In this work, the initial-boundary value problem for the global dynamical properties of solutions to a class of finite degenerate fourth-order parabolic equations with mean curvature nonlinearity is studied. With the help of the Nehari flow and Levine's concavity method, we establish some sharp-like threshold classifications of the initial data under sub-critical, critical and supercritical initial energy levels, that is, we describe the size of an initial data set. It requires the presumption that the initial data starting from one region of phase space have uniform global dynamical behavior, which means that the solution exists globally and decays via energy estimates that ultimately result in the solution tending to zero in the forward time. For the case in which the initial data corresponds to another region, we prove that the solutions related to these initial data are subject to blow-up phenomena in a finite time. In addition, we estimate the corresponding upper bound of the lifespan of the blow-up solution.
Citation: Yuxuan Chen. Global dynamical behavior of solutions for finite degenerate fourth-order parabolic equations with mean curvature nonlinearity[J]. Communications in Analysis and Mechanics, 2023, 15(4): 658-694. doi: 10.3934/cam.2023033
In this work, the initial-boundary value problem for the global dynamical properties of solutions to a class of finite degenerate fourth-order parabolic equations with mean curvature nonlinearity is studied. With the help of the Nehari flow and Levine's concavity method, we establish some sharp-like threshold classifications of the initial data under sub-critical, critical and supercritical initial energy levels, that is, we describe the size of an initial data set. It requires the presumption that the initial data starting from one region of phase space have uniform global dynamical behavior, which means that the solution exists globally and decays via energy estimates that ultimately result in the solution tending to zero in the forward time. For the case in which the initial data corresponds to another region, we prove that the solutions related to these initial data are subject to blow-up phenomena in a finite time. In addition, we estimate the corresponding upper bound of the lifespan of the blow-up solution.
[1] | L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147–171. https://doi.org/10.1007/BF02392081 doi: 10.1007/BF02392081 |
[2] | B. Jacob, S. He, Suppression of blow-up in Patlak-Keller-Segel via shear flows, SIAM J. Math. Anal., 49 (2017), 4722–4766. https://doi.org/10.1137/16M1093380 doi: 10.1137/16M1093380 |
[3] | H. Berestycki, A. Kiselev, A.Novikov, L. Ryzhik, The explosion problem in a flow, JAMA, 110 (2010), 31–65. https://doi.org/10.1007/s11854-010-0002-7 doi: 10.1007/s11854-010-0002-7 |
[4] | L. Agélas, Global regularity of solutions of equation modeling epitaxy thin film growth in $\mathbb{R}^d$, $d = 1, 2$, J. Evol. Equ., 15 (2015), 89–106. https://doi.org/10.1007/s00028-014-0250-6 doi: 10.1007/s00028-014-0250-6 |
[5] | T. P. Schulze, R. V. Kohn, A geometric model for coarsening during spiral-mode growth of thin films, Phys. D, 132 (1999), 520–542. https://doi.org/10.1016/S0167-2789(99)00108-6 doi: 10.1016/S0167-2789(99)00108-6 |
[6] | M. Ortiz, E. A. Repetto, H. Si, A continuum model of kinetic roughening and coarsening in thin films, J. Mech. Phys. Solids, 47 (1999), 697–730. https://doi.org/10.1016/S0022-5096(98)00102-1 doi: 10.1016/S0022-5096(98)00102-1 |
[7] | T. J. Willmore, A survey on Willmore immersions, In Geometry and Topology of Submanifolds, World Sci. Publ., IV (1991), 11–16. |
[8] | W. K. Burton, N. Cabrera, F. C. Frank, The growth of crystals and the equilibnum structure of their surfaces, Phil. Trans. Royal Soc. London, 243 (1951), 299–358. https://doi.org/10.1098/rsta.1951.0006 doi: 10.1098/rsta.1951.0006 |
[9] | C. Gerhardt, Boundary value problems for surfaces of prescribed mean curvature, J. Math. Pures Appl., 58 (1979), 75–109. |
[10] | D. Farrukh, On a boundary control problem for a pseudo-parabolic equation, Commun. Anal. Mech., 15 (2023), 289–299. https://doi.org/10.3934/cam.2023015 doi: 10.3934/cam.2023015 |
[11] | C. Corsato, C. De Coster, P. Omari, The Dirichlet problem for a prescribed anisotropic mean curvature equation: Existence, uniqueness and regularity of solutions, J. Differential Equations, 260 (2016), 4572–4618. https://doi.org/10.1016/j.jde.2015.11.024 doi: 10.1016/j.jde.2015.11.024 |
[12] | G. Ehrlich, F. G. Hudda, Atomic view of surface self-diffusion: Tungsten on tungsten, J. Chem. Phys., 44 (1966), 1039–1049. https://doi.org/10.1063/1.1726787 doi: 10.1063/1.1726787 |
[13] | G. Métivier, Fonction spectrale et valeurs propres d'une classe d'opŕateurs non elliptiques, Comm. Partial Differential Equations, 5 (1976), 467–519. |
[14] | H. Lewy, An example of a smooth linear partial differential equation without solution, Ann. Math., 66 (1956), 155–158. https://doi.org/10.2307/1970121 doi: 10.2307/1970121 |
[15] | J. J. Kohn, Subellipticity of the $\bar{\partial}$-Neumann problem on pseudo-convex domains: sufficient conditions, Acta Math., 142 (1979), 79–122. https://doi.org/10.1007/BF02395058 doi: 10.1007/BF02395058 |
[16] | Z. Schuss, Theory and Application of Stochastic Differential Equations, Wiley, New York, 1980. |
[17] | M. Bramanti, An Invitation to Hypoelliptic Operators and Hörmander's Vector Fields, Springer-Verlag, 2014. |
[18] | D. Gbargil, N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, 1983. |
[19] | D. Jerison, The Poincaré inequality for vector fields satisfying Hörmader's condition, Duke Math., 53 (1968), 503–523. https://doi.org/10.1215/S0012-7094-86-05329-9 doi: 10.1215/S0012-7094-86-05329-9 |
[20] | J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du probleme de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier, 19 (1969), 277–304. https://doi.org/10.5802/aif.319 doi: 10.5802/aif.319 |
[21] | L. P. Rothschild, E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247–320. https://doi.org/10.1007/BF02392419 doi: 10.1007/BF02392419 |
[22] | G. Métivier, Fonction spectrale et valeurs propres d'une classe d'opérateurs non elliptiques, Comm. Partial Differ. Equations, 1 (1976), 467–519. https://doi.org/10.1080/03605307608820018 doi: 10.1080/03605307608820018 |
[23] | R. Montgomery, A tour of subriemannian geometries. Their geodesics and applications, Mathematical Surveys and Monographs, 91. American Mathematical Society, Providence, RI, 2002. |
[24] | L. Chen, G. Z. Lu, M. C. Zhu, Least energy solutions to quasilinear subelliptic equations with constant and degenerate potentials on the Heisenberg group, Proc. Lond. Math. Soc., 126 (2023), 518–555. https://doi.org/10.1112/plms.12495 doi: 10.1112/plms.12495 |
[25] | L. Capogna, Regularity for quasilinear equations and 1-quasiconformal maps in Carnot groups, Math. Ann., 313 (1999), 263–295. https://doi.org/10.1007/s002080050261 doi: 10.1007/s002080050261 |
[26] | B. B. King, O. Stein, M. Winkler, A fourth-order parabolic equation modeling epitaxial thin film growth, J. Math. Anal. Appl., 286 (2003), 459–490. https://doi.org/10.1016/S0022-247X(03)00474-8 doi: 10.1016/S0022-247X(03)00474-8 |
[27] | R. Dal Passo, H. Garcke, G. Grün, On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions, SIAM J. Math. Anal., 29 (1998), 321–342. https://doi.org/10.1137/S0036141096306170 doi: 10.1137/S0036141096306170 |
[28] | B. Guo, W. Gao, Study of weak solutions for a fourth-order parabolic equation with variable exponent of nonlinearity, Z. Angew. Math. Phys., 62 (2011), 909–926. https://doi.org/10.1007/s00033-011-0148-x doi: 10.1007/s00033-011-0148-x |
[29] | X. Zhang, J. Zhou, Well-posedness and dynamic properties of solutions to a class of fourth order parabolic equation with mean curvature nonlinearity, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 3768–3806. https://doi.org/10.3934/dcdsb.2022240 doi: 10.3934/dcdsb.2022240 |
[30] | A. L. Bertozzi, M. C. Pugh, Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana Univ. Math. J., 49 (2000), 1323–1366. |
[31] | J. B. Han, R. Z. Xu, C. Yang, Continuous dependence on initial data and high energy blowup time estimate for porous elastic system, Commun. Anal. Mech., 15 (2023), 214–244. https://doi.org/10.3934/cam.2023012 doi: 10.3934/cam.2023012 |
[32] | H. Chen, H. Y. Xu, Global existence, exponential decay and blow-up in finite time for a class of finitely degenerate semilinear parabolic equations, Acta Math. Sci. Ser. B, 39 (2019), 1290–1308. https://doi.org/10.1007/s10473-019-0508-8 doi: 10.1007/s10473-019-0508-8 |
[33] | H. Y. Xu, Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials, Commun. Anal. Mech., 15 (2023), 132–161. https://doi.org/10.3934/cam.2023008 doi: 10.3934/cam.2023008 |
[34] | H. Chen, X. Liu, Y. Wei, Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on a manifold with conical singularities, Calc. Var., 43 (2012), 463–484. https://doi.org/10.1007/s00526-011-0418-7 doi: 10.1007/s00526-011-0418-7 |
[35] | R. Z. Xu, W. Lian, Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math., 63 (2020), 321–356. https://doi.org/10.1007/s11425-017-9280-x doi: 10.1007/s11425-017-9280-x |
[36] | X. Y. Chen, V. D. Rădulescu, R. Z. Xu, High energy blowup and blowup time for a class of semilinear parabolic equations with singular potential on manifolds with conical singularities, Commun. Math. Sci., 21 (2023), 25–63. https://dx.doi.org/10.4310/CMS.2023.v21.n1.a2 doi: 10.4310/CMS.2023.v21.n1.a2 |
[37] | N. H. Tuan, V. V. Au, R. Z. Xu, Semilinear Caputo time-fractional pseudo-parabolic equations, Commun. Pure Appl. Anal., 20 (2021), 583–621. https://doi.org/10.3934/cpaa.2020282 doi: 10.3934/cpaa.2020282 |
[38] | L. E. Payne, D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273–303. https://doi.org/10.1007/BF02761595 doi: 10.1007/BF02761595 |
[39] | R. Z. Xu, J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal., 264 (2013), 2732–2763. https://doi.org/10.1016/j.jfa.2013.03.010 doi: 10.1016/j.jfa.2013.03.010 |
[40] | X. C. Wang, R. Z. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal., 10 (2021), 261–288. https://doi.org/10.1515/anona-2020-0141 doi: 10.1515/anona-2020-0141 |
[41] | W. Lian, J. Wang, R. Z. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differential Equations, 269 (2020), 4914–4959. https://doi.org/10.1016/j.jde.2020.03.047 doi: 10.1016/j.jde.2020.03.047 |
[42] | C. J. Xu, Semilinear subelliptic equations and Sobolev inequality for vector fields satisfying Hörmander's condition, Chinese J. Contemp. Math., 15 (1994), 183–192. |
[43] | P. L. Yung, A sharp subelliptic Sobolev embedding theorem with weights, Bull. Lond. Math. Soc., 47 (2015), 396–406. https://doi.org/10.1112/blms/bdv010 doi: 10.1112/blms/bdv010 |
[44] | A. Yagi, Abstract Parabolic Evolution Equations and Lojasiewicz-Simon Inequality I and II, Springer Briefs in Mathematics, Springer, 2021. |