σ · ∇S . (1.6)

The term α
γ
σ
ρ
∇⊥σ · ∇S on the right side of (1.6) can also be written as ρ−3∇⊥ρ · ∇p and is referred to as

baroclinic torque.
The goal of this paper is to give a constructive proof of shock formation for (1.5), from smooth initial

data, via a method powerful enough to capture a high-order series expansion of all fields at the preshock,
information which is in turn necessary to study the shock development problem. More precisely, we
prove:

Theorem 1.1 (Main result, abbreviated). From smooth, non-isentropic initial data with azimuthal
symmetry lying in an open set*, there exist smooth solutions to the 2d Euler equations (1.1) that form
a gradient blowup singularity at a computable time T∗† and spatial location. More specifically, there
exists ξ∗ ∈ T such that when the 2d Euler equations are expressed in polar coordinates as in (2.1), the
azimuthal component of the flow uθ and the sound speed σ form C0, 1

3 cusps along the ray θ = ξ∗ at the
time of the blowup, and are given by the fractional series expansions

uθ(r, θ,T∗) = r
(
b0 + b1(θ − ξ∗)1/3 + b2(θ − ξ∗)2/3 + O(ε−1|θ − ξ∗|)

)
,

σ(r, θ,T∗) = r
(
c0 + b1(θ − ξ∗)1/3 + b2(θ − ξ∗)2/3 + O(ε−1|θ − ξ∗|)

)
,

for θ in a neighborhood of radius ∼ ε3,‡ while the radial component ur of the flow, the specific entropy
S , and the specific vorticity ζ remain C1, 1

3 , with fractional series expansions

ur(r, θ,T∗) = r
(
å0 + å3(θ − ξ∗) + å4(θ − ξ∗)4/3 + O(ε−1/2|θ − ξ∗|

5/3)
)
,

S (r, θ,T∗) = k0 + k3(θ − ξ∗) + k4(θ − ξ∗)4/3 + O(ε−1|θ − ξ∗|
5/3),

ζ(r, θ,T∗) = v0 + v3(θ − ξ∗) + O(ε−1|θ − ξ∗|
4/3).

Here, the constants å0, å3, å4, b0, b1, b2, c0, k0, k3, k4, and v0 are O(1) while v3 is O(ε−1).§

1.2. Motivation and prior results

We recall that the classical proofs of finite-time singularity formation for the compressible Euler
equations and related hyperbolic systems are not constructive (see e.g. [3–5] for small smooth pertur-
bations near constant states, and [6, 7] for large data). We refer the reader to [8–10] for an extensive
bibliographic account of this classical theory.

A constructive proof of blowup, and equally importantly, a detailed description of the solution at
the pre-shock, is necessary in order to establish shock development. By definition, shock development
refers to the instantaneous development of the discontinuous shock wave from the C0, 1

3 Hölder cusp at
the pre-shock. This is especially true in multiple space dimensions: while the theory of weak solutions

*See § 2.3-2.4 for the details of the pertinent set of initial data.
†We abuse notation here, because the time T∗ used here differs from the time T∗ referenced in the rest of the paper by a constant

dependent on γ > 1. See § 2.1.
‡Here ε−1 is a large parameter quantifying the absolute size of slope of the initial data. See § 2.3 for details.
§See § 2.2 for the details of our use of O(·) and ∼.
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for 1D hyperbolic systems is well-developed (see e.g. [8]), many of the techniques used in the 1D theory
either do not apply in multiple space dimensions¶ or are not precise enough to be useful for the shock
development problem, which requires bounds on derivatives of the solution.

Departing from the weak solutions perspective, Lebaud [12] established shock formation and
development for the one-dimensional p-system (a variant on 1D isentropic Euler). These results were
expanded upon by Chen and Dong [13] and Kong [14]. Studying shock development in the p-system
does not per se prove anything about physical solutions of Euler, because physical solutions of Euler
that have shocks cannot be isentropic (see § 2.2 of [1] or § 3 of [15] for details). Moreover, non-
isentropic solutions of Euler are generically not irrotational due to a misalignment of pressure and
entropy gradients (see (1.6) above and § 4 of [15] for the 3D case), so physical solutions which have
shocks are also generically not irrotational. Studying shock development for piecewise isentropic or
even piecewise irrotational solutions of Euler is called the restricted shock development problem. For
the restricted shock development problem, Christodoulou established shock formation and development
for irrotational flows in his landmark books [16, 17]. Yin [18] wrote the first paper establishing shock
formation and development for non-isentropic Euler, but confined to spherical symmetry (see also [19]).
Luk and Speck [20] proved shock formation for the 2D isentropic Euler equations in the presence
of vorticity by an extension of Christodoulou’s geometric framework to allow for vorticity transport.
In [21], they later generalized their 2D result to the full 3D non-isentropic setting.

A different perspective was taken by Buckmaster, Shkoller, and Vicol [2,22,23], who used modulated
self-similar variables to construct the first gradient singularity (a point shock) from generic smooth
initial data. In [2] they constructed shocks for 2D isentropic Euler in azimuthal symmetry and
characterized the shock profile as an asymptotically self-similar, stable 1D blowup profile. After that,
they proved for the first time that the 3D isentropic Euler equations generically form a stable point
shock, even in the presence of vorticity [22]. The important generalization to the full non-isentropic
setting was achieved in [23], where it is also shown that irrotational data instantaneously creates
vorticity due to baroclinic torque, and the vorticity remains uniformly bounded up to and including the
time of the first gradient singularity.

The analysis of the Euler evolution beyond the time of the first gradient blowup was recently ad-
dressed by Shkoller and Vicol [24] by studying the so-called Maximal Globally Hyperbolic Development
(MGHD) of smooth and compressive Cauchy data. This can be understood to be the largest (local)
spacetime that contains a smooth (and invertible) evolution of the Cauchy data. The future temporal
boundary of this spacetime consists of the codimension-2 manifold of pre-shocks (containing the space-
time set of first gradient catastrophes), the singular set (a downstream hypersurface of gradient blowups
emanating from the pre-shock manifold), and the Cauchy horizon (an upstream hypersurface emanating
from the pre-shock set which the smooth Euler solution can never cross). A partial construction of the
MGHD was also obtained by Abbrescia and Speck [25] who were able to evolve the Euler solution up
the union of the pre-shock set and the singular set (but the upstream evolution up to the Cauchy horizon
was not treated).

Buckmaster, Drivas, Shkoller, and Vicol [1] established for the first time shock developement in
the presence of voriticity, by working in azimuthal symmetry. By improving upon [2], the solution at
the pre-shock is described in [1] by a fractional series, assuming that the flow is initially isentropic
(k0 ≡ 0 in (2.5c) below) and that the subdominant Riemann variable vanishes (z0 ≡ 0 in (2.5b) below).

¶For example, the BV estimates utilized in the classical theory of shocks for 1D hyperbolic systems fails for d ≥ 2. See [11].
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They then used this detailed description of the solution to establish shock development for 2D Euler
within the class of azimuthal solutions. The paper [1] is the first to also confirm the production of both
a discontinuous shock wave and two surfaces of cusp singularities emanating from the pre-shock, as
predicted by Landau and Lifschitz [26].

1.3. New ideas

This paper breaks with [2] and [1] by forgoing the use of self-similar variables. Instead, we use only
the fine structure of the Euler system written in the characteristic coordinates that correspond to the
three different wave speeds present in the system. We show that the sound speed remains bounded from
below up to the time of the first blowup (see Proposition 4.1), which means that the three wave speeds
remain uniformly transverse to one another up to the blowup time. This transversality allows us to prove
useful integral bounds (see Lemma 3.1 and § 4) and allows us to exchange space derivatives for time
derivatives (see § 5), which can be integrated to obtain identities for the higher-order derivatives of our
variables. This exchange of space for time derivatives via transversality is the key new idea of this work.

The implementation of this idea is made possible by using the special differentiated Riemann
variables introduced in [1]. These new variables, labeled qw and qz, evolve along the characteristics of
the fastest and slowest wave speeds, respectively, and they do not experience derivative loss (see § 3
of [1] or § 3.2 below). Whereas [1] utilized qw and qz for studying shock development, we use qw and qz

to also establish shock formation in the non-isentropic setting. Using pointwise and integral identities
for qw and qz, we are able to obtain estimates for our variables and their derivatives up to the blowup
time without first establishing the uniqueness or location of the blowup label; we instead derive the
uniqueness and location of the blowup label as a result of our estimates (see § 10.3).

We note that because we avoid self-similar analysis, we are able to place far fewer assumptions
on our initial data than in [1]. When compared to [1], we also obtain a higher-order fractional series
expansion of the solution at the time of blowup (see Theorem 2.1).

2. Azimuthal symmetry

2.1. The Euler equations in polar coordinates and azimuthal symmetry

The 2D Euler equations (1.5) take the following form in polar coordinates for the variables
(uθ, ur, ρ, S ): (

∂t + ur∂r + 1
r uθ∂θ

)
ur −

1
r u2

θ + ασ∂rσ = α
2γσ

2∂rS , (2.1a)(
∂t + ur∂r + 1

r uθ∂θ
)

uθ + 1
r uruθ + ασ

r ∂θσ = α
2γ

σ2

r ∂θS , (2.1b)(
∂t + ur∂r + 1

r uθ∂θ
)
σ + ασ

(
1
r ur + ∂rur + 1

r∂θuθ
)

= 0 , (2.1c)(
∂t + ur∂r + 1

r uθ∂θ
)

S = 0. (2.1d)

We introduce the new variables||

uθ(r, θ, t) = rb(θ, t) , ur(r, θ, t) = ra(θ, t) , σ(r, θ, t) = rc(θ, t), S (r, θ, t) = k(θ, t) . (2.2)
||Note that our symmetry constraints make S discontinuous at the origin unless S is constant. For this reason, a classical solution of

the 2D Euler equations (1.5) is recovered from the azimuthal variables (a, b, c, k) via (2.2) on the punctured plane. Alternatively, we may
restrict the domain of evolution for 2D Euler to an annular domain pushed forward under the flow of u (see [2, § 2.1]).
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The system (2.1) then takes the form

(∂t + b∂θ) a + a2 − b2 + αc2 = 0 (2.3a)
(∂t + b∂θ) b + αc∂θc + 2ab = α

2γc2∂θk (2.3b)

(∂t + b∂θ) c + αc∂θb + γac = 0 (2.3c)
(∂t + b∂θ) k = 0 . (2.3d)

For simplicity of the presentation, we will set γ = 2 from here on; note however that all statements in
this paper apply mutatis mutandis to the case of a general γ > 1. The Riemann functions w and z are
defined by

w = b + c , z = b − c , (2.4a)
b = 1

2 (w + z) , c = 1
2 (w − z) . (2.4b)

It is convenient to rescale time, letting ∂t 7→
3
4∂t̃, and for notational simplicity, we continue to write t for

t̃. With this temporal rescaling employed, the system (2.3c) can be equivalently written as

∂tw + λ3∂θw = −8
3aw + 1

24 (w − z)2∂θk , (2.5a)
∂tz + λ1∂θz = −8

3az + 1
24 (w − z)2∂θk , (2.5b)

∂tk + λ2∂θk = 0 , (2.5c)
∂ta + λ2∂θa = −4

3a2 + 1
3 (w + z)2 − 1

6 (w − z)2 . (2.5d)

where the three wave speeds are given by

λ1 = 1
3w + z < λ2 = 2

3w + 2
3z < λ3 = w + 1

3z . (2.6)

We note that (2.3c) takes the form

∂tc + λ2∂θc + 1
2c∂θλ2 = −8

3ac . (2.7)

Finally, we denote the specific vorticity (1.6) in azimuthal symmetry by

$ = 4(w + z − ∂θa)c−2ek, (2.8)

which satisfies the evolution equation

∂t$ + λ2∂θ$ = 8
3a$ + 4

3ek∂θk . (2.9)

2.2. Notation

In most of what follows, there will be an important parameter ε > 0, and a . b will be used to signify
that a ≤ Cb for some constant C independent of ε and any variables x, θ, or t. However, the constant
can depend on the implicit constants in the assumptions on the initial data in § 2.3 and can depend on
our choice of γ > 1 for the pressure law**. We will use the notation a ∼ b to express a . b . a. We will
also write

f = O(g)
**We have already chosen to fix γ = 2 for the entirety of this paper, but our result will hold for arbitrary γ > 1, and the value of γ will

effect the constants.

Communications in Analysis and Mechanics Volume 17, Issue 1, 188–236.



194

to express that | f | . g everywhere in the relevant domain. We will express bounds of the type

f (x, t) =

O(b1) |x| ≤ ε2

O(b2) |x| ≥ ε2
simply as f = B(b1; b2).

Often below we will have functions f defined on T × [0,T∗) and maps Ψ : T × [0,T∗)→ T, and we will
use the notation

f ◦Ψ(x, t) := f (Ψ(x, t), t).

When such an inverse exists, we will write Ψ−1 to denote the function such that Ψ−1 ◦Ψ(x, t) =

Ψ◦Ψ−1(x, t) = x for all t.
While the spatial variable θ for (2.5) lies in T, we will often identify T with the interval (−π, π].

2.3. Assumptions on the Initial Data

Our initial data will be w0, z0, k0, a0 ∈ H6(T), where z0, k0, and a0 all satisfy

‖∂ j
xk0‖L∞ . ε

γ j , ‖∂ j
xa0‖L∞ . ε

α j , ‖∂ j
xz0‖L∞ . ε

β j , (2.10)

for j = 0, 1, 2, 3, 4, 5, where α j, β j, γ j are fixed constants satisfying the relations

• α0, β0, γ0 ≥ 0,

• γ1 ≥ µ, α1 ≥ 0,

• γ j ≥ µ − j for j = 2, 3, 4, 5,

• α j ≥ µ + 1 − j for j = 2, 3, 4, 5,

• β j ≥ µ − j for j = 1, 2, 3, 4, 5.

Here µ > 0 is a fixed positive constant that is a lower bound on the `∞ distance of our vector of parameters
(α2, . . . , α5, γ1, . . . , γ5, β1, . . . , β5) from the boundary of the open set defined by the constraints β1 > −1,
γ1 > 0, etc. Additionally, we assume that w0 satisfies

1. w0 ∼ 1,

2. w′0(0) := −1
ε

and |w′0(x)| < ε−1 for all x , 0,

3. w′0(x) ≥ −1
ε

+ Cε
µ
2−1 for all |x| ≥ ε3/2, and some constant C > 0.

4. w′′′0 (x) ∼ ε−4 for all |x| ≤ ε3/2,

5. |∂4
xw0(x)| . εµ−5 for all |x| ≤ ε2,

6. ‖∂5
xw0‖L∞ . ε

−7,

and that z0 satisfies
max z0 < min w0. (2.11)

Note that an immediate consequence of our assumptions is that w0 must also satisfy

• w′′0 (0) = 0,
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• |w′′0 (x)| . ε−2 for |x| ≤ ε2,

• ‖w′′0 ‖L∞ . ε
− 5

2 ,

• ‖w′′′0 ‖L∞ . ε
−4,

• ‖∂4
xw0‖L∞ . ε

− 11
2 .

The following additional constraints are not at all necessary for proving our theorem, but they do
make the formulas of the proof below cleaner

α0 = β0 = γ0 = α1 = 0, β1 ≤ 0, and α j, β j, γ j ≤ 1 ∀ j = 0, 1, 2, 3, 4, 5. (2.12)

Note that the constraints made here on the first five derivatives of (w0, z0, k0, a0) are much less
stringent than those imposed in [1]. In [1], the authors assume that k0 is constant, z0 is identically 0,
and that w′0 and a0 have support with diameter O(ε1/2), among other constraints. Here we do away with
such unnecessary hypotheses. Additionally, the result of this paper applies to a wide range of parameters
(α j, β j, γ j), whereas in [1] the authors only work with (α0, α1, α2, α3, α4) = (1, 0, 0, 0), which is only
one point in our admissible range for these parameters.

In what follows, we will parametrize time so that the initial time is always t = −ε. The local well-
posedness theory of (1.5) implies that for any (w0, z0, k0, a0) ∈ H6(T) there exists a time T∗ ∈ (−ε,+∞]
such that there exists a unique C1 solution (w, z, k, a) of (2.5) satisfying (w, z, k, a)

∣∣∣
t=−ε

= (w0, z0, k0, a0).
Furthermore, (w, z, k, a) is guaranteed to be in C0([−ε,T∗); H6(T)) ∩C1([−ε,T∗); H5(T)). Additionally,
it follows from the standard theory of (1.5) that if T∗ < ∞ then

ˆ T∗

−ε

‖∂θw(t)‖L∞ + ‖∂θz(t)‖L∞ + ‖∂θk(t)‖L∞ + ‖∂θa(t)‖L∞ dt = ∞. (2.13)

The inequalities above can be made into open constraints by making them strict inequalities. While
the two pointwise constraints that require w′0 to attain its unique global minimum at x = 0 and w′0(0) = −1

ε

are not open constraints, for any suitably small perturbation of initial data (w0, z0, k0, a0) satisfying all of
the above constraints, one can recover the two pointwise constraints by translating in space and rescaling
the solution in time. Since the spatial translation and time rescaling can be made sufficiently small,
there exists an open set of initial data around the functions (w0, z0, k0, a0) described above for which the
results of Theorem 2.1 below still hold. Thus, the shock formation we describe is stable.

2.4. Statement of the main theorem

Theorem 2.1 (Main theorem). For µ > 0, ε > 0 sufficiently small, and initial data (w, z, k, a)
∣∣∣
t=−ε

=

(w0, z0, k0, a0) in the open set described in § 2.3, there exists a blowup time T∗ with |T∗| . ε1+µ, a unique
blowup location ξ∗ ∈ T, and unique C1 solutions (w, z, k, a) to (2.5) on T × [−ε,T∗) such that |x∗| . ε2+µ,

w(·,T∗) ∈ C0, 1
3 (T), z(·,T∗), k(·,T∗), a(·,T∗), $(·,T∗) ∈ C1, 1

3 (T),

where $ is the specific vorticity (see (2.8)). Furthermore, there exists a unique blowup label x∗ ∈ (−π, π]
such that

lim
t→T∗

η(x∗, t) = ξ∗
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where η is the 3-characteristic defined in § 3.1. In a neighborhood θ ∈ η([−ε2, ε2],T∗) of radius ∼ ε3

the functions w(·,T∗), z(·,T∗), k(·,T∗), and a(·,T∗) have the following fractional series expansions:
There exist constants åw

0 , å
w
1 , å

w
2 with

|åw
0 | . 1, |åw

1 | . 1, |åw
2 | . 1,

such that

w(θ,T∗) = åw
0 + åw

1 (θ − ξ∗)1/3 + åw
2 (θ − ξ∗)2/3 + O(ε−1|θ − ξ∗|),

∂θw(θ,T∗) = 1
3åw

1 (θ − ξ∗)−2/3 + 2
3åw

2 (θ − ξ∗)−1/3 + O(ε−1),
∂2
θw(θ,T∗) = −2

9åw
1 (θ − ξ∗)−5/3 − 2

9åw
2 (θ − ξ∗)−4/3 + O(ε−1|θ − ξ∗|

−1),
∂3
θw(θ,T∗) = 10

27åw
1 (θ − ξ∗)−8/3 + 8

27åw
2 (θ − ξ∗)−7/3 + O(ε−1|θ − ξ∗|

−2). (2.14)

There exist constants åz
0, å

z
3, å

z
4 with

|åz
0| . 1, |åz

3| . ε
µ−1, |åz

4| . ε
µ−1,

such that

z(θ,T∗) = åz
0 + åz

3(θ − ξ∗) + åz
4(θ − ξ∗)4/3 + O(εµ−2|θ − ξ∗|

5/3),
∂θz(θ,T∗) = åz

3 + 4
3åz

4(θ − ξ∗)1/3 + O(εµ−2|θ − ξ∗|
2/3),

∂2
θz(θ,T∗) = 4

9åz
4(θ − ξ∗)−2/3 + O(εµ−2|θ − ξ∗|

−1/3),
∂3
θz(θ,T∗) = − 8

27åz
4(θ − ξ∗)−5/3 + O(εµ−2|θ − ξ∗|

4/3). (2.15)

There exist constants åk
0, å

k
3, å

k
4 with

|åk
0| . 1, |åk

3| . ε
µ, |åk

4| . ε
γ2+1∧µ,

such that

k(θ,T∗) = åk
0 + åk

3(θ − ξ∗) + åk
4(θ − ξ∗)4/3 + O(εγ2∧µ−1|θ − ξ∗|

5/3),
∂θk(θ,T∗) = åk

3 + 4
3åk

4(θ − ξ∗)1/3 + O(εγ2∧µ−1|θ − ξ∗|
2/3),

∂2
θk(θ,T∗) = 4

9åk
4(θ − ξ∗)−2/3 + O(εγ2∧µ−1|θ − ξ∗|

−1/3),
∂3
θk(θ,T∗) = − 8

27åk
4(θ − ξ∗)−5/3 + O(εγ2∧µ−1|θ − ξ∗|

4/3). (2.16)

There exist constants åa
0, å

a
3, å

a
4 with

|åa
0| . 1, |åa

3| . 1, |åa
4| . 1,

such that

a(θ,T∗) = åa
0 + åa

3(θ − ξ∗) + åa
4(θ − ξ∗)4/3 + O(ε−1|θ − ξ∗|

5/3),
∂θa(θ,T∗) = åa

3 + 4
3åa

4(θ − ξ∗)1/3 + O(ε−1|θ − ξ∗|
2/3),

∂2
θa(θ,T∗) = 4

9åa
4(θ − ξ∗)−2/3 + O(ε−1|θ − ξ∗|

−1/3),
∂3
θa(θ,T∗) = − 8

27åa
4(θ − ξ∗)−5/3 + O(ε−1|θ − ξ∗|

4/3). (2.17)
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There exist constants å$0 , å
$
3 with

|å$0 | . 1, |å$3 | . ε
−1,

such that

$(θ,T∗) = å$0 + å$3 (θ − ξ∗) + O(ε−1|θ − ξ∗|
4/3),

∂θ$(θ,T∗) = å$3 + O(ε−1|θ − ξ∗|
1/3),

∂2
θ$(θ,T∗) = O(ε−1|θ − ξ∗|

−2/3),
∂3
θ$(θ,T∗) = O(ε−1|θ − ξ∗|

−5/3). (2.18)

Moreover, the C5 regularity away from the pre-shock is characterized by

max
n≤5
|∂n
θw(η(x, t), t)| + |∂n

θz(η(x, t), t)| + |∂n
θk(η(x, t), t)| + |∂n

θa(η(x, t), t)|

. B(ε−7[ 1
2ε (T∗ − t) + c(ε + t)ε−4(x − x∗)2]−1; ε−16). (2.19)

Theorem 1.1 clearly follows from Theorem 2.1 as an immediate corollary.

2.5. Outline of the proof of Theorem 2.1

In this paper, we will show that the classical solution (w, z, k, a) of (2.5) with the initial data specified
in § 2.3 breaks down in finite time, and that this occurs when the flow η of the fastest wave speed λ3

ceases to be a diffeomorphism. More specifically, the blowup time T∗ will be characterized as the first
time t when minx ηx(x, t) = 0. We will also establish that there is a unique Lagrangian label x∗ for
which ηx(x∗,T∗) = 0, which will imply that ηxx vanishes at (x∗,T∗) as well. While w, z, k, a, ∂θz, ∂θk,
and ∂θa will be shown to remain bounded on T × [−ε,T∗], ∂θw will be shown to go to −∞ at the
point (ξ∗,T∗) := (η(x∗,T∗),T∗) and remain smooth elsewhere. The key ingredient for implementing the
above-described strategy is to show that the functions w ◦ η, z ◦ η, k ◦ η, and a ◦ η remain as smooth as
their initial data, uniformly up to T∗. The authors of [1] proved such uniform estimates using self-similar
analysis, but only in a special case.†† In this paper, we prove uniform C5 estimates for (w, z, k, a) ◦ η
on T × [−ε,T∗], even in the most general setting, not by relying on self-similar variables, but by
instead using the transversality of various families of characteristics. This allows us to also consider a
much broader class of initial data than previously considered in [1]. Once we have shown that all the
variables stay smooth along the η characteristic, we obtain our functional description of the solution
near (ξ∗,T∗) by inverting the map x 7→ η(x, t) for (x, t) near the point (x∗,T∗). In light of the constraints
ηx(x∗,T∗) = ηxx(x∗,T∗) = 0, this amounts to the inversion of what is to leading order a cubic polynomial,
resulting in fractional series expansions of w, z, k, and a near (ξ∗,T∗) in terms of powers of (θ − ξ∗)1/3.

This paper is organized as follows:

1. In § 4 we bound |T∗| and prove that ∂θw must become infinite at time T∗. We use a simple bootstrap
argument to get estimates for w, z, k, a and their first derivatives up to time ε ∧ T∗. Using these
estimates, we show that ηx must have a zero before time t = ε, and conclude that |T∗| . ε1+µ. This
implies that ε ∧ T∗ = T∗ and therefore all of our estimates and identities hold up to time T∗. The
fact that ∂θw must blow up then follows immediately from the fact that ∂θz, ∂θk, and ∂θa remain
bounded up to time T∗ (see (2.13) above).

††The authors of [1] work in the case where z and k are identically zero and many more constraints are placed on w0 and a0. See § 2.3
above for a discussion.
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2. Next we show that w ◦ η, z ◦ η, k ◦ η, and a ◦ η remain smooth up to time T∗. To do this, we first
establish crucial identities in § 5, which result from the fact that the wave speeds are uniformly
transverse to one another. Then in § 6 - 9 we prove pointwise bounds on z, k, a and their derivatives
in terms of w and its derivatives by analyzing how our new variables evolve along the multiple
wave speeds. This allows us to conclude in § 10 that w, z, k, and a all remain smooth along η.

3. Last we establish that the singularity occurs at a unique point (ξ∗,T∗) ∈ T × [−ε,T∗] and we invert
η near this point to obtain fractional series expansions for w, z, k, and a. We do this by establishing
in § 10 that there is a unique point (x∗,T∗) ∈ T× [−ε,T∗] where ηx vanishes and that ηxx(x∗,T∗) = 0
as well. Since η(x,T∗) = ξ∗ + ηxxx(x∗,T∗)(x − x∗)3 + O(|x − x∗|4) near (x∗,T∗), it follows (see § 11)
that (x − x∗) ∼ (θ − ξ∗)1/3 for small |x − x∗| at time T∗, and the Taylor series expansions of the
smooth functions w◦η(·,T∗), z ◦ η(·,T∗), k ◦ η(·,T∗), and a◦η(·,T∗) near x∗ become fractional series
expansions of w(·,T∗), z(·,T∗), k(·,T∗), and a(·,T∗) near ξ∗.

3. Preliminaries

3.1. The characteristics

Let ϕ > 0, and let Ψ be the flow of λ := (1 − ϕ)w + (1
3 + ϕ)z.

Ψx = e
´ t
−ε ∂θλ◦Ψ. (3.1)

∂tc + λ∂θc = −(ϕ∂θw + (2
3 − ϕ)∂θz + 8

3a)c.

If c > 0 everywhere, this tells us that

− 1
ϕ
∂t(log c◦Ψ) = (∂θw + ( 2

3
1
ϕ
− 1)∂θz + 8

3
1
ϕ
a)◦Ψ.

=⇒ ∂θλ◦Ψ = −
1−ϕ
ϕ
∂t(log c◦Ψ) + ((2 − 2

3
1
ϕ
))∂θz − 8

3
1−ϕ
ϕ

a)◦Ψ.

=⇒ Ψx =
( c0

c◦Ψ

) 1−ϕ
ϕ e
´ t
−ε(2−

2
3

1
ϕ ))∂θz−

8
3

1−ϕ
ϕ a)◦Ψ. (3.2)

If c ∼ 1 and ∂θz, a are bounded, then this lets us conclude that Ψx ∼ 1. We will prove in the next section
that c ∼ 1 and that ∂θz, a are indeed bounded on T × [−ε,T∗), so everything that follows is relevant.

In the case where ϕ = 2
3 , we have λ = λ1, the first wave speed. Let ψ denote the corresponding flow,

the so-called 1-characteristic. Its first derivative satisfies

ψx =

( c0

c◦ψ

) 1
2

e
´ t
−ε(∂θz−

4
3 a)◦ψ, (3.3)

while its second derivative obeys

ψxx = ψx

(
1
2

c′0
c0

+

ˆ t

−ε

ψx(∂2
θz −

4
3
∂θa)◦ψ

)
− 1

2ψ
2
x
∂θc◦ψ
c◦ψ

=: ψxΨ −
1
2ψ

2
x
∂θc◦ψ
c◦ψ

. (3.4)

=: ψ2
x(Q1 −

1
2c−1∂θc)◦ψ. (3.5)
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When ϕ = 1
3 , we have λ = λ2 and the corresponding flow is the 2-characteristic, φ. The first

derivative of φ satisfies

φx =

( c0

c◦φ

)2

e−
16
3

´ t
−εa◦φ (3.6)

while its second derivative obeys

φxx = φx

(
2

c′0
c0
− 16

3

ˆ t

−ε

∂x(a◦φ)
)
− 2φ2

x
∂θc◦φ
c◦φ

=: φxΦ − 2φ2
x
∂θc◦φ
c◦φ

(3.7)

=: φ2
x(Q2 − 2c−1∂θc)◦φ . (3.8)

When ϕ = 0, we have λ = λ3 and the corresponding flow is the 3-characteristics, η. Note that our
analysis for ϕ > 0 breaks down for η, but also that w is essentially transported along η.

3.2. qw and qz

Our system (2.5) can be written as
∂t~x + A∂θ~x = ~b (3.9)

where

~x :=


w
z
k
a

 , A :=


λ3 0 −1

6c2 0
0 λ1 −

1
6c2 0

0 0 λ2 0
0 0 0 λ2

 , ~b :=


−8

3aw
−8

3az
0

−4
3a2 + 1

3 (w + z)2 − 1
6 (w − z)2

 .
Taking ∂θ of (3.9) and diagonalizing A gives us

∂t~y + D~y = Q(~x, ~y)

where D = diag(λ3, λ1, λ2, λ2), ~y := (∂θw− 1
4c∂θk, ∂θz+ 1

4c∂θk, ∂θk, ∂θa), and Q : R8 → R4 is a third-order
polynomial. This motivates the introduction of the following variables:

qw := ∂θw −
1
4

c∂θk and qz := ∂θz +
1
4

c∂θk. (3.10)

On can check using the identities in § A.1 that

∂t
(
qw◦ηηx) = (−

8
3

a +
1

12
c∂θk)◦η

(
qw◦ηηx

)
+

1
12

(c∂θk)◦η
(
qz◦ηηx

)
−

8
3
∂x(a◦η)w◦η. (3.11)

∂t
(
qz◦ψψx) = (−

8
3

a −
1

12
c∂θk)◦ψ

(
qz◦ψψx

)
−

1
12

(c∂θk)◦ψ
(
qw◦ψψx

)
−

8
3
∂x(a◦ψ)z◦ψ. (3.12)

If we define
It(x) := e

1
8 k◦η− 8

3

´ t
−ε a◦η (3.13)
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then our equation for ∂t(qw◦ηηx) gives us the Duhamel formula

ηxqw◦η = It

[
(w′0 −

1
4c0k′0)e−

1
8 k0 + 1

12

ˆ t

−ε

I−1
τ ηx(c∂θkqz)◦η dτ − 8

3

ˆ t

−ε

I−1
τ w◦η∂x(a◦η) dτ

]
. (3.14)

It follows immediately from the definitions of λ3 and qw that

ηx = 1 +

ˆ t

−ε

ηx∂θλ3◦η dτ = 1 +

ˆ t

−ε

ηxqw◦η dτ + 1
4

ˆ t

−ε

∂x(k◦η)(c◦η) dτ + 1
3

ˆ t

−ε

∂x(z◦η) dτ. (3.15)

Identity (3.16) will be used in § 4.3, and (3.14) and (3.15) will be used in § 3.3, 4.3, 4.4, and 10.
Similarly, qz◦ψψx satisfies the Duhamel formula

qz◦ψψx = (z′0 +
1
4

c0k′0)e−
´ t
−ε(

8
3 a+ 1

12 c∂θk)◦ψ − 1
12

ˆ t

−ε

e−
´ t
τ ( 8

3 a+ 1
12 c∂θk)◦ψψx(c∂θkqw)◦ψ

− 8
3

ˆ t

−ε

e−
´ t
τ ( 8

3 a+ 1
12 c∂θk)◦ψψx(∂θaz)◦ψ dτ. (3.16)

3.3. Integral bounds

Let ϕ > 0, and let Ψ be the flow of λ := (1 − ϕ)w + ( 1
3 + ϕ)z.

Lemma 3.1. Suppose that T ∈ [−ε, ε ∧ T ∗] and that for all (θ, t) ∈ T × [−ε,T ] we have

w ∼ 1 , c ∼ 1 , |k|, |a| . 1 , |∂θz| . εβ1 , |∂θk| . εγ1 , |∂θa| . 1 .

Then, for all ϕ > 0, we have ˆ t

−ε

|∂θw◦Ψ(x, τ)| dτ .
1
ϕ

(
ε + t
ε

)
(3.17)

with a constant uniform in ϕ > 0, (x, t) ∈ T × [−ε,T ].

Proof of Lemma 3.1. Fix ϕ > 0 and define

g(x, t) := η−1(Ψ(x, t), t).

We compute that

∂tg(x, t) = ∂tη
−1(Ψ(x, t), t) + ∂tη

−1(Ψ(x, t), t)Ψt(x, t)

=
−ηt(g(x, t), t) + Ψt(x, t)

ηx(g(x, t), t)

=
−λ3◦η((g(x, t), t) + λ◦Ψ(x, t)

ηx(g(x, t), t)

=

(
−λ3◦η + λ◦η

ηx

)
(g(x, t), t)

= −2ϕ
c◦η
ηx

(g(x, t), t). (3.18)
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Note that ∂tg(x, t) < 0 everywhere. We also know that

Ψ(x, t) = x +

ˆ t

−ε

λ◦Ψ(x, τ) dτ, and

Ψ(x, t) = η(g(x, t), t) = g(x, t) +

ˆ t

−ε

λ3◦η(g(x, t), τ) dτ,

so x − g(x, t) =

ˆ t

−ε

λ3◦η(g(x, t), τ) − λ◦Ψ(x, τ) dτ.

Our hypotheses allow us to conclude (see (4.2) below) that

It(x)e−
1
8 k0(x) = 1 + O(ε + t)

for times t ∈ [−ε,T ]. Using our hypotheses, along with this equation and (3.14), we conclude that for
all (x, t) ∈ T × [−ε,T ], we have

sup
[−ε,t]
|ηxqw◦η| ≤ ε−1(1 + O(εγ1)) + O(ε0∧β1+γ1)(ε + t) sup

[−ε,t]
ηx.

Plugging this into (3.15) and using the fact that T ≤ ε gives us

sup
[−ε,t]

ηx ≤ 1 + (ε + t)ε−1(1 + O(εγ1)) + O(εβ1)(ε + t) sup
[−ε,t]

ηx

≤ 1 + 2(1 + O(εγ1)) + O(εβ1+1) sup
[−ε,t]

ηx.

=⇒ sup
[−ε,t]

ηx ≤
1 + 2(1 + O(εµ))

1 − O(εµ)
≤ 4.

The last inequality is true for ε > 0 taken to be small enough, since µ > 0. Plugging this into (3.14) and
letting ε be sufficiently small gives us

ηx|qw◦η| ≤ ε−1(1 + O(εµ))

=⇒ qw◦η =
w′0Ite−

1
8 k0 + O(εγ1)
ηx

. (3.19)

It follows that

qw◦Ψ(x, t) = − 1
ϕ
∂tg(x, t)

w′0(g(x, t)) + O(1)
2c◦Ψ(x, t)

.

Since ∂tg < 0, it follows that
|qw◦Ψ(x, t)| . − 1

ϕ
∂tg(x, t)1

ε
.

So ˆ t

−ε

|qw◦Ψ(x, τ)| dτ .
x − g(x, t)

ϕε
.

1
ϕ

(
ε + t
ε

)
.

Our result follows immediately from this inequality and our hypotheses. �
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4. Initial Estimates

4.1. Zeroth Order Estimates

Proposition 4.1. For ε small enough, the following estimates hold for all t ∈ [−ε, ε ∧ T∗]:

w ∼ 1 , c ∼ 1 , φx ∼ 1 ,
‖∂θk‖L∞ . ‖k′0‖L∞ , ‖a‖L∞ ≤ ‖a0‖L∞ + O(ε) , ‖z‖L∞ ≤ ‖z0‖L∞ + O(ε) .

Proof of Proposition 4.1. This follows from an easy bootstrap argument. Let t ≤ ε ∧ T∗. If we assume
all of the listed bounds hold up to time t for some constants, then it follows that (3.6) holds up to time t.
k satisfies k◦φ = k0 and

φx∂θk◦φ = k′0. (4.1)

Additionally, (2.5) gives us Duhamel formulas for w◦η, z◦ψ, and a◦φ. Using these Duhamel formulas
along with (2.11),(3.6), (4.1), and the fact that t ≤ ε it is straightforward to improve our bounds for all
times before t, provided the constants we assumed in our bootstrap hypothesis are appropriate and ε is
small enough. �

Using these estimates, it is easy to show that for ε > 0 sufficiently small we obtain that∣∣∣Ite−
1
8 k0 − 1

∣∣∣ ≤ O(ε + t) ∀ x ∈ T,−ε ≤ t ≤ ε ∧ T∗. (4.2)

4.2. ∂θa bounds

Using (3.6) and (4.1) we have

∂t($◦φ) =
8
3

(a$)◦φ +
4
3

ek0∂θk◦φ (4.3)

=
8
3

(a$)◦φ +
4
3

ek0k′0φ
−1
x

=
8
3

(a$)◦φ +
4
3

k′0
c2

0

ek0I2
t (c ◦ φ)2,

where
It := e

8
3

´ t
−ε a◦φ. (4.4)

Therefore,

$◦φ = $0It +
4
3

c−2
0 k′0ek0It

ˆ t

−ε

Iτ(c2 ◦ φ) dτ. (4.5)

Note that
φx = c2

0I−2
t c−2◦φ. (4.6)

This relation will be useful for estimating the higher derivatives of a.
Since

$0 = 4c−2
0 (w0 + z0 − a′0)ek0 , (4.7)
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our assumptions on our initial data let us conclude that |$0| . 1, and therefore for all (θ, t) ∈ T× [−ε,T ]
we have

|$| . 1. (4.8)

Since
∂θa = w + z −

1
4

c2$e−k, (4.9)

it follows that
|∂θa| . 1 (4.10)

for all times t ∈ [−ε, ε ∧ T∗].
Using (4.10) and the bounds on the initial data, we conclude that

|Φ| . ε−1, (4.11)

for all times t ∈ [−ε, ε ∧ T∗].

4.3. ∂θz bounds

Proposition 4.2. For all (x, t) ∈ T × [−ε, ε ∧ T∗] we have

ηx|qw◦η| ≤ 2ε−1 , ηx ≤ 4 , |qz◦ψ| . ‖z′0‖L∞ , ψx ∼ 1 .

Proof of 4.2. We will use a bootstrap argument. Let T ∈ [−ε, ε ∧ T∗) and let our bootstrap assumption
be that

|qz| ≤ C‖z′0‖L∞

for all (θ, t) ∈ T× [−ε,T ] and a constant C to be determined. Since we are assuming |∂θz| . εβ1 for times
t ∈ [−ε,T ], it follows from (3.3) and our estimates from § 4.1 that ψx ∼ 1 with constants independent of
C for times t ∈ [−ε,T ], provided that ε is small enough relative to C.

Using our bootstrap assumption, along with the estimates from § 4.1 and 4.2, we can conclude (see
Lemma 3.1 and its proof) that for all (x, t) ∈ T × [−ε,T ], we have

ηx ≤ 4,
ηx|qw◦η| ≤ 2ε−1,ˆ t

−ε

|qw◦ψ(x, τ)| dτ . 1.

Using this last estimate along with the estimates from § 4.1, 4.2, it follows from (3.16) and the fact that
ψx ∼ 1 that

|qz◦ψψx − z′0| . ε
γ1

for times t ∈ [−ε,T ]. It follows that

|qz◦ψ| ≤ ‖ψ−1
x ‖L∞(T×[−ε,T ])

(
‖z′0‖L∞ + O(εγ1)

)
for t ∈ [−ε,T ]. Since γ1 > 0 ≥ β1, it follows that if we let ε become small enough, we obtain that

|qz| ≤ 2‖ψ−1
x ‖L∞(T×[−ε,T ])‖z′0‖L∞

for all t ∈ [−ε,T ]. If C is chosen large enough and ε is chosen small enough, this improves upon our
second bootstrap assumption. �
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It follows as an immediate corollary of this proposition that

|∂θz| . εβ1 , (4.12)
ηx . 1, (4.13)
ψx ∼ 1, (4.14)

for all times t ∈ [−ε, ε ∧ T∗].

4.4. Bounding |T∗|

Now our estimates will let us conclude that ηx behaves roughly the same as it would if w were the
solution of Burger’s equation with initial data w0 and η were the flow of w. Using Proposition 4.1, (4.2),
(4.10), (4.12), and (4.13) in equation (3.14) gives us

ηxqw◦η =
(
− 1

ε
+ (w′0 + 1

ε
)
)
Ite−

1
8 k0 + O(εγ1)

for all times t ∈ [−ε, ε ∧ T∗]. Plugging this into (3.15) and using the same bounds produces

ηx = 1 +
(
− 1

ε
+ (w′0 + 1

ε
)
)ˆ t

−ε

Iτe−
1
8 k0 dτ + O(εβ1+1) (4.15)

for t ∈ [−ε, ε ∧ T∗]. Evaluating (4.15) at x = 0 and using (4.2) gives

ηx(0, t) = 1 − (ε + t)ε−1 + O(εµ)
= − t

ε
+ O(εµ).

Since this is true for all t ∈ [−ε, ε ∧ T∗], it follows that we must have T∗ . ε1+µ if ε is chosen small
enough. Therefore, T∗ = ε ∧ T∗, and everything we have proven for t ∈ [−ε, ε ∧ T∗] is true for
t ∈ [−ε,T∗].

We can also prove a lower bound on T∗. Since w′0(x) + 1
ε
≥ 0 for all x, it follows from (4.15) and

(4.2) that

ηx ≥ −
t
ε

+ O(εµ)

everywhere. Therefore, |T∗| . ε1+µ, else ∂θw, ∂θz, ∂θk and ∂θa would all stay bounded up to T∗.
We can also obtain a lower bound for ηx away from 0. Indeed, since w′0(x) + 1

ε
≥ Cε

µ
2−1 for |x| ≥ ε3/2,

we have

ηx ≥ −
t
ε

+ Cε
µ
2−1(ε + t) + O(εµ)

= (T∗ − t)[ t
ε
−Cε

µ
2−1] + Cε

µ
2 + O(εµ)

≥ Cε
µ
2 + O(εµ)

& ε
µ
2 . (4.16)

Using Lemma 3.1 and the estimates proven in this section, we can now conclude that the bound
(3.17) holds for all ϕ > 0, (x, t) ∈ T × [−ε,T∗]. This fact will be used so frequently in the rest of the
paper that we will not bother to cite it.
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5. Transversality

Let ϕ > 0 and let Ψ be the flow of λ := (1 − ϕ)w + (1
3 + ϕ)z.

− 1
ϕ
Ψx∂t(∂θc◦Ψ) = 1

ϕ
Ψxt∂θc◦Ψ − 1

ϕ
∂tx(c◦Ψ)

= 1
ϕ
Ψxt∂θc◦Ψ + Ψx(∂θw + ( 2

3
1
ϕ
− 1)∂θz + 8

3
1
ϕ
a)◦Ψ(∂θc◦Ψ)

+ Ψx(c∂2
θw + ( 2

3
1
ϕ
− 1)c∂2

θz + 8
3

1
ϕ
∂θac)◦Ψ.

=⇒ − 1
ϕ
∂t
(
Ψx(c−1∂θc)◦Ψ

)
= − 1

ϕ
Ψtx(c−1∂θc)◦Ψ − Ψx(c−2∂θc)◦Ψ

(
− 1

ϕ
∂t(c◦Ψ)

)
+ (c−1◦Ψ)

(
− 1

ϕ
Ψx∂t(∂θc◦Ψ)

)
= Ψx(∂2

θw + (2
3

1
ϕ
− 1)∂2

θz + 8
3

1
ϕ
∂θa)◦Ψ.

Therefore, if h : T × [−ε,T∗)→ R is any differentiable function, we have

Ψx(h∂2
θw)◦Ψ = − 1

ϕ
∂t
(
Ψx(c−1∂θch)◦Ψ

)
− Ψx(( 2

3
1
ϕ
− 1)h∂2

θz + 8
3

1
ϕ
∂θah)◦Ψ

− Ψx(c−1∂θc)◦Ψ
(
− 1

ϕ
∂t(h◦Ψ)

)
.

This gives us the following equation:

∂x
(
(h∂θw)◦Ψ

)
= − 1

ϕ
∂t
(
Ψx(c−1∂θch)◦Ψ

)
− Ψx(( 2

3
1
ϕ
− 1)h∂2

θz + 8
3

1
ϕ
∂θah)◦Ψ

+ Ψx
[
(∂θh∂θw)◦Ψ − (c−1∂θc)◦Ψ

(
− 1

ϕ
∂t(h◦Ψ)

)]
. (5.1)

The last term in this expression motivates the following definition:

Definition 5.1 (Transversality). A differentiable function h : T × [−ε,T∗) → R is transversal (or
1-transversal) if it is bounded and there exist both a constant ϕ > 0 and bounded functions A, B, and C
such that  ∂θh = Ac−1∂θc + B

∂th + λ∂θh = −ϕA∂θw − ϕC

Here λ = (1 − ϕ)w + (1
3 + ϕ)z, as in the above discussion. If in addition A, B, and C are themselves

transversal functions, we say that h is 2-transversal. We recursively define h to be n-transversal if
A, B, and C are (n − 1)-transversal.

A few remarks about transversal functions:

• If h satisfies the transversality condition for one ϕ0 > 0, then it satisfies the transversality condition
for all ϕ > 0. If indeed, if we have ∂θh = Ac−1∂θc + B

∂th + λ0∂θh = −ϕ0A∂θw − ϕ0C

for some ϕ0 > 0 then for any other ϕ > 0 we have ∂θh = Ac−1∂θc + B

∂th + λ∂θh = −ϕA∂θw + (ϕ − ϕ0)A∂θz + 2(ϕ0 − ϕ)cB − ϕ0C
.
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Since ∂θz is bounded, h still satisfies the transversality condition for ϕ, albeit with a different
choice of bounded function C. So the notion of a transversal function is independent of our choice
of ϕ > 0.

• Note that while being transversal does not depend on the choice of ϕ (as the previous bullet
illustrated), and A and B are independent of ϕ, the function C changes based on ϕ.

• If h is a bounded function with bounded derivatives, then h is trivially transversal, with A = 0, B =

∂θh and C = − 1
ϕ
(∂th + λ∂θh).

• If functions h1, h2 are n-transversal, then h1 + h2 is n-transversal. Indeed, we have ∂θ(h1 + h2) = (A1 + A2)c−1∂θc + B1 + B2

(∂t + λ∂θ)(h1 + h2) = −ϕ(A1 + A2)∂θw − ϕ(C1 + C2)
.

• If functions h1, h2 are n-transversal, then their product is n-transversal. Indeed, we have ∂θ(h1h2) = (A1h2 + A2h1)c−1∂θc + B1h2 + B2h1

(∂t + λ∂θ)(h1h2) = −ϕ(A1h2 + A2h1)∂θw − ϕ(C1h2 + C2h1)
.

• If h is n-transversal and h ∼ 1 then h−1 is also n-transversal. Indeed, ∂θ(h−1) = −h−2Ac−1∂θc − h−2B

∂t(h−1) + λ∂θ(h−1) = −ϕ(−h−2A)∂θw − ϕ(−h−2C)
.

• If F : R→ R is smooth and h is n-transversal, then F◦h is n-transversal. Indeed, we have ∂θ(F◦h) = (AF′◦h)c−1∂θc + BF′◦h

(∂t + λ∂θ)(F◦h) = −ϕ(AF′◦h)∂θw − ϕCF′◦h
.

This rule will be especially useful for F(x) = ex.

• c is transversal with A = c, B = 0, and C = 4ac when ϕ = 2
3 . It follows inductively that if a

is n-transversal, then c is (n + 1)-transversal. At this point, we already know that a is at least
1-transversal because it is uniformly C1, so c is currently proven to be at least 2-transversal. c ∼ 1,
so c−1 is also 2-transversal. The fact that both c and c−1 are transversal was the main ingredient
used in the computation of (5.1).

The following lemma will be used in § 7.3, § 8.3, and § 9.3.

Lemma 5.2 (Identities for transversal functions along 1-characteristics). If h : T × [−ε,T∗) → R is
transversal with  ∂θh = Ac−1∂θc + B

−3
2∂t(h◦ψ) = (A∂θw + C)◦ψ

then we have

∂x
(
(h∂θw)◦ψ

)
= −3

2∂t
(
ψx(c−1∂θch)◦ψ

)
+ ψx

(
[B − 1

2c−1C]∂θw
)
◦ψ + ψx( 1

2c−1C∂θz − 4∂θah)◦ψ. (5.2)
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and

∂x
(
ψx(h∂θw)◦ψ

)
= −3

2∂t
(
ψ2

x(c
−1∂θch)◦ψ

)
+ ψ2

x
(
[Qh + B − 1

2c−1C + 3
4c−1h∂θz]∂θw

)
◦ψ

+ ψ2
x(

1
2c−1C∂θz − 4∂θah − 3

4c−1h∂θz2)◦ψ. (5.3)

From these two equations. we obtain the bounds∣∣∣∂x
(
(h∂θw)◦ψ

)
+ 3

2∂t
(
ψx(c−1∂θch)◦ψ

)∣∣∣ . ‖h‖L∞ + εβ1‖C‖L∞ + (‖B‖L∞ + ‖C‖L∞)|∂θw◦ψ|. (5.4)

and ∣∣∣∂x
(
ψx(h∂θw)◦ψ

)
+ 3

2∂t
(
ψ2

x(c
−1∂θch)◦ψ

)∣∣∣ . ε2β1‖h‖L∞ + εβ1‖C‖L∞

+ (ε−1‖h‖L∞ + ‖B‖L∞ + ‖C‖L∞)|∂θw◦ψ|. (5.5)

Proof of Lemma 5.2. (5.2) follows immediately from (5.1). To prove (5.3),

∂x(ψ(h∂θw)◦ψ) = ψxx(h∂θw)◦ψ + ψx∂x
(
(h∂θw)◦ψ

)
= ψ2

x([Q −
1
2c−1∂θc]h∂θw)◦ψ − ∂t

(
ψ2

x(c
−1∂θch)◦ψ

)
+ 3

2ψxtψx(c−1∂θch)◦ψ
+ ψx

(
[B − 1

2c−1C]∂θw
)
◦ψ + ψx( 1

2c−1C∂θz − 4∂θah)◦ψ
= −3

2∂t
(
ψ2

x(c
−1∂θch)◦ψ

)
+ ψ2

x
(
[Qh + B − 1

2c−1C + 3
4c−1h∂θz]∂θw

)
◦ψ

+ ψ2
x(

1
2c−1C∂θz − 4∂θah − 3

4c−1h∂θz2)◦ψ.

The inequalities follow immediately from the equations and the first-order estimates. �

The following lemma will be used in § 7.2, § 8.2, and § 9.2.

Lemma 5.3 (Identities for transversal functions along 2-characteristics). If h : T × [−ε,T∗)→ R is a
differentiable function satisfying the transversality condition ∂θh = Ac−1∂θc + B

−3∂t(h◦φ) = (A∂θw + C)◦φ

then we have

∂x
(
(h∂θw)◦φ) = −3∂t

(
φx(c−1∂θch)◦φ

)
+ φx(B∂θw −Cc−1∂θc − h∂2

θz − 8∂θah)◦φ. (5.6)

and

∂x
(
φ2

x(h∂θw)◦φ
)

= −3∂t
(
φ3

x(c
−1∂θc∂θw)◦φ

)
+ φ3

x(B∂θw −Cc−1∂θc + 4c−1∂θch∂θz − h∂2
θz − 8∂θah)◦φ

+ 2φ2
xΦ(h∂θw)◦φ. (5.7)

Proof of Lemma 5.3. (5.6) follows immediately from (5.1). The proof of (5.7) is an easy computation
using (5.1) and (3.7). �

The following lemma will first be used in § 8.3, so there is no circularity in its proof. See § 6.1 for
the definition of E and § 6.3 for the definition of f .
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Lemma 5.4 (Identities for 2-transversal functions along 1-characteristics). If h : T × [−ε,T∗)→ R is
2-transversal with

∂θh = Ac−1∂θc + B

−3
2∂t(h◦ψ) = (A∂θw + C)◦ψ

∂θA = AAc−1∂θc + BA

−3
2∂t(A◦ψ) = (AA∂θw + CA)◦ψ

∂θB = ABc−1∂θc + BB

−3
2∂t(B◦ψ) = (AB∂θw + CB)◦ψ

∂θC = ACc−1∂θc + BC

−3
2∂t(C◦ψ) = (AC∂θw + CC)◦ψ

then we have

∂2
x
(
(h∂θw)◦ψ

)
= −3

2∂t
(
ψ2

x(c
−1∂2

θch +
[
− 3

2h + A
]
c−2∂θc2 +

[
Q1 + 2B − 1

2c−1C
]
c−1∂θc)◦ψ

)
+ ψ2

x
([

BQ1 + BB −
1
2c−1BC

]
∂θw

)
◦ψ

− ψ2
x
([

Q1C + CB −
1
2c−1CC + 2ac−1C + 1

2c−1∂θzC − 2∂θah + 4∂θaA
]
c−1∂θc

)
◦ψ

− ψ2
x
([1

4c−1∂θzC − 1
2 ACc−1∂θz + 1

4C∂θk
]
c−1∂θc

)
◦ψ

+ ψ2
x(

1
2 f − 4∂θahQ1 − 4∂2

θah − 4∂θaB − 1
8cE + 1

2 BCc−1∂θz)◦ψ (5.8)

and

∂2
x(h◦ψ) = −3

4∂t
(
ψ2

x(Ac−2∂θc)◦ψ
)

+ ψ2
x
(
[ 1

2 Ac−1Q1 + 1
2 BAc−1 − 1

4CAc−2 + Aac−2 + 3
8 Ac−2∂θz]∂θw

)
◦ψ

+ ψ2
x
(
[ 1

4 Ac−1∂θz − 1
2 B + AB −

1
2 AAc−1∂θ + 1

4 Ac−1∂θz + 1
4 A∂θk]c−1∂θc

)
◦ψ

+ ψ2
x(

1
4CAc−2∂θz − Aac−2∂θz − 2∂θaAc−1 − 3

8 Ac−2∂θz2)◦ψ
+ ψ2

x(BQ1 −
1
2 Ac−1Q1∂θz + BB −

1
2 BAc−1∂θz − 1

2 Ac−1 f + 1
8 AE)◦ψ. (5.9)

Proof of Lemma 5.4. Taking ∂x of (5.2) gives us

∂2
x
(
(h∂θw)◦ψ

)
= −3

2∂
2
tx
(
ψx(c−1∂θc)◦ψ

)
+ ∂x

(
ψx([B − 1

2c−1C]∂θw)◦ψ
)

+ ∂x
(
ψx(1

2c−1C∂θz − 4∂θah)◦ψ
)
.

If we define h̃ := B − 1
2c−1C, then the rules for transversal functions tell us that

Bh̃ = BB −
1
2c−1BC

Ch̃ = CB −
1
2c−1CC + 2ac−1C.

Applying (5.3) to h̃ and simplifying gives us (5.8).
For the next identity, we see that

∂2
x(h◦ψ) = ∂x

(
ψx(1

2 Ac−1∂θw)◦ψ
)

+ ∂x
(
ψx(B − 1

2 Ac−1∂θz)◦ψ
)
.

Applying (5.3) to the function 1
2 Ac−1 and simplifying gives us (5.9). �
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The following lemma will be used in § 8 and § 9.

Lemma 5.5 (Classes of transversal functions). Let ϕ > 0, and let Ψ be the flow of λ = (1−ϕ)w+ ( 1
3 +ϕ)z.

Then

1. If h is a transversal function and H is defined by

H◦Ψ(x, t) :=
ˆ t

−ε

h◦Ψ(x, τ) dτ

then H is transversal.

2. Ψx◦Ψ
−1 is a transversal function.

3. If h is a transversal function and K is defined by

K◦Ψ(x, t) :=
ˆ t

−ε

(h∂θw)◦Ψ(x, τ) dτ

then K is transversal.

4. If h is a 2-transversal function and H is defined by

H◦Ψ(x, t) :=
ˆ t

−ε

h◦Ψ(x, τ) dτ

then H is 2-transversal.

5. Ψx◦Ψ
−1 is a 2-transversal function.

6. If h is a 2-transversal function and K is defined by

K◦Ψ(x, t) :=
ˆ t

−ε

(h∂θw)◦Ψ(x, τ) dτ

then K is 2-transversal.

Proof of Lemma 5.5. In this proof, h satisfies ∂θh = Ac−1∂θc + B

− 1
ϕ
∂t(h◦Ψ) = (A∂θw + C)◦Ψ

.

(i) Since  ∂θH =

(
Ψ−1

x

´ t
−ε

(Ac−1∂θc + B)◦Ψ dτ
)
◦Ψ−1

− 1
ϕ
∂t(H◦Ψ) = − 1

ϕ
h◦Ψ

(5.10)

it follows from (3.17) and the fact that Ψx ∼ 1 that H is transversal.
(ii) We know that a is transversal, and it will be proven in § 6.3 that ∂θz is transversal. Therefore,

part (i) applies to the function

H◦Ψ =

ˆ t

−ε

(2 −
2
3

1
ϕ

))∂θz − 8
3

1 − ϕ
ϕ

a)◦Ψ.
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Since F(x) = ex is smooth, it follows that

e
´ t
−ε(2−

2
3

1
ϕ ))∂θz−

8
3

1−ϕ
ϕ a)◦Ψ

◦Ψ−1

is transversal. We already know that c and c−1 are both 2-transversal, so it now follows from (3.2) that
Ψx◦Ψ

−1 is transversal.
(iii) Using (5.1) tells us that

∂θK◦ψ = − 1
ϕ
(hc−1∂θc)◦Ψ +

1
ϕ

Ψ−1
x c−1

0 c′0h0

− Ψ−1
x

ˆ t

−ε

Ψx(( 2
3

1
ϕ
− 1)h∂2

θz + 8
3

1
ϕ
∂θah)◦Ψ dτ + Ψ−1

x

ˆ t

−ε

Ψx(B∂θw − c−1∂θcC)◦Ψ dτ,

− 1
ϕ
∂t(K◦Ψ) = − 1

ϕ
(h∂θw)◦Ψ. (5.11)

It now follows from (6.18) that K is transversal.
(iv) This follows immediately from applying (ii) and (iii) to (5.10).
(v) It will be proven in § 6.2 that ∂θa is transversal, from which it will follow that a is 2-transversal,

and it will be proven in § 7.3 that ∂θz is 2-transversal. Since F(x) = ex is smooth, it follows from (iv)
that

e
´ t
−ε(2−

2
3

1
ϕ ))∂θz−

8
3

1−ϕ
ϕ a)◦Ψ

◦Ψ−1

is 2-transversal. Since c−1 is 2-transversal, it now follows from (3.2) that Ψx◦Ψ
−1 is 2-transversal.

(vi) We prove in § 6.2, 6.3, 7.1, and 7.3 that ∂θa, ∂θz,E, and f are all transversal, so our result follows
from applying (i), (ii), and (iii) to (5.11).

�

6. Second Derivative Estimates

6.1. ∂2
θk bounds

Differentiating (4.1) and plugging in (3.7) gives us

φ2
x∂

2
θk◦φ = k′′0 − φxx∂θk◦φ

= k′′0 − φxΦ∂θk◦φ + 2φ2
x
∂θc◦φ∂θk◦φ

c◦φ

= k′′0 − Φk′0 + 2φ2
x
∂θc◦φ∂θk◦φ

c◦φ
. (6.1)

If we define
E := ∂2

θk − 2c−1∂θc∂θk, (6.2)

then it follows that E = [φ−2
x (k′′0 − Φk′0)]◦φ−1 and from (4.11) we conclude that

|E| . εγ2∧γ1−1. (6.3)
=⇒ |∂2

θk| . ε
γ2∧γ1−1 + εγ1 |∂θw|. (6.4)
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With this notation, we can write

∂2
θk = (2∂θk)c−1∂θc + E

−3
2∂t(∂θk◦ψ) = (2∂θk)∂θw + cE, (6.5)

so ∂θk is transversal. The fact that ∂θk is transversal will be used through § 7 and § 6.

6.2. ∂2
θa bounds

Using (3.6) and (A.1a) we have

It∂x(c2◦φ) = 2φxIt
[
−

3
2
∂t(c◦φ) − (4ac + c∂θz)◦φ

]
= c2

0I
−1
t

[
3∂t(c−1◦φ) − (8c−1a + 2c−1∂θz)◦φ

]
= c2

0
[
3∂t

(
I−1

t c−1◦φ
)
− 2I−1

t (c−1∂θz) ◦ φ
]
. (6.6)

Therefore, differentiating (4.5) gives us

∂x($◦φ) = ∂x
(
$0It

)
− 4

k′0ek0

c0
It + 3

k′0ek0

c◦φ
− 8

3k′0ek0It

ˆ t

−ε

I−1
τ (c−1∂θz)◦φ dτ

+ 4
3∂x

(k′0ek0

c2
0

It
) ˆ t

−ε

Iτ(c2◦φ) dτ + 4
3

k′0ek0

c2
0

It

ˆ t

−ε

∂x
(
Iτ

)
(c2◦φ) dτ. (6.7)

It is easy to check that
|I′t | . ε. (6.8)

It follows from this bound and (6.7) that

|∂θ$◦φ| . |$
′
0| + εγ2+1∧γ1 .

By differentiating the equation (4.7) and using our assumptions on the initial data, we conclude that
|$′0| . ε

−1. Therefore,
|∂θ$| . ε

−1. (6.9)

Differentiating (4.9) in space and using our first derivative estimates along with (6.9) gives us

∂2
θa = 2[∂θa − c − 2z]c−1∂θc + 2∂θz − 1

4c2∂θ$e−k + 1
4c2∂θk$e−k

−3
2∂t(∂θa◦ψ) =

(
2[∂θa − c − 2z]∂θw + 4a∂θa − 1

4c3∂θ$e−k + 1
4c3∂θk$e−k)◦ψ. (6.10)

So (6.9) lets us conclude that ∂θa is transversal, which will be used in § 7 and § 8. This equation for ∂2
θa

and our estimate (6.9) also lets us conclude that

|∂2
θa| . ε

−1 + |∂θw|. (6.11)

It now follows from (6.11) that
|∂xΦ| . ε

−2 + |w′′0 |. (6.12)
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6.3. ∂2
θz bounds

Let us introduce the new variable

f := ∂2
θz −

1
2c−1∂θc∂θz + 1

4c∂2
θk. (6.13)

Using the identities from § A.1 along with (6.2) gives us

∂t( f ◦ψ) :=
(
∂t(log c◦ψ) + 1

2∂t(k◦ψ) − 3∂θz◦ψ
)
( f ◦ψ)

+ ( 1
12c2∂θk∂2

θk −
1
2c−1∂θc∂θz2)◦ψ − 1

8E( 1
3c∂θw − c∂θz)◦ψ

− 8
3 (∂2

θaz + 3
2∂θa∂θz −

1
2∂θac−1∂θcz)◦ψ. (6.14)

If we define
Jt := e

1
2 k◦ψ−3

´ t
−ε ∂θz◦ψ, (6.15)

then (6.14) gives us the Duhamel formula

f ◦ψ = c−1
0 (z′′0 −

1
2c−1

0 c′0z′0 + 1
2c0k′′0 )e−

1
2 k0 Jtc◦ψ + 1

12c◦ψJt

ˆ t

−ε

J−1
τ (c∂θk∂2

θk)◦ψ dτ

− 1
2c◦ψJt

ˆ t

−ε

J−1
τ (c−2∂θc∂θz2)◦ψ dτ − 1

8c◦ψJt

ˆ t

−ε

J−1
τ E( 1

3∂θw − ∂θz)◦ψ dτ

− 8
3c◦ψJt

ˆ t

−ε

J−1
τ (∂2

θac−1z + 3
2∂θac−1∂θz − 1

2∂θac−2∂θcz)◦ψ dτ. (6.16)

It now follows from (6.4), (6.3), and (6.11) that

| f | . εβ2∧γ2∧β1−1. (6.17)

It follows immediately from this bound and (6.4) that

|∂2
θz| . ε

β2∧γ2∧β1−1 + εβ1 |∂θw|. (6.18)

This bound tells us that
|Ψ| . ε−1. (6.19)

We can also conclude that ∂θz is transversal. Indeed

∂2
θz =

[1
2∂θz −

1
2c∂θk

]
c−1∂θc + f − 1

4cE

−3
2∂t(∂θz◦ψ) =

([1
2∂θz −

1
2c∂θk

]
∂θw + 1

2c∂θk∂θz − 1
4c2E + 4∂θaz + a∂θz

)
◦ψ. (6.20)

The fact that ∂θz is transversal will be used in § 7 and § 8.

7. Third derivative estimates

7.1. ∂3
θk bounds

Using the fact that E = [φ−2
x (k′′0 − Φk′0)]◦φ−1, we can compute that

∂θE = [φ−3
x (k′′′0 − 3Φk′′0 + (2Φ2 − ∂xΦ)k′0)]◦φ−1 + 4Ec−1∂θc (7.1)
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Define
Ẽ := [φ−3

x (k′′′0 − 3Φk′′0 + (2Φ2 − ∂xΦ)k′0)]◦φ−1. (7.2)

We know from (4.11) and (6.12) that

|Ẽ| . εγ1 |w′′0 ◦φ
−1| + εγ3∧γ2−1∧γ1−2. (7.3)

Since

∂θE = 4Ec−1∂θc + Ẽ

−3
2∂t(E◦ψ) = (4E∂θw − 8∂θa∂θk + Ẽc)◦ψ. (7.4)

it follows that E is transversal and therefore ∂θk is 2-transversal.
Taking ∂θ of (6.2) gives us

∂3
θk = Ẽ + 6Ec−1∂θc + 2c−2∂θc2∂θk + 2c−1∂2

θc∂θk. (7.5)

It follows that

|∂3
θk| . ε

γ3∧γ2−1∧γ1−2 + εγ2∧γ1−1|∂θw|

+ εγ1 |w′′0 ◦φ
−1| + εγ1 |∂θw|2 + εγ1 |∂2

θw|. (7.6)

7.2. ∂3
θa bounds

Taking ∂x of (6.7) gives us

∂2
x($◦φ) = ∂2

x
(
$0It

)
− 4∂x

( k′0ek0

c0
It

)
+ 4

∂x(k′0ek0)
c◦φ

− 4k′0ek0φx
∂θc◦φ
(c◦φ)2

− 8
3∂x(k′0ek0It)

ˆ t

−ε

I−1
τ (c−1∂θz)◦φ dτ − 8

3k′0ek0It

ˆ t

−ε

∂x
(
I−1
τ (c−1∂θz)◦φ

)
dτ

+ 4
3∂

2
x
(k′0ek0

c2
0

It
)ˆ t

−ε

Iτ(c2◦φ) dτ + 8
3∂x

(k′0ek0

c2
0

It
) ˆ t

−ε

∂x
(
Iτ

)
(c2◦φ) dτ

+ 4
3∂x

(k′0ek0

c2
0

It
)ˆ t

−ε

Iτ∂x(c2◦φ) dτ + 4
3

k′0ek0

c2
0

It

ˆ t

−ε

∂x(Iτ)∂x(c2◦φ) dτ

+ 4
3

k′0ek0

c2
0

It

ˆ t

−ε

∂2
x(Iτ)(c

2◦φ) dτ.

It is easy to use (3.7) and (6.11) to obtain that |I′′t |, |∂
2
xIt,τ| . 1. Using (6.6), we have that

∂x(It)∂x(c2◦φ) =
8
3

(ˆ t

−ε

∂x(a◦φ)
)
It∂x(c2◦φ)

=c2
0

[
8∂t

(( ˆ t

−ε

∂x(a◦φ)
)
I−1

t c−1◦φ
)
− 8∂x(a◦φ)I−1

t c−1◦φ + 2∂x(I−1
t )(c−1∂θz)◦φ

]
. (7.7)

Using (6.6) and (7.7), we have that

∂x
(k′0ek0

c2
0

It
)ˆ t

−ε

Iτ∂x(c2◦φ) dτ = −3
∂x(k′0ek0It)

c0
+ 6

c′0k′0ek0

c2
0

It
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+

[
3∂x(k′0ek0) + 8k′0ek0

ˆ t

−ε

∂x(a◦φ) dτ − 6 c′0k′0ek0

c0

]
c−1◦φ

− 2∂x(k′0ek0It)
ˆ t

−ε

I−1
τ (c−1∂θz)◦φ dτ

+ 4
c′0k′0ek0

c0
It

ˆ t

−ε

I−1
τ (c−1∂θz)◦φ dτ.

k′0ek0

c2
0

It

ˆ t

−ε

∂x(Iτ)∂x(c2◦φ) dτ = 8k′0ek0

(ˆ t

−ε

∂x(a◦φ)
)
c−1◦φ + 2k′0ek0It

ˆ t

−ε

∂x(I−1
t )(c−1∂θz)◦φ dτ

− 8c2
0k′0ek0It

ˆ t

−ε

I−3
τ (∂θac−3)◦φ dτ.

Therefore, we have

∂2
x($◦φ) = ∂2

x
(
$0It

)
− 8

∂x(k′0ek0It)
c0

+ 12
c′0k′0ek0

c2
0

It

+

[
8∂x(k′0ek0) + 64

3 k′0ek0

ˆ t

−ε

∂x(a◦φ) dτ − 8 c′0k′0ek0

c0

]
c−1◦φ − 4k′0ek0φx(c−2∂θc)◦φ

− 16
3 ∂x(k′0ek0It)

ˆ t

−ε

I−1
τ (c−1∂θz)◦φ dτ + 16

3

c′0k′0ek0

c0
It

ˆ t

−ε

I−1
τ (c−1∂θz)◦φ dτ

+ 4
3∂

2
x
(k′0ek0

c2
0

It
)ˆ t

−ε

Iτ(c2◦φ) dτ + 8
3∂x

(k′0ek0

c2
0

It
) ˆ t

−ε

∂x
(
Iτ

)
(c2◦φ) dτ

+ 4
3

k′0ek0

c2
0

It

ˆ t

−ε

∂2
x(Iτ)(c

2◦φ) dτ

+ 2
3c2

0k′0ek0It

ˆ t

−ε

I−3
τ

([
c−4∂θz + c−3∂θk

]
∂θw

)
◦φ dτ

− 2
3c2

0k′0ek0It

ˆ t

−ε

I−3
τ (c−4∂θz2 + c−3∂θk∂θz)◦φ dτ

+ c2
0k′0ek0It

ˆ t

−ε

I−3
τ (2

3c−2E − 8
3c−3 f − 32

3 ∂θac−3)◦φ dτ. (7.8)

Rearranging this and using k◦φ = k0, (4.1), (4.6), and (3.8), we have

∂2
θ$ = Ac−1∂θc + B (7.9)

where

A := 2∂θ$ − 4c−1ek∂θk, (7.10)
B◦φ := −(Q2c)◦φ

+
[
c−4

0 I
4
t ∂

2
x
(
$0It

)
− 8c−5

0 I
4
t ∂x(k′0ek0It) + 12c−6

0 c′0k′0ek0I5
t
]
c4◦φ

+

[
8∂x(k′0ek0) + 64

3 k′0ek0

ˆ t

−ε

∂x(a◦φ) dτ − 8 c′0k′0ek0

c0

]
c−4

0 I
4
t c3◦φ

− 16
3 c−4

0 I
4
t ∂x(k′0ek0It)

ˆ t

−ε

I−1
τ (c−1∂θz)◦φ dτc4◦φ + 16

3 c−5
0 c′0k′0ek0I5

t

ˆ t

−ε

I−1
τ (c−1∂θz)◦φ dτc4◦φ
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+ 4
3c−4

0 I
4
t ∂

2
x
(k′0ek0

c2
0

It
)ˆ t

−ε

Iτ(c2◦φ) dτc4◦φ + 8
3c−4

0 I
4
t ∂x

(k′0ek0

c2
0

It
)ˆ t

−ε

∂x
(
Iτ

)
(c2◦φ) dτc4◦φ

+ 4
3c−6

0 k′0ek0I5
t

ˆ t

−ε

∂2
x(Iτ)(c

2◦φ) dτc4◦φ

+ 2
3c−2

0 k′0ek0I5
t

[ ˆ t

−ε

I−3
τ

([
c−4∂θz + c−3∂θk

]
∂θw

)
◦φ dτ

−

ˆ t

−ε

I−3
τ (c−4∂θz2 + c−3∂θk∂θz)◦φ dτ

]
c4◦φ

+ c−2
0 k′0ek0I5

t

ˆ t

−ε

I−3
τ (2

3c−2E − 8
3c−3 f − 32

3 ∂θac−3)◦φ dτc4◦φ. (7.11)

Taking two derivatives of (4.7), we find that

|$′′0 | . ε
−2 + |w′′0 |. (7.12)

It follows that

|B| . ε−2 + |w′′0 ◦φ
−1|. (7.13)

We therefore conclude that

|∂2
θ$| . ε

−2 + |w′′0 ◦φ
−1| + ε−1|∂θw|. (7.14)

Differentiating (4.3) and using (4.1) allows us to compute that

−3∂t(∂θ$◦φ) = (A∂θw + C)◦φ (7.15)

where

C := 4ekc−1∂θk∂θz + 2∂θ$∂θz
− 8a∂θ$ + 8∂θa$ + 4ekE + 4ek∂θk2. (7.16)

This, along with (7.14), implies that ∂θ$ is transversal. Therefore (see (6.10)), ∂θa is 2-transversal.
Now taking ∂θ or (6.10) and using (6.4), (6.18), and (7.14) gives us

∂3
θa = 2[∂θa − c − 2z]c−1∂2

θc + O
(
ε−2 + |w′′0 ◦φ

−1| + ε−1|∂θw| + |∂θw|2
)
. (7.17)

Now, one can compute that

∂2
x(a◦φ) = φ2

x(−[1 + 2c−1z]∂θw + [3 + 2c−1z]∂θz)◦φ
+ φ2

x(
1
4c2∂θk$e−k − 1

4c2∂θ$e−k + ∂θaQ2)◦φ. (7.18)

It now follows from (4.11), (5.7), (6.4), (6.18), and (7.14) thatˆ t

−ε

∂3
x(a◦φ) dτ = φ3

x([3 + 6c−1z]c−1∂θc)◦φ + O
(
ε−1 + ε|w′′0 |

)
. (7.19)

Therefore,

Φxx = 2
c2

0c′′′0 − 3c0c′0c′′0 + 2(c′0)3

c3
0

− φ3
x([16 + 32c−1z]c−1∂θc)◦φ + O

(
ε−1 + ε|w′′0 |

)
. (7.20)

These equations will be used in § 8.1, § 8.2, § 9.1, and § 9.2.‡‡

‡‡For the fifth-order estimates, one actually has to write out the full formula for (7.19) and (7.20) and work with it. We will omit such
straightforward but space-consuming details.
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7.3. ∂3
θz bounds

We know that

ψx(∂θ f ◦ψ) =

(
1
2ψx∂θk◦ψ + ψx(c−1∂θc)◦ψ − 3

ˆ t

−ε

ψx∂
2
θz◦ψ dτ

)
f ◦ψ + Jtc◦ψ∂x

(
J−1

t (c−1 f )◦ψ
)
.

Recall from our Duhamel formula for f that

J−1
t (c−1 f )◦ψ

= c−1
0 (z′′0 −

1
2c−1

0 c′0z′0 + 1
2c0k′′0 )e−

1
2 k0

+

ˆ t

−ε

J−1
t (

[ 1
12∂θk

2 − 1
4c−2∂θz2 − 1

24E − 2∂θac−2z + 8
3c−1z + 16

3 c−2z2]∂θw)◦ψ dτ

+

ˆ t

−ε

J−1
t ( 1

12c∂θkE − 1
12∂θk

2∂θz + 1
4c−2∂θz3 + 1

8E∂θz)◦ψ dτ

+

ˆ t

−ε

J−1
t (2∂θac−2∂θzz − 8c−1∂θzz − 16

3 c−2∂θzz2 − 4∂θac−1∂θz + 2
3c∂θ$e−kz − 2

3c∂θk$e−kz)◦ψ. (7.21)

Taking ∂x of (7.21) and using (5.4) and (7.3), we have that

Jtc◦ψ∂x

(
J−1

t (c−1 f )◦ψ
)

= ψx(−1
8∂θc∂θk

2 + 3
8c−2∂θc∂θz2 + 1

16E∂θc)◦ψ

+ ψx(3∂θac−2∂θcz − 4c−1∂θcz − 8c−2∂θcz2)◦ψ
+ O(εβ3∧γ3∧β2−1∧γ2−1∧β1−2 + εβ1 |w′′0 | + εβ1+γ1+1‖w′′0 ‖L∞). (7.22)

Therefore

∂θ f = c−1∂θc f − 1
8∂θc∂θk

2 + 3
8c−2∂θc∂θz2 + 1

16E∂θc

+ 3∂θac−2∂θcz − 4c−1∂θcz − 8c−2∂θcz2

+ O(εβ3∧γ3∧β2−1∧γ2−1∧β1−2 + εβ1 |w′′0 ◦ψ
−1| + εβ1+γ1+1‖w′′0 ‖L∞). (7.23)

Taking ∂θ of (6.20) and using these bounds, we conclude

∂3
θz = [ 1

2∂θz −
1
2c∂θk]c−1∂2

θc

+ O
(
εβ3∧γ3∧β2−1∧γ2−1∧β1−2 + εβ2∧γ2∧β1−1|∂θw| + εβ1 |w′′0 ◦ψ

−1| + εβ1 |∂θw|2
)
. (7.24)

Since (6.14) can be rewritten as

−3
2∂t( f ◦ψ) = ([ f − 1

8c∂θk2 + 3
8c−1∂θz2 + 1

16cE + 3∂θac−1z − 4z − 8c−1z2]∂θw)◦ψ
+ ((4a + 1

2c∂θk + 9
2∂θz) f + 1

8c∂θk2∂θz − 1
8c2∂θkE − 3

8c−1∂θz3)◦ψ
+ (− 3

16c∂θzE − (3∂θac−1z − 4z − 8c−1z2)∂θz + 6∂θa∂θz)◦ψ
+ (8z∂θz + c2∂θ$e−kz + c2∂θ$e−kz)◦ψ.

we can also conclude that f is transversal, and therefore ∂θz is 2-transversal.
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8. Fourth derivative estimates

8.1. ∂4
θk bounds

Taking ∂x of Ẽ◦φ and using (4.1) and (7.20) gives us

∂x(Ẽ◦φ) = φ−3
x

(
∂4

xk0 − 6Φk′′′0 − (4∂xΦ − 11Φ2)k′′0 − (∂2
xΦ − 7∂xΦΦ + 6Φ3)k′0

)
+ 6φx(Ẽc−1∂θc)◦φ

= φ−3
x

(
∂4

xk0 − 6Φk′′′0 − (4∂xΦ − 11Φ2)k′′0 − (2 c2
0c′′′0 −3c0c′0c′′0 +2(c′0)3

c3
0

− 7∂xΦΦ + 6Φ3)k′0
)

+ φx
([
∂θk[16 + 32c−1z] + 6Ẽ

]
c−1∂θc

)
◦φ + O

(
εγ1−1 + εγ1+1|w′′0 |

)
.

⇒ ∂θẼ =
[
φ−4

x
(
∂4

xk0 − 6Φk′′′0 − (4∂xΦ − 11Φ2)k′′0 − (2 c2
0c′′′0 −3c0c′0c′′0 +2(c′0)3

c3
0

− 7∂xΦΦ + 6Φ3)k′0
)]
◦φ−1

+
[
∂θk[16 + 32c−1z] + 6Ẽ

]
c−1∂θc + O

(
εγ1−1 + εγ1+1|w′′0 |

)
.

Define
Ê = ∂θẼ −

[
∂θk[16 + 32c−1z] + 6Ẽ

]
c−1∂θc. (8.1)

Then (4.11) and (6.12) tell us that

|Ê| . εγ4∧γ3−1∧γ2−2∧γ1−3 + εγ2∧γ1−1|w′′0 ◦φ
−1| + εγ1 |w′′′0 ◦φ

−1|.

Using (7.18), we compute that

−3∂t(Ẽ◦φ) = (6Ẽ∂θw + 6Ẽ∂θz)◦φ − 16φ−3
x k′′0 ∂x(a◦φ)

+ 16φ−3
x k′0

(
4Φ∂x(a◦φ) − ∂2

x(a◦φ)
)

=
([
∂θk[16 + 32c−1z] + 6Ẽ

]
∂θw + 6Ẽ∂θz

)
◦φ + O

(
εγ2∧γ1−1). (8.2)

so Ẽ is transversal, and therefore ∂θk is 3-transversal. This will be used in § 9.
Taking ∂θ of (7.5) gives us

∂4
θk = Ê +

[
16 + 32c−1z

]
c−1∂θc∂θk + 12Ẽc−1∂θc

+ 20Ec−2∂θc2 + 8Ec−1∂2
θc + 6c−2∂θc∂2

θc∂θk + 2c−1∂3
θc∂θk. (8.3)

Note that the terms of order |∂θw|3 happen to cancel when this computation is done.
It follows from (6.3), (6.18), (7.3), and (7.24) that

|∂4
θk| . ε

γ4∧γ3−1∧γ2−1∧γ1−3 + εγ3∧γ2−1∧γ1−2|∂θw|

+ εγ2∧γ1−1(|w′′0 ◦φ−1| + |∂θw|2 + |∂2
θw|

)
+ εγ1

(
|w′′′0 ◦φ

−1| + |w′′0 ◦φ
−1||∂θw| + |∂θw||∂2

θw| + |∂
3
θw|

)
. (8.4)

8.2. ∂4
θa bounds

At this point, we can apply Lemma 5.5 to conclude that the variable Q2 defined in (3.8) is transversal.
In fact, Lemma 5.5 allows us to conclude that Q2 is 2-transversal, but we will not need to use that until
§ 9.
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Recall from § 7.2 that  ∂2
θ$ = Ac−1∂θc + B

−3∂t(∂θ$◦φ) = (A∂θw + C)◦φ

where A, B,C are defined by (7.10), (7.11), and (7.16). Since c, ∂θk, ∂θa, ∂θz, ∂θ$,E are all transversal,
it is immediate that A and C are transversal. We now also know that f and Q2 are transversal, so Lemma
5.5 lets us conclude that B is transversal. So ∂θ$ is 2-transversal. This fact will be utilized in § 8.3.

It is immediately clear from (7.10) that

∂3
θ$ = ∂θAc−1∂θc − Ac−2∂θc2 + Ac−1∂2

θc + ∂θB.

Since

∂θA = [2A − 4c−1ek∂θk]c−1∂θc + 2B − 4c−1ek∂θk2 − 4c−1ekE,

we conclude that

∂3
θ$ = Ac−1∂2

θc + [A − 4c−1ek∂θk]c−2∂θc2 + [2B − 4c−1ek∂θk2 − 4c−1ekE]c−1∂θc + ∂θB (8.5)

So, to estimate ∂3
θ$, all that remains is to bound ∂θB.

We know from (7.19) that

∂3
xIt = φ3

x([3 + 6c−1z]c−1∂θc)◦φ + O
(
ε−1 + ε|w′′0 |

)
. (8.6)

We know from (5.6) that

∂x

(ˆ t

−ε

I−3
τ

([
c−4∂θz + c−3∂θk

]
∂θw

)
◦φ dτ

)
= −3φx([c−4∂θz + c−3∂θk]c−1∂θc)◦φ + O(εβ2+1∧γ2+1∧β1).

It is straightforward to compute that

∂θQ2 = 2Q2c−1∂θc + O(ε−2 + |w′′0 ◦φ
−1|).

Taking ∂3
x of (4.7) produces

|$′′′0 | . ε
−3 + ε−1|w′′0 | + |w

′′′
0 |. (8.7)

Therefore, taking ∂x of (7.11) and using (7.3) and (7.23), we conclude that

|∂θB| . ε−3 + ε−1|w′′0 ◦φ
−1| + |w′′′0 ◦φ

−1| +
(
ε−2 + |w′′0 ◦φ

−1|
)
|∂θw|. (8.8)

Therefore,

|∂3
θ$| . ε

−3 + ε−1|w′′0 ◦φ
−1| + |w′′′0 ◦φ

−1|

+
(
ε−2 + |w′′0 ◦φ

−1|
)
|∂θw| + ε−1|∂θw|2 + ε−1|∂2

θw|. (8.9)

Now, taking ∂3
θ of (4.9) and using (6.4), (6.9), (7.6), (7.14), (7.24), and (8.9) shows that

|∂4
θa| . ε

−3 + ε−1|w′′0 ◦φ
−1| + |w′′′0 ◦φ

−1|

+
(
ε−2 + |w′′0 ◦φ

−1|
)
|∂θw| + ε−1|∂θw|2 + ε−1|∂2

θw|

+ |∂θw||∂2
θw| + |∂

3
θw|. (8.10)
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8.3. ∂4
θz bounds

Abusing notation, introduce a function J defined so that

J◦ψ(x, t) = Jt(x).

Lemma 5.5 implies that J is 2-transversal. Using the new function J, we can rewrite (7.21) as

(J−1c−1 f )◦ψ = c−1
0 (z′′0 −

1
2c−1

0 c′0z′0 + 1
2c0k′′0 )e−

1
2 k0 +

ˆ t

−ε

(Jh1∂θw)◦ψ dτ +

ˆ t

−ε

(Jh2)◦ψ dτ

Given everything that has been proven up to this point, h1 and h2 are both 2-transversal. It follows from
Lemma 5.5 that J−1c−1 f is 2-transversal, and since c and J are both 2-transversal, it thus follows that f
is 2-transversal. This will be utilized in § 9.

Using Lemma 5.4 on the functions h1 and h2, along with estimates from the previous sections, we
conclude that∣∣∣∣∣∂2

x

(ˆ t

−ε

(Jh1∂θw)◦ψ dτ +

ˆ t

−ε

(Jh2)◦ψ dτ
)∣∣∣∣∣ . εµ−4 + εµ−3|∂θw◦ψ| + εµ−2|∂θw◦ψ|2 + εµ−2|∂2

θw◦ψ|.

It therefore follows that∣∣∣∣∣∂2
x

(
(J−1c−1 f )◦ψ

)∣∣∣∣∣ . εµ−5 + εµ−3|∂θw◦ψ| + εµ−2|∂θw◦ψ|2 + εµ−2|∂2
θw◦ψ|.

We conclude that

|∂2
θ f | . εµ−5 + εµ−

7
2 |∂θw| + εµ−2|∂θw|2 + εµ−2|∂2

θw|.

It now follows that

|∂4
θz| . ε

µ−5 + εµ−
7
2 |∂θw| + εµ−2|∂θw|2 + εµ−2|∂2

θw|

+ εβ1
(
|∂θw|3 + |∂θw||∂2

θw| + |∂
3
θw|

)
. (8.11)

9. Fifth Order Estimates

9.1. ∂5
θk bounds

We already know (see § 8.1) that ∂θk is 3-transversal, and we will not need to show that ∂θk is
4-transversal. ∂θk is 4-transversal, but it doesn’t matter for our purposes. One can easily establish the
bound

|∂θÊ| . ε
γ5∧γ4−1∧γ3−2∧γ2−3∧γ1−4 + εγ3∧γ2−1∧γ1−2|w′′0 ◦φ

−1| + εγ2∧γ1−1|w′′′0 ◦φ
−1|

+ εγ1(|w′′0 ◦φ
−1|2 + |∂4

xw0◦φ
−1|)

+ (εγ4∧γ3−1∧γ2−2∧γ1−3 + εγ2∧γ1−1|w′′0 ◦φ
−1| + εγ1 |w′′′0 ◦φ

−1|)|∂θw|

It now follows from taking ∂θ of (8.3) that

∂5
θk = 2c−1∂4

θc∂θk + O
(
εγ5∧γ4−1∧γ3−

5
2∧γ2−4∧γ1−

11
2 + εγ4∧γ3−1∧γ2−

5
2∧γ1−4|∂θw|

+ εγ3∧γ2−1∧γ1−
5
2 (|∂θw|2 + |∂2

θw|)
+ εγ2∧γ1−1(|∂θw|3 + |∂θw||∂2

θw| + |∂
3
θw|)

+ εγ1(|∂θw|2|∂2
θw| + |∂

2
θw|

2 + |∂θw||∂3
θw|)

)
. (9.1)
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9.2. ∂5
θa bounds

Since c, ∂θk, ∂θa, ∂θz, ∂θ$, and E are all 2-transversal, it follows immediately that A and C are 2-
transversal. f and Q2 are also 2-transversal, so it follows from Lemma 5.5 that B is 2-transversal.
Therefore, ∂θ$ is 3-transversal. This will be used in § 9.3.

Taking ∂θ of (8.5) and using the bounds we already have on A, B,C, ∂θA, and ∂θB gives us

|∂4
θ$| . |∂

2
θB| + ε−4|∂θw| + ε−5/2(|∂θw|2 + |∂2

θw|) + ε−1(|∂θw|3 + |∂θw||∂2
θw| + |∂

3
θw|).

∂2
θB can be bounded in a manner similar to the way ∂θB was bounded. One simply needs to use a lemma

similar to Lemma 5.4 but for the 2-characteristics, which is very straightforward to prove at this point.
Then, since ∂2

θQ and ∂4
xIt can be explicitly computed and bounded §§ , one can bound ∂2

θB and conclude
that

|∂4
θ$| . ε

−11/2 + ε−4|∂θw| + ε−5/2(|∂θw|2 + |∂2
θw|) + ε−1(|∂θw|3 + |∂θw||∂2

θw| + |∂
3
θw|).

From here, taking ∂3
θ of (6.10) gives

∂5
θa = 2[∂θa − c − 2z]c−1∂4

θc + O
(
ε−11/2 + ε−4|∂θw| + ε−5/2(|∂θw|2 + |∂2

θw|)
+ ε−1(|∂θw|3 + |∂θw||∂2

θw| + |∂
3
θw|)

+ |∂θw||∂3
θw| + |∂θw|

2|∂2
θw| + |∂

2
θw|

2 )
. (9.2)

9.3. ∂5
θz bounds

One can use Lemma 5.2, Lemma 5.4, and Lemma 5.5 to derive a lemma for 3-transversal functions
analogous to Lemma 5.4. Bounding ∂5

θz now follows in a manner completely analogous to § 8.3. One
obtains

∂5
θz = [ 1

2∂θz −
1
2c∂θk]c−1∂4

θc + O
(
εµ−13/2 + εµ−5|∂θw| + εµ−7/2(|∂θw|2 + |∂2

θw|)
+ εµ−2(|∂θw|3 + |∂θw||∂2

θw| + |∂
3
θw|)

εβ1(|∂θw|4 + |∂θw||∂3
θw| + |∂θw|

2|∂2
θw| + |∂

2
θw|

2)
)
. (9.3)

10. Estimates along η

10.1. Second derivative estimates η

It follows from the first derivative estimates that

|∂xIt| . ε
γ1

where It is the integrating factor in (3.13). It follows from the second derivative estimates that

ηx|∂
2
θk◦η| . ε

γ2∧γ1−1

ηx|∂
2
θa◦η| . ε

−1

ηx|∂
2
θz◦η| . ε

β2∧γ2∧β1−1

§§One must write out the full equation for (7.19) in order to do this, which is arduous but straightforward.
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Taking ∂x of (3.14) and using these bounds, we find that

|∂x
(
ηxqw◦η)| ≤ |w′′0 |(1 + O(ε)) + O(εγ2∧γ1−1) + O(ε0∧β1+γ1)(ε + t) sup

[−ε,t]
ηxx

Taking ∂x of (3.15) and plugging in this estimate gives us

sup
[−ε,t]
|ηxx| ≤ (ε + t)|w′′0 |(1 + O(ε)) + O(εβ2∧γ2∧β1−1))(ε + t) + O(εβ1)(ε + t) sup

[−ε,t]
|ηxx|.

=⇒ sup
[−ε,t]
|ηxx| ≤

(ε + t)
[
|w′′0 |(1 + O(ε)) + O(εβ2∧γ2∧β1−1)

]
1 − O(εµ)

. (ε + t)(|w′′0 | + εβ2∧γ2∧β1−1). (10.1)

It follows that
|ηxx(x, t)| ≤ B(ε−2(ε + t); ε−5/2(ε + t)). (10.2)

Plugging (10.1) into our bound for |∂x(ηxqw◦η)| gives us

|∂x
(
ηxqw◦η)| ≤ |w′′0 |(1 + O(ε)) + O(εγ2∧γ1−1) (10.3)

Using the ηxx bound along with our second derivative bounds, we obtain that

|∂2
x(k◦η)| . εγ2∧γ1−1 + εγ1(ε + t)|w′′0 | (10.4)
|∂2

x(a◦η)| . ε−1 + (ε + t)|w′′0 | (10.5)
|∂2

x(z◦η)| . εβ2∧γ2∧β1−1 + εβ1(ε + t)|w′′0 | (10.6)

|∂2
x($◦η)| . ε−

5
2 + ε−1(ε + t)|w′′0 |. (10.7)

Since

∂2
xIt =

(
1
8∂

2
x(k◦η) − 8

3

ˆ t

−ε

∂2
x(a◦η) dτ

)
It +

(
1
8∂x(k◦η) − 8

3

ˆ t

−ε

∂x(a◦η) dτ
)2

It,

it now follows that

|∂2
xIt| . ε

γ2∧γ1−1 + εγ1(ε + t)|w′′0 |.

Last since
ηxqw◦η = ∂x(w◦η) − 1

4c◦η∂x(k◦η),

we know that

∂2
x(w◦η) = ∂x(ηxqw◦η) + 1

4∂x(c◦η)∂x(k◦η) + 1
4c◦η∂2

x(k◦η),

and therefore (10.1) and (10.4) imply that

|∂2
x(w◦η)| . |w′′0 | + εγ2∧γ1−1. (10.8)

Since

η2
x∂

2
θw◦η = ∂2

x(w◦η) − ηxx∂θw◦η,

it follows that

η2
x|∂

2
θw◦η| . |w

′′
0 | + εγ2∧γ1−1 + ε−1 |ηxx |

ηx
. (10.9)

=⇒ η3
x|∂

2
θw◦η| . |w

′′
0 | + εβ2∧γ2∧β1−1. (10.10)
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10.2. Third derivative estimates along η

Using the third derivative estimates and (10.9) gives us

η2
x|∂

3
θk◦η| . ε

γ3∧γ2−1∧γ1−2 + εγ1 |w′′0 | + εγ1 |w′′0 ◦φ
−1◦η| + εγ1−1 |ηxx |

ηx

η2
x|∂

3
θa◦η| . ε

−2 + |w′′0 | + |w
′′
0 ◦φ

−1◦η| + ε−1 |ηxx |

ηx
.

η2
x|∂

3
θz◦η| . ε

β3∧γ3∧β2−1∧γ2−1∧β1−2 + εβ1 |w′′0 | + εβ1 |w′′0 ◦ψ
−1◦η| + εβ1−1 |ηxx |

ηx

η2
x|∂

3
θ$◦η| . ε

−3 + ε−1|w′′0 | + ε−1|w′′0 ◦φ
−1◦η| + |w′′′0 ◦φ

−1◦η| + ε−2 |ηxx |

ηx
.

These estimates will be useful in § 10.4 and § 10.5.
Multiplying the above bounds by ηx gives us

η3
x|∂

3
θk◦η| . ε

γ3∧γ2−1∧γ1−2 + εγ1 |w′′0 | + εγ1 |w′′0 ◦φ
−1◦η|

η3
x|∂

3
θa◦η| . ε

−2 + |w′′0 | + |w
′′
0 ◦φ

−1◦η|

η3
x|∂

3
θz◦η| . ε

β3∧γ3∧β2−1∧γ2−1∧β1−2 + εβ1 |w′′0 | + εβ1 |w′′0 ◦ψ
−1◦η|

η3
x|∂

3
θ$◦η| . ε

−3 + ε−1|w′′0 | + ε−1|w′′0 ◦φ
−1◦η| + |w′′′0 ◦φ

−1◦η|.

Using this, we compute that∣∣∣∣∣∂2
x
(
ηxqw◦η

)
− w′′′0 e−

1
8 k0 It

∣∣∣∣∣ . εγ1 |w′′0 | + εγ3∧γ2−1∧µ−2 + ε1∧β1+γ1+1(|w′′0 ◦ψ
−1◦η| + |w′′0 ◦φ

−1◦η|)

+ sup
[−ε,t]
|ηxx|ε

0∧β2+γ1+1∧γ2+γ1+1∧β1+γ1 + ε0∧β1+γ1(ε + t) sup
[−ε,t]
|ηxxx|

. εγ1 |w′′0 | + ε−2∧γ3∧β2+γ1−1∧γ2−1∧β1+γ1−2 + ε0∧β1+γ1(ε + t) sup
[−ε,t]
|ηxxx|.

This is true for all x ∈ T, t ∈ [−ε,T∗).
Taking ∂2

x of (3.15) and using this bound tells us that

sup
[−ε,t]
|ηxxx| . (ε + t)

(
|w′′′0 | + εµ−4 + εβ1 sup

[−ε,t]
|ηxxx|

)
.

=⇒ |ηxxx| . (ε + t)
(
|w′′′0 | + εµ−4)

everywhere. Using this bound, we conclude that∣∣∣∣∣ηxxx − w′′′0

ˆ t

−ε

e−
1
8 k0 Iτ dτ

∣∣∣∣∣ . (ε + t)2εβ1 |w′′′0 | + (ε + t)εµ−4.

Since w′′′0 ∼ ε
−4 for |x| ≤ ε3/2 and ‖w′′′0 ‖L∞ . ε

−4, this bound lets us conclude that

ηxxx ∼ (ε + t)ε−4 ∀ |x| ≤ ε3/2,

and
|ηxxx| . ε

−3 ∀ (x, t) ∈ T × [−ε,T∗].

We now conclude that∣∣∣∣∣∂2
x
(
ηxqw◦η

)∣∣∣∣∣ . |w′′′0 | + εµ|w′′0 | + ε−2∧γ3∧β2+γ1−1∧γ2−1∧β1+γ1−2
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We know that for all (x, t) ∈ T × [−ε,T∗) we have

|∂3
x(k◦η)| . (εγ3∧γ2−1∧γ1−2 + εγ1 |w′′0 | + εγ1 |w′′0 ◦φ

−1◦η|)ηx + εγ2∧γ1−1|ηxx| + εγ1 |ηxxx|.

|∂3
x(a◦η)| . (ε−2 + |w′′0 | + |w

′′
0 ◦φ

−1◦η|)ηx + ε−1|ηxx| + |ηxxx|.

|∂3
x(z◦η)| . (εβ3∧γ3∧β2−1∧γ2−1∧β1−2 + εβ1 |w′′0 | + εβ1 |w′′0 ◦ψ

−1◦η|)ηx + εβ2∧γ2∧β1−1|ηxx| + εβ1 |ηxxx|

|∂3
x($◦η)| . (ε−3 + ε−1|w′′0 | + ε−1|w′′0 ◦φ

−1◦η| + |w′′′0 ◦φ
−1◦η|)ηx + ε−2|ηxx| + ε−1|ηxxx|.

Therefore, we have the bounds

|∂3
x(k◦η)| . εµ−3

|∂3
x(a◦η)| . ε−3

|∂3
x(z◦η)| . εµ−4

|∂3
x($◦η)| . ε−4.

Since

∂2
x(ηxqw◦η) = ∂3

x(w◦η) − 1
4∂

2
x(c◦η)∂x(k◦η) − 1

2∂x(c◦η)∂2
x(k◦η) − 1

4c◦η∂3
x(k◦η).

It follows that

|∂3
x(w◦η)| . ε−4. (10.11)

Last it is easy to use the bounds on ∂3
x(k◦η) and ∂3

x(a◦η) to conclude that

|∂3
xIt| . ε

µ−3.

10.3. Blowup time, location, and sharp bounds for ηx and ηxx

Lemma 10.1 (Existence and uniqueness of blowup label). There exists a unique label x∗ ∈ T such that
ηx(x∗,T∗) = 0. Furthermore, we have |x∗| . εµ+2 and

ηx(x∗,T∗) = ηxx(x∗,T∗) = 0.

Proof of Lemma 10.1. Due to (4.16), we know that ηx is bound below outside of (x, t) ∈ [−ε3/2, ε3/2] ×
[−ε,T∗]. We know that ηxxx > 0 in [−ε3/2, ε3/2] × (−ε,T∗], so for all t ∈ (−ε,T∗] there is at most one
zero of ηxx(·, t) in (−ε3/2, ε3/2].

We know from § 10.1 that for all (x, t) ∈ T × [−ε,T∗] we have

∣∣∣ηxx(x, t) − w′′0 (x)
ˆ t

−ε

e−
1
8 k0(x)Iτ(x) dτ

∣∣∣ . (ε + t)
(
εβ1+1|w′′0 (x)| + εβ2∧γ2∧β1−1).

Recall that |w′′0 (x)| . ε−2 for |x| ≤ ε2. It follows that for |x| ≤ ε2 we have

∣∣∣ηxx − w′′0

ˆ t

−ε

e−
1
8 k0 Iτ dτ

∣∣∣ . (ε + t)εµ−2.
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Since w′′0 (0) = 0 and w′′′0 ∼ ε
−4 for |x| ≤ ε3/2, it follows that

|w′′0 (x)| & ε−4|x| and sgn (w′′0 (x)) = sgn (x)

for |x| ≤ ε3/2. Therefore, we have

|ηxx| & (ε + t)ε−4[|x| − O(εµ+2)] ∀ |x| ≤ ε2.

It follows that there exists a constant C such that for Cε2+µ < x < ε2 we have ηxx(x, t) > 0 and for
−ε2 < x < −Cε2+µ we have ηxx(x, t) < 0. So for all t ∈ (−ε,T∗], there exists a unique zero of ηxx(·, t) in
(−ε3/2, ε3/2).

Therefore, we conclude that there exists a C2 curve x∗ : (−ε,T∗]→ R such that

{(x, t) : |x| ≤ ε3/2, ηxx(x, t) = 0,−ε < t ≤ T∗} = {(x∗(t), t) : −ε < t ≤ T∗}.

Furthermore, we know that |x∗(t)| ≤ Cε2+µ for all t. From here it is easy to conclude that ηxx(x, t) < 0
for −ε3/2 ≤ x < x∗(t) and ηxx(x, t) > 0 for x∗(t) < x ≤ ε3/2, so that x∗(t) must be the minimizer of ηx(·, t)
over [−ε3/2, ε3/2].

Define x∗ := x∗(T∗). We know that minT ηx(·, t)→ 0 as t → T∗ and ηx is bound below for |x| ≥ ε3/2,
so ηx(x∗(t), t)→ 0 as t → T∗. Our result now follows. �

We can now improve upon our lower bounds for ηx. Let x∗(t) be the curve from the proof of Lemma
10.1. If t > −ε and x ∈ (−π, π], there exists x̄(x, t) in between x and x∗ such that

ηx(x, t) = ηx(x∗(t), t) +
ηxxx(x̄(x, t), t)

2
(x − x∗(t))2

≥
ηxxx(x̄(x, t), t)

2
(x − x∗(t))2.

Since |x∗| . ε2+µ, if ε2 ≤ |x| ≤ ε3/2, then (x − x∗(t))2 & ε4 and ηxxx(x̄, t) & (ε + t)ε−4, so we have

ηx(x, t) & (ε + t).

It follows that for ε2 ≤ |x| ≤ ε3/2, − ε2 ≤ t ≤ T∗ we have ηx & ε. We already know (see § 4.4) that

ηx ≥ −
t
ε

+ O(εµ)

for all (x, t) ∈ T × [−ε,T∗], so we conclude that

ηx(x, t) & ε for ε2 ≤ |x| ≤ ε3/2. (10.12)

Lemma 10.2 (Improved estimates for ηx and ηxx). There exist constants A, c,C such that for all
(x, t) ∈ [−ε2, ε2] × [−ε,T ∗), we have

1
2ε

(T∗ − t) + c(ε + t)ε−4(x − x∗)2 ≤ ηx(x, t) ≤
3
2ε

(T∗ − t) + Cε−3(x − x∗)2 (10.13)

−Aε−2(T∗ − t) + c(ε + t)ε−4(x − x∗) ≤ ηxx(x, t) ≤ Aε−2(T∗ − t) + Cε−3(x − x∗) if x ≥ x∗ (10.14)
−Aε−2(T∗ − t) + Cε−3(x − x∗) ≤ ηxx(x, t) ≤ Aε−2(T∗ − t) + c(ε + t)ε−4(x − x∗) if x ≤ x∗ (10.15)
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Proof of Lemma 10.2. Fix a point (x, t) ∈ [−ε2, ε2] × [−ε,T ∗). We know that ηx is C1 on T × [−ε,T∗]
and is C2 on T × [−ε,T∗). Therefore, Taylor’s theorem tells us that there exists a point (x1, t1) on the
segment connecting (x∗,T∗) to (x, t) such that

ηx(x, t) = ηxt(x∗,T∗)(t − T∗) + 1
2ηxxx(x1, t1)(x − x∗)2

+ ηxxt(x1, t1)(t − T∗)(x − x∗) + 1
2ηxtt(x1, t1)(t − T∗)2. (10.16)

Similarly, there exists a point (x2, t2) on the segment such that

ηxx(x, t) = ηxxx(x2, t2)(x − x∗) + ηtxx(x2, t2)(t − T∗). (10.17)

We know that
ηxt = w′0e−

1
8 k0 It + O(εβ1).

We also know that since w′′0 (0) = 0, |x∗| . ε2+µ, and |w′′′0 | . ε
−4 we have

−1
ε
≤ w′0(x∗) ≤ −1+Cε1+2µ

ε
.

−1
ε
− O(εγ1) ≤ ηxt(x∗,T∗) ≤ −1+Cε1+2µ

ε
+ O(εγ1).

We also know that for i = 1, 2
ηxxx(xi, ti) ∼ (ε + ti)ε−4.

ηtxx = ∂x(ηxqw◦η) + 1
4∂x(c◦η)∂x(k◦η) + 1

4c◦η∂2
x(k◦η) + 1

3∂
2
x(z◦η).

So for i = 1, 2
|ηtxx(xi, ti)| . ε−2.

Also

ηxtt = (w′0 −
1
4c0k′0)∂t

(
Ite−

1
8 k0

)
+ ( 1

12c∂θqz − 8
3∂θaw)◦η

+ ηxt( 1
4∂θk + 1

3∂θz)◦η + ηx( 1
4∂t(∂θk◦η) + 1

3∂t(∂θz◦η)).
=⇒ |ηxtt(x1, t1)| . εγ2∧β1−1.

Our result now follows. �

Using Lemma 10.2, we can now conclude that

1
ηx
≤ B(

[ 1
2ε

(T∗ − t) + c(ε + t)ε−4(x − x∗)2]−1; ε−1), (10.18)

η2
xx

ηx
≤ B(ε−3; ε−4). (10.19)

The bound (10.18) will let us deduce (2.19), and (10.19) will be used frequently in § 10.4 and § 10.5.
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10.4. Fourth derivative estimates along η

We know that

η4
x∂

3
θw◦η = ηx∂

3
x(w◦η) − 3ηxx∂

2
x(w◦η) +

(
3 η2

xx
ηx
− ηxxx

)
∂x(w◦η). (10.20)

Therefore,
η4

x|∂
3
θw◦η| . ε

−4 + ε−1 η2
xx
ηx
≤ B(ε−4; ε−5).

It now follows that

η4
x|∂

4
θk◦η| ≤ B(εγ2−5/2∧µ−4; εµ−5), (10.21)

η4
x|∂

4
θa◦η| ≤ B(ε−4; ε−5), (10.22)

η4
x|∂

4
θz◦η| ≤ B(εµ−5; εµ−6) (10.23)

η4
x|∂

4
θ$◦η| ≤ B(ε−5; ε−6). (10.24)

The usual argument for bounding derivatives of ηx and ηxqw◦η now gives

|∂4
xη| ≤ B((ε + t)(|∂4

xw0| + εµ−5); (ε + t)(|∂4
xw0| + εµ−6))

and ∣∣∣∂3
x(ηxqw◦η)

∣∣∣ ≤ B(εµ−5; ε−
11
2 ).

In the end, we obtain that

|∂4
x(k◦η)| ≤ B(εγ2−3∧µ−4; εγ2−4∧µ−5), (10.25)
|∂4

x(a◦η)| ≤ B(ε−4; ε−5), (10.26)
|∂4

x(z◦η)| ≤ B(εµ−5; εµ−6), (10.27)
|∂4

x($◦η)| ≤ B(ε−5; ε−6), (10.28)

|∂4
x(w◦η)| ≤ B(εµ−5; ε−

11
2 ). (10.29)

10.5. Fifth Derivative Estimates

These estimates are different from the previous sections because they require more algebra and hinge
on admittedly unexpected cancellation. First, note that

η2
x∂

2
θc◦η = −∂x(c◦η) ηxx

ηx
+ ∂2

x(c◦η)

η3
x∂

3
θc◦η = (3 η2

xx
ηx
− ηxxx)∂x(c◦η) 1

ηx
− 3∂2

x(c◦η) ηxx
ηx

+ ∂3
x(c◦η)

ηxxη
3
x(∂θc∂

2
θc)◦η = ∂x(c◦η)[ηxx∂

2
x(c◦η) − ∂x(c◦η) η

2
xx
ηx

]

ηxxη
3
x∂

3
θc◦η = (3 η2

xx
ηx
− ηxxx)∂x(c◦η) ηxx

ηx
− 3∂2

x(c◦η) η
2
xx
ηx

+ ∂3
x(c◦η)ηxx

η5
x∂

2
θc

2◦η = ∂x(c◦η)2 η2
xx
ηx
− 2∂2

x(c◦η)∂x(c◦η)ηxx + ∂2
x(c◦η)2ηx

η5
x(∂θc

2∂2
θc)◦η = ∂x(c◦η)2[−∂x(c◦η)ηxx + ∂2

x(c◦η)ηx]

η5
x(∂θc∂

3
θc)◦η = ∂x(c◦η)[(3 η2

xx
ηx
− ηxxx)∂x(c◦η) − 3∂2

x(c◦η)ηxx + ∂3
x(c◦η)ηx]
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η5
x∂

4
θc◦η = (10ηxxx − 15 η2

xx
ηx

)∂x(c◦η) ηxx
ηx
− ∂4

xη∂x(c◦η) + (15 η2
xx
ηx
− 4ηxxx)∂2

x(c◦η)

− 6ηxx∂
3
x(c◦η) + ηx∂

4
x(c◦η).

Next, note that

∂2
θa = 2[∂θa − c + 2z]c−1∂θc + O(ε−1),

∂3
θa = 2[∂θa − c + 2z]c−1∂2

θc + O(ε−
5
2 + ε−1|∂θw| + |∂θw|2),

∂4
θa = 2[∂θa − c + 2z]c−1∂3

θc + O(ε−4 + ε−
5
2 |∂θw| + ε−1|∂θw|2 + ε−1|∂2

θw| + |∂θw||∂
2
θw|),

∂5
θa = 2[∂θa − c − 2z]c−1∂4

θc + O
(
ε−

11
2 + ε−4|∂θw| + ε−5/2(|∂θw|2 + |∂2

θw|)
+ ε−1(|∂θw|3 + |∂θw||∂2

θw| + |∂
3
θw|)

+ |∂θw||∂3
θw| + |∂θw|

2|∂2
θw| + |∂

2
θw|

2 )
.

Combining these identities and our estimates gives us

10ηxxx
ηxx
ηx
ηx∂

2
θa◦η = 2[∂θac−1 − 1 − 2c−1z]◦η(10ηxxx + 0)∂x(c◦η) ηxx

ηx
+ B(ε−5; ε−

11
2 ),

(10ηxxx + 15 η2
xx
ηx

)η2
x∂

3
θa◦η = 2[∂θac−1 − 1 − 2c−1z]◦η(−10ηxxx − 15 η2

xx
ηx

)∂x(c◦η) ηxx
ηx

+ B(ε−
11
2 ; ε−

13
2 ),

10ηxxη
3
x∂

4
θa◦η = 2[∂θac−1 − 1 − 2c−1z]◦η(−10ηxxx + 30 η2

xx
ηx

)∂x(c◦η) ηxx
ηx

+ B(ε−5; ε−
13
2 ),

η5
x∂

5
θa◦η = 2[∂θac−1 − 1 − 2c−1z]◦η(10ηxxx − 15 η2

xx
ηx

)∂x(c◦η) ηxx
ηx

+ B(ε−
11
2 ; ε−

13
2 ).

Therefore,

∂5
x(a◦η) = η5

x∂
5
θa◦η + 10ηxxη

3
x∂

4
θa◦η + (10ηxxx + 15 η2

xx
ηx

)η2
x∂

3
θa◦η

+ (5∂4
xη + 10ηxxx

ηxx
ηx

)ηx∂
2
θa◦η + ∂5

xη∂θa◦η

= 2[∂θac−1 − 1 − 2c−1z]◦η
(
[10 − 10 − 10 + 10]ηxxx + [0 − 15 + 30 − 15] η

2
xx
ηx

)
∂x(c◦η) ηxx

ηx

+ ∂5
xη∂θa◦η + B(ε−

11
2 ; ε−

13
2 )

= ∂5
xη∂θa◦η + B(ε−

11
2 ; ε−

13
2 ).

The exact same cancellation occurs for the other two variables to give us

∂5
x(k◦η) = ∂5

xη∂θk◦η + B(εγ2−4∧µ− 11
2 ; εµ−

13
2 ),

∂5
x(z◦η) = ∂5

xη∂θz◦η + B(εµ−
13
2 ; εµ−

15
2 ).

Similar computations prove that

∂4
x(ηx(∂θk∂θz)◦η) = ∂5

x(k◦η)∂θz◦η + ∂θk◦η∂5
x(z◦η) + B(εγ2+µ−5∧2µ− 13

2 ; ε2µ− 15
2 ).

Now the usual method for bounding the derivatives of ηx and ηxqw◦η produces

|∂5
xη| ≤ B((ε + t)(|∂5

xw0| + εµ−
13
2 ); (ε + t)(|∂5

xw0| + εµ−
15
2 )). (10.30)

In the end, we obtain that

|∂5
x(k◦η)| . B(εµ−6; εµ−

13
2 ),
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|∂5
x(a◦η)| . B(ε−6; ε−

13
2 ),

|∂5
x(z◦η)| . B(εµ−7; εµ−

15
2 ),

|∂5
x(w◦η)| . ε−7.

Using similar computations to those in this section, one can compute that

η7
x|∂

5
θw◦η| ≤ B(ε−7; ε−9).

This bound, together with similar bounds that we proved for ∂n
θz ◦ η, ∂

n
θk◦η, and ∂n

θa ◦ η, combines with
(10.18) to establish (2.19).

11. Inversion of η

In this section, we will confine our attention to labels x ∈ (−π, π] with |x| ≤ ε2.
Since w◦η(·,T∗) is C4,1, it has the following Taylor expansion about x∗:

w◦η = Bw
0 + Bw

1 (x − x∗) + Bw
2 (x − x∗)2 + Bw

3 (x − x∗)3 + Rw
0 (x)(x − x∗)4. (11.1)

Here
|Bw

0 | . 1, |Bw
1 | . ε

−1, |Bw
2 | . ε

−2, |Bw
3 | . ε

−4, |Rw
0 | . ε

µ−5. (11.2)

The flow η(·,T∗) also has the Taylor expansion

η(x,T∗) − ξ∗ = a3(x − x∗)3 + a4(x)(x − x∗)4

= a3(x − x∗)3 + a4(x∗)(x − x∗)4 + a5(x)(x − x∗)5, (11.3)

where ξ∗ := η(x∗,T∗), a3 := 1
6ηxxx(x∗,T∗), a4(x∗) = 1

24∂
4
xη(x∗,T∗),

a4(x) :=

´ x
x∗
∂4

xη(y,T∗)(x − y)3 dy

3!(x − x∗)4 and a5(x) :=

´ x
x∗
∂5

xη(y,T∗)(x − y)4 dy

4!(x − x∗)5 . (11.4)

Here a3 ∼ ε
−3, |a4(x)| . εµ−4, and |a5(x)| . ε−6. Note that |a−4/3

3 a4| . ε
µ.

Let θ = η(x,T∗). Lemma A.3 implies that there exists a constant C such that for all x ∈ [−ε2, ε2]
such that |θ − ξ∗| ≤ Cε−3µ we have

(x − x∗)

= a−1/3
3 (θ − ξ∗)1/3[1 + 1

3

(
− a−4/3

3 a4(θ − ξ∗)1/3) + 1
3

(
− a−4/3

3 a4(θ − ξ∗)1/3)2
+ O(ε3µ|θ − ξ∗|)

]
= a−1/3

3 (θ − ξ∗)1/3
[
1 + 1

3

(
− a−4/3

3 a4(θ − ξ∗)1/3) + O(ε2µ|θ − ξ∗|
2/3)

]
(11.5)

= a−1/3
3 (θ − ξ∗)1/3[1 + O(εµ|θ − ξ∗|1/3)

]
. (11.6)

A quick bootstrap argument lets us conclude that this formula holds for all x ∈ [−ε2, ε2]. Furthermore,
it is easy to show that there exist two constants 0 < c < C such that

{θ : |θ − ξ∗| ≤ cε3} ⊂ {θ : |x| ≤ ε2} ⊂ {θ : |θ − ξ∗| ≤ Cε3}.
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So we are working in a neighborhood of radius ∼ ε3 around ξ∗.
If we define

åw
0 := Bw

0 ,

åw
1 := a−1/3

3 Bw
1 ,

åw
2 := a−2/3

3 Bw
2 −

1
3a−5/3

3 a4(x∗)Bw
1 ,

then we have

|åw
0 | . 1, |åw

1 | . 1, |åw
2 | . 1,

and

w(θ,T∗) = åw
0 + åw

1 (θ − ξ∗)1/3 + åw
2 (θ − ξ∗)2/3 + O(ε−1|θ − ξ∗|). (11.7)

Squaring (11.5) and cubing (11.6) gives us

(x − x∗)2 = a−2/3
3 (θ − ξ∗)2/3 − 2

3a−2
3 a4(θ − ξ∗) + O(ε2µ+2|θ − ξ∗|

4/3),
(x − x∗)3 = a−1

3 (θ − ξ∗) + O(εµ+3|θ − ξ∗|
4/3).

Therefore,

ηx(x,T∗) = 3a3(x − x∗)2 + [4a4(x) + ∂xa4(x)(x − x∗)](x − x∗)3

=: 3a3(x − x∗)2 + ã4(x − x∗)3

= 3a1/3
3 (θ − ξ∗)2/3 + a−1

3 (ã4 − 2a4)(θ − ξ∗) + O(ε2µ−1|θ − ξ∗|
4/3). (11.8)

Using this formula, one can compute that

ηx(x,T∗)−1 = 1
3a−1/3

3 (θ − ξ∗)−2/3 − 1
9a−5/3

3 (ã4 − 2a4)(θ − ξ∗)−1/3 + O(ε2µ+1).

Since a4(x) = a4(x∗) + O(ε−5|θ − ξ∗|
1/3) and ã4(x) = 4a4(x∗) + O(ε−5|θ − ξ∗|

1/3), it follows that

ηx(x,T∗)−1 = 1
3a−1/3

3 (θ − ξ∗)−2/3 − 2
9a−5/3

3 a4(x∗)(θ − ξ∗)−1/3 + O(1). (11.9)

Since ∂x(w◦η) = Bw
1 + 2Bw

2 (x − x∗) + O(ε−4|x − x∗|2), it follows that at time T∗ we have

∂θw◦η = η−1
x ∂x(w◦η)

=
[ 1

3a−1/3
3 (θ − ξ∗)−2/3 − 2

9a−5/3
3 a4(x∗)(θ − ξ∗)−1/3 + O(1)

]
·
[
Bw

1 + 2a−1/3
3 Bw

2 (θ − ξ∗)1/3 + O(ε−2|θ − ξ∗|
2)
]

= 1
3åw

1 (θ − ξ∗)−2/3 + 2
3åw

2 (θ − ξ∗)−1/3 + O(ε−1).

This is the expansion for ∂θw(·,T∗) in Theorem 2.1.
Now consider

∂2
θw◦η = ηx(x,T∗)−2[∂2

x(w◦η) − ηxx(x,T∗)∂θw◦η(x,T∗)
]
.
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Differentiating (11.3) twice and using our above expansions for (x − x∗)2 and (x − x∗)3 gives us

ηxx(x,T∗) = 6a3(x − x∗) + 12a4(x∗)(x − x∗)2 + [20a5 + 10∂xa5(x − x∗) + ∂2
xa5(x − x∗)2](x − x∗)3

= 6a3(x − x∗) + 12a4(x∗)(x − x∗)2 + O(ε−6|x − x∗|3)

= 6a2/3
3 (θ − ξ∗)1/3 + 10a−2/3

3 a4(x∗)(θ − ξ∗)2/3 + O(ε−3|θ − ξ∗|). (11.10)

Using the fact that ∂2
x(w◦η) = 2Bw

2 + 6Bw
3 (x − x∗) +O(εµ−5|x − x∗|2) along with our expansion for ∂θw◦η,

(11.9), and (11.10) provide the expansion for ∂2
θw(·,T∗) as stated in Theorem 2.1.

Last, since

∂3
θw◦η = η−3

x
[
∂3

x(w◦η) − 3ηxxηx∂
2
θw◦η − ηxxx∂θw◦η

]
,

we can do similar computations to determine the expansion for ∂3
θw(·,T∗).

To get the expansions for the variables z, k, and a, similar computations can be made, except with
the constants Bz

j, B
k
j, or Ba

j instead of Bw
j . The computations for these variables are nicer because

Bz
1 = Bk

1 = Ba
1 = Bz

2 = Bk
2 = Ba

2 = 0, but one should use fifth-order expansions of z◦η, k◦η and a◦η. So
we have

åz
0 := Bz

0,

åz
3 := a−1

3 Bz
3,

åz
4 := a−4/3

3 Bz
4 − a−7/3

3 a4(x∗)Bz
3,

and åk
0, å

k
3, å

k
4, å

a
0, å

a
3, å

a
4 are defined analogously. When one does the computations, one obtains the

expansions for z, k, and a listed in Theorem 2.1.
Unlike the functions w◦η, z ◦ η, k◦η, and a◦η, which are in C4,1(T) at time T∗, the function $◦η

has only been proven to be in C3,1(T) at time T∗, so the Taylor expansion can only go to fourth order.
However, we still have B$

1 = B$
2 = 0 which allows us to get constants in our expansion. �

A. Appendix

A.1. Basic identities

The following equations are easy to compute from (2.5):

−3
2∂t(c◦ψ) = (∂θw + 4a)◦ψ(c◦ψ). (A.1a)

−3
2∂t

(
∂θc◦ψ

)
= (c∂2

θw)◦ψ + 3
2 (∂θc∂θw) + 3

2 (∂θc∂θz)◦ψ + 4(∂θac + a∂θc)◦ψ. (A.1b)
−3

2∂t(k◦ψ) = (c∂θk) ◦ ψ. (A.1c)
−3

2∂t
(
∂θk◦ψ) = (c∂2

θk)◦ψ + (∂θk∂θw + ∂θk∂θz)◦ψ. (A.1d)
−3

2∂t(z◦ψ) = (4az − 1
4c2∂θk)◦ψ. (A.1e)

−3
2∂t(∂θz◦ψ) = (1

2∂θw∂θz + 3
2∂θz

2 − 1
2c∂θc∂θk − 1

4c2∂2
θk)◦ψ + 4(∂θaz + a∂θz)◦ψ. (A.1f)

−3
2∂t(a◦ψ) = (∂θac + 2a2 − c2 − 4cz − 2z2)◦ψ (A.1g)

−3
2∂t(∂θa◦ψ) = (∂2

θac + 2∂θa∂θc + 2∂θa∂θz + 4a∂θa)◦ψ − ([2c + 4z]∂θc + [4c + 4z]∂θz)◦ψ. (A.1h)
−3

2∂t(c◦φ) = (4ac + c∂θc + c∂θz)◦φ. (A.1i)
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−3
2∂t(∂θc◦φ) = (c∂2

θc)◦φ + (c∂2
θz + 3∂θc2)◦φ + 3(∂θc∂θz)◦φ + 4(∂θac + a∂θc)◦φ. (A.1j)

−3
2∂t(∂θk◦φ) = (∂θk∂θw + ∂θk∂θz)◦φ. (A.1k)
−3

2∂t(c ◦ η) = (∂θz + 4a) ◦ η(c◦η). (A.1l)
−3

2∂t(k◦η) = −(c∂θk) ◦ η (A.1m)
−3

2∂t(∂θk◦η) = (∂θw∂θk + ∂θz∂θk − c∂2
θk)◦η. (A.1n)

A.2. Quartic Inversion

If K is a field, and K((z)) denotes the field of formal Laurent series ¶¶ in the variable z. The field of
Puiseux series in the variable x is then defined to be the union

⋃
n>0 K((x1/n)) which is itself a field. The

most important result concerning Puiseux series is the following:

Theorem A.1 (Puiseux–Newton). If K is an algebraically closed field of characteristic 0, then the field⋃
n>0 K((x1/n)) of Puiseux series with coefficients in K an algebraically closed field. Furthermore, given

a polynomial P(y) =
∑N

i=0 ai(x)yi with ai ∈
⋃

n>0 K((x1/n)), the coefficients of the roots of P in y can be
constructed using the method of Newton polygons.

Proof of Theorem A.1. See [27, Chapter IV, Section 3] or [28, Section 8.3]. �

Of particular interest to us will be the following special case of the Puiseux–Newton theorem:

Theorem A.2 (Analytic Puiseux–Newton). If C{x} denotes the ring of convergent power series in x, and
f (x, y) ∈ C{x}[y] is a polynomial of degree m > 0, irreducible in C{x}[y], then there exists a convergent
power series y ∈ C{z} such that the roots of f in

⋃
n>0 C((x1/n)) are all given by

y(x1/m), y(e2πi/mx1/m), . . . , y(e2πi m−1
m x1/m).

It follows that in general if f (x, y) ∈ C{x}[y], then for each Puiseux series solution ȳ of f (x, ȳ(x)) = 0,
there exists some y ∈ C{z} and m ≤ deg f such that ȳ(x) = y(x1/m).

Proof of Theorem A.2. See [28, Section 8.3]. �

Lemma A.3 (Quartic Inversion). There exists a constant R > 0 and a nonempty open interval I
containing 0 such that for all a3 ∈ R

×, a4 ∈ R there exists a function y(x) defined for x satisfying
|a3

4x| < R3a4
3 such that{

(x, y) ∈ R2 : |a3
4x| < R3a4

3, a4y ∈ a3I,−x + a3y3 + a4y4 = 0
}

=
{
(x, y(x)) : |a3

4x| < R3a4
3
}
.

Furthermore, y(x) is an analytic function of x1/3 satisfying the bounds∣∣∣y(x) − a1/3
3 x1/3 + 1

3a−5/3
3 a4x2/3 − 1

3a−3
3 a2

4x
∣∣∣ . a−13/3

3 a3
4x4/3

for all |a3
4x| < R3a4

3, with the constant in the inequality independent of a3, a4.
¶¶Formal Laurent series are formal power series which allow for finitely many terms of negative degree, not to be confused with the

Laurent series in complex analysis, which may have infinitely many terms of negative degree but must converge in an annulus.
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Proof of Lemma A.3. The case where a4 = 0 is trivial, so we will prove our result in the case a4 ∈ R
×.

Define the recursive sequence c0 := 1,

cn :=
∑

~k∈(Z≥0)4

k1+k2+k3+k4=n−1

ck1ck2ck3ck4 −
1
3

∑
~m∈(Z≥0)3

m1+m2+m3=n
0≤mi≤n−1

cm1cm2cm3 ,

and define the formal power series ȳ ∈ R[[x]],

ȳ(x) =

∞∑
n=0

(−1)n cn
3n xn+1.

It is easy to check that y0(x) := ȳ(x1/3) is a Puiseux series solution to the algebraic equation −x+y3
0 +y4

0 =

0. It follows from A.2 that ȳ must be convergent with some positive (possibly infinite) radius of
convergence R. Now pick any a3 ∈ R

×, a4 ∈ R
×. If we define

y(x) := a3
a4

ȳ(a−4/3
3 a4x1/3),

then it is easy to check that y solves −x + a3y3 + a4y4 = 0.
Define the interval I to be the range of ȳ, thought of as a function on (−R,R), and define f (x, y) =

−x+a3y3+a4y4. Because ∂x f = −1 everywhere, we know that for each y ∈ R, the equation f (x, y) = 0 has
exactly one solution, x. Therefore, if (x, y) is a point such that |x| < a4

3a−3
4 R3, y ∈ a3a−1

4 I, and f (x, y) = 0,
then there exists x′ with |x′| < a4

3a−3
4 R3 such that y(x′) = y and since f (x′, y) = f (x′, y(x′)) = 0 we

conclude that x = x′ and y = y(x).
The remaining expansion follows from the fact that c1 = 1 and c2 = 3, combined with the fact that

the power series ȳ is convergent. �

Theorem A.4. There exist universal constants C1 and C2 such that the following is true: Suppose that
I ⊂ R is an interval, x0 ∈ I, and θ ∈ C3,1(I) is such that L := ‖∂4

xθ‖L∞ , a3 ∈ R
×, and θ has the Taylor

expansion
θ(x) = θ0 + a3(x − x0)3 + a4(x)(x − x0)4

at x0. Then for all x ∈ I such that |θ(x) − θ0| ≤ C1
a4

3
L3 , we have

(x − x0) = a−1/3
3 (θ(x) − θ0)1/3 − 1

3a−5/3
3 a4(x)(θ(x) − θ0)2/3 + 1

3a−3
3 a4(x)2(θ(x) − θ0) + R(θ − θ0),

where R is a C0, 1
3 continuous function satisfying

|R(θ − θ0)| ≤ C2a−13/3
3 a4(x)3(θ(x) − θ0)4/3.

Proof of Theorem A.4. Assume without loss of generality that a3 > 0. We know that a4 = (x− x0)−4(θ−
θ0 − a3(x − x0)3) is C3 away from x0 and that

a4(x) =

´ x
x0
∂4

xθ(t)(x−t)3 dt

3!(x−x0)4

for all x , x0. It follows from this formula that

|a4(x)| ≤ L
4! and |∂xa4(x)| ≤ L

3
1

|x−x0 |
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for all x , x0.
First define the function f : R × (I − x0)→ R,

f (x, y) := −x + a3y3 + a4(y + x0)y4.

Using our bounds on |a4| and |∂xa4|, we see that

∂y f (x, y) ≥ y2(3a3 −
L
2 |y|),

f (x, a3
L ) ≥ 23

24
a4

3
L3 − |x|,

f (x,−a3
L ) ≤ |x| − 23

24
a4

3
L3 .

Therefore, if we define A := {|x| < 23
24

a4
3

L3 } and B : {|y| < 6a3
L }, then for all x ∈ A the function f (x, ·) : B→

R is strictly increasing and has a zero in the interior of B. It follows from Corollary 1.1 in [29] that there
exists a unique continuous function h : A→ B such that

{(x, y) ∈ A × B : f (x, y) = 0} = {(x, h(x)) : x ∈ A}.

Now define the function F : R3 → R,

F(x, y, a) := −x + a3y3 + ay4.

It is easy to check that if |a| ≤ L
4! and |x| < 23

24
a4

3
L3 then

∂yF(x, y, a) ≥ y2(3a3 −
L
3! |y|), F(x, a3

L , a) > 0, and F(x,−a3
L , a) < 0.

Therefore, if Ã := {(x, a) : |x| < 23
24

a4
3

L3 , |a| ≤ L
4! } and B̃ := (−18 a3

L , 18 a3
L ) then for all (x, a) ∈ Ã the function

F(x, ·, a) : B̃→ R is strictly increasing and contains a 0 in the interior of B̃. It follows from Corollary
1.1 of [29] that there exists a unique H : Ã→ B̃ continuous such that

{(x, y, a) : |x| < 23
24

a4
3

L3 , |y| < 18a3
L , |a| ≤

L
4! , F(x, y, a) = 0} = {(x,H(x, a), a) : |x| < 23

24
a4

3
L3 , |a| ≤ L

4! }.

Our previous lemma A.3 tells us that there exist constants R,C2 > 0 independent of a3 or L such that
for all |a| ≤ L

4! , |x| < R3(4!)3 a4
3

L3 we have

H(x, a) = a−1/3
3 x1/3 − 1

3a−5/3
3 ax2/3 + 1

3a−3
3 a2x + R̃(x, a),

where |R̃(x, a)| ≤ C2a−13/3
3 a3x4/3. Now suppose that |x| < 23

24
a4

3
L3 . Then |h(x)| < 6a3

L < 18 a3
L and

F(x, h(x), a4(h(x) + x0)) = f (x, h(x)) = 0,

so h(x) = H(x, a4(h(x))). It follows that if C1 := min
(23

24 , (R4!)3) then we have

h(x) = a−1/3
3 x1/3 − 1

3a−5/3
3 a4(h(x) + x0)x2/3 + 1

3a−3
3 a4(h(x) + x0)x + R̃(x, a4(h(x) + x0))

=: a−1/3
3 x1/3 − 1

3a−5/3
3 a4(h(x) + x0)x2/3 + 1

3a−3
3 a4(h(x) + x0)x + R(x)

for all |x| < C1
a4

3
L3 . Our result now follows. �
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