Research article

Global regularity of solutions to the 2D steady compressible Prandtl equations

  • Received: 16 August 2023 Revised: 22 October 2023 Accepted: 23 October 2023 Published: 27 October 2023
  • 35Q30, 76D10, 76N20

  • In this paper, we study the global $ C^{\infty} $ regularity of solutions to the boundary layer equations for two-dimensional steady compressible flow under the favorable pressure gradient. To our knowledge, the difficulty of the proof is the degeneracy near the boundary. By using the regularity theory and maximum principles of parabolic equations together with the von Mises transformation, we give a positive answer to it. When the outer flow and the initial data satisfied appropriate conditions, we prove that Oleinik type solutions smooth up the boundary $ y = 0 $ for any $ x > 0 $.

    Citation: Yonghui Zou. Global regularity of solutions to the 2D steady compressible Prandtl equations[J]. Communications in Analysis and Mechanics, 2023, 15(4): 695-715. doi: 10.3934/cam.2023034

    Related Papers:

  • In this paper, we study the global $ C^{\infty} $ regularity of solutions to the boundary layer equations for two-dimensional steady compressible flow under the favorable pressure gradient. To our knowledge, the difficulty of the proof is the degeneracy near the boundary. By using the regularity theory and maximum principles of parabolic equations together with the von Mises transformation, we give a positive answer to it. When the outer flow and the initial data satisfied appropriate conditions, we prove that Oleinik type solutions smooth up the boundary $ y = 0 $ for any $ x > 0 $.



    加载中


    [1] R. Alexandre, Y. Wang, C. Xu, T. Yang, Well-posedness of the Prandtl equation in Sobolev spaces, J. Amer. Math. Soc., 28 (2015), 745–784. https://doi.org/10.1090/S0894-0347-2014-00813-4 doi: 10.1090/S0894-0347-2014-00813-4
    [2] H. Beirão da Veiga, F. Crispo, A survey on some vanishing viscosity limit results, Adv. Nonlinear Anal., 12 (2023), 20220309. https://doi.org/10.1515/anona-2022-0309 doi: 10.1515/anona-2022-0309
    [3] M. Ding, S. Gong, Global existence of weak solution to the compressible Prandtl equations, J. Math. Fluid Mech., 19 (2017), 239–254. https://doi.org/10.1007/s00021-016-0274-5 doi: 10.1007/s00021-016-0274-5
    [4] A. L. Dalibard, N. Masmoudi, Separation for the stationary Prandtl equation, Publ. math. IHES, 130 (2019), 187–297. https://doi.org/10.1007/s10240-019-00110-z doi: 10.1007/s10240-019-00110-z
    [5] S. Gong, Y. Guo, Y. Wang, Boundary layer problems for the two-dimensional compressible Navier-Stokes equations, Anal. Appl. (Singap.), 14 (2016), 1–37. https://doi.org/10.1142/S0219530515400011 doi: 10.1142/S0219530515400011
    [6] Y. Guo, S. Iyer, Regularity and expansion for steady Prandtl equations, Commun. Math. Phys., 382 (2021), 1403–1447. https://doi.org/10.1007/s00220-021-03964-9 doi: 10.1007/s00220-021-03964-9
    [7] J. Han, R. Xu, C. Yang. Continuous dependence on initial data and high energy blowup time estimate for porous elastic system, Commun. Anal. Mech., 15 (2023), 214–244. https://doi.org/10.3934/cam.2023012 doi: 10.3934/cam.2023012
    [8] S. Iyer, N. Masmoudi, Reversal in the stationary Prandtl equations, preprint, arXiv: 2203.02845.
    [9] S. Iyer, N. Masmoudi, Higher regularity theory for a Mixed-Type parabolic equation, preprint, arXiv: 2212.08735.
    [10] N. V. Krylov, Lectures on elliptic and parabolic equations in Holder spaces, American Mathematical Soc., 1996. https://doi.org/10.1090/gsm/012
    [11] C. Liu, F. Xie, T. Yang, MHD boundary layers theory in Sobolev spaces without monotonicity Ⅰ: Well-posedness theory, Comm. Pure Appl. Math., 72 (2019), 63–121. https://doi.org/10.1002/cpa.21763 doi: 10.1002/cpa.21763
    [12] N. Masmoudi, T. K. Wong, Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods, Comm. Pure Appl. Math., 68 (2015), 1683–1741. https://doi.org/10.1002/cpa.21595 doi: 10.1002/cpa.21595
    [13] O. A. Oleinik, V. N. Samokhin, Mathematical models in boundary layer theory. Routledge, 2018. https://doi.org/10.1201/9780203749364
    [14] L. Prandtl, Über Flüssigkeitsbewegung bei sehr kleiner Reibung, Verhandl. Ⅲ, Internat. Math.-Kong., Heidelberg, Teubner, Leipzig, 1904, 1961,575–584.
    [15] K. Pileckas, A. Raciene, Non-stationary Navier–Stokes equations in 2D power cusp domain: Ⅰ. Construction of the formal asymptotic decomposition, Adv. Nonlinear Anal., 10 (2021), 982–1010. https://doi.org/10.1515/anona-2020-0164 doi: 10.1515/anona-2020-0164
    [16] K. Pileckas, A. Raciene, Non-stationary Navier–Stokes equations in 2D power cusp domain: Ⅱ. Existence of the solution, Adv. Nonlinear Anal., 10 (2021), 1011–1038. https://doi.org/10.1515/anona-2020-0165 doi: 10.1515/anona-2020-0165
    [17] H. Schlichting, K. Gersten, Boundary-Layer Theory, Enlarged Edition. New York: Springer-Verlag, 2000. https://doi.org/10.1007/978-3-662-52919-5
    [18] W. Shen, Y. Wang, Z. Zhang, Boundary layer separation and local behavior for the steady Prandtl equation, Adv. Math., 389 (2021), 107896. https://doi.org/10.1016/j.aim.2021.107896 doi: 10.1016/j.aim.2021.107896
    [19] Y. Wang, M. Williams, The inviscid limit and stability of characteristic boundary layers for the compressible Navier-Stokes equations with Navier-friction boundary conditions, Ann. Inst. Fourier (Grenoble), 62 (2012), 2257–2314. https://doi.org/10.5802/aif.2749 doi: 10.5802/aif.2749
    [20] Y. Wang, F. Xie, T. Yang, Local well-posedness of Prandtl equations for compressible flow in two space variables. SIAM J. Math. Anal., 47 (2015), 321–346. https://doi.org/10.1137/140978466 doi: 10.1137/140978466
    [21] Y. Wang, S. Zhu, Back flow of the two-dimensional unsteady Prandtl boundary layer under an adverse pressure gradient, SIAM J. Math. Anal., 52 (2020), 954–966. https://doi.org/10.1137/19M1270355 doi: 10.1137/19M1270355
    [22] Y. Wang, S. Zhu, On back flow of boundary layers in two-dimensional unsteady incompressible heat conducting flow, J. Math. Phys., 63 (2022), 081504. https://doi.org/10.1063/5.0088618 doi: 10.1063/5.0088618
    [23] Y. Wang, Z. Zhang, Global $C^{\infty}$ regularity of the steady Prandtl equation with favorable pressure gradient, Ann. Inst. H. Poincaré C Anal. Non Linéaire., 38 (2021), 1989–2004. https://doi.org/10.1016/J.ANIHPC.2021.02.007 doi: 10.1016/J.ANIHPC.2021.02.007
    [24] Y. Wang, Z. Zhang, Asymptotic behavior of the steady Prandtl equation, Math. Ann., 387 (2023), 1289–1331. https://doi.org/10.1007/s00208-022-02486-6 doi: 10.1007/s00208-022-02486-6
    [25] E. Weinan, Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation, Acta Math. Sinica, 16 (2000), 207–218. https://doi.org/10.1007/s101140000034 doi: 10.1007/s101140000034
    [26] Z. Xin, L. Zhang, On the global existence of solutions to the Prandtl's system, Adv. Math., 181 (2004), 88–133. https://doi.org/10.1016/S0001-8708(03)00046-X doi: 10.1016/S0001-8708(03)00046-X
    [27] Z. Xin, L. Zhang, J. Zhao, Global well-posedness and eegularity of weak solutions to the Prandtl's system, preprint, arXiv: 2203.08988.
    [28] Y. Zou, J. Wang, Boundary layer separation for the steady compressible Prandtl equation, J. Math. Anal. Appl., 527 (2023), 127379. https://doi.org/10.1016/j.jmaa.2023.127379 doi: 10.1016/j.jmaa.2023.127379
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(872) PDF downloads(142) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog