Research article Special Issues

The Allen-Cahn equation with a time Caputo-Hadamard derivative: Mathematical and Numerical Analysis

  • Received: 10 July 2023 Revised: 26 September 2023 Accepted: 27 September 2023 Published: 12 October 2023
  • 65M60, 65N15

  • In this paper, we investigate the local discontinuous Galerkin (LDG) finite element method for the fractional Allen-Cahn equation with Caputo-Hadamard derivative in the time domain. First, the regularity of the solution is analyzed, and the results indicate that the solution of this equation generally possesses initial weak regularity in the time dimension. Due to this property, a logarithmic nonuniform L1 scheme is adopted to approximate the Caputo-Hadamard derivative, while the LDG method is used for spatial discretization. The stability and convergence of this fully discrete scheme are proven using a discrete fractional Gronwall inequality. Numerical examples demonstrate the effectiveness of this method.

    Citation: Zhen Wang, Luhan Sun. The Allen-Cahn equation with a time Caputo-Hadamard derivative: Mathematical and Numerical Analysis[J]. Communications in Analysis and Mechanics, 2023, 15(4): 611-637. doi: 10.3934/cam.2023031

    Related Papers:

  • In this paper, we investigate the local discontinuous Galerkin (LDG) finite element method for the fractional Allen-Cahn equation with Caputo-Hadamard derivative in the time domain. First, the regularity of the solution is analyzed, and the results indicate that the solution of this equation generally possesses initial weak regularity in the time dimension. Due to this property, a logarithmic nonuniform L1 scheme is adopted to approximate the Caputo-Hadamard derivative, while the LDG method is used for spatial discretization. The stability and convergence of this fully discrete scheme are proven using a discrete fractional Gronwall inequality. Numerical examples demonstrate the effectiveness of this method.



    加载中


    [1] S. Fareh, K. Akrout, A. Ghanmi, D.D. Repovš, Multiplicity results for fractional Schrödinger-Kirchhoff systems involving critical nonlinearities, Adv. Nonlinear Anal., 12 (2023), 20220318. https://doi.org/10.1515/anona-2022-0318 doi: 10.1515/anona-2022-0318
    [2] M. K. Hamdani, L. Mbarki, M. Allaoui, A new class of multiple nonlocal problems with two parameters and variable-order fractional $p(\cdot)$-Laplacian, Commun. Anal. Mech., 15 (2023), 551–574. https://doi.org/10.3934/cam.2023027 doi: 10.3934/cam.2023027
    [3] L. Mons, Higher integrability for anisotropic parabolic systems of p-Laplace type, Adv. Nonlinear Anal., 12 (2023), 20220308. https://doi.org/10.1515/anona-2022-0308 doi: 10.1515/anona-2022-0308
    [4] A. T. Nguyen, N. H. Tuan, C. Yang, On Cauchy problem for fractional parabolic-elliptic Keller-Segel model, Adv. Nonlinear Anal., 12 (2023), 97–116. https://doi.org/10.1515/anona-2022-0256 doi: 10.1515/anona-2022-0256
    [5] Z. Wang, K. Zhao, P. Li, Y. Liu, Boundedness of square functions related with fractional Schrödinger semigroups on stratified Lie groups, Commun. Anal. Mech., 15 (2023), 410–435. https://doi.org/10.3934/cam.2023020 doi: 10.3934/cam.2023020
    [6] J. Hadamard, Essai sur létude des fonctions données par leur développement de Taylor, J. Math. Pures Appl., 8 (1892), 101–186.
    [7] C. Lomnitz, Creep measurements in igneous rocks, J. Geol., 64 (1956), 473–-479. https://doi.org/10.1086/626379 doi: 10.1086/626379
    [8] E. Y. Fan, C. P. Li, Z. Q. Li, Numerical approaches to Caputo-Hadamard fractional derivatives with applications to long-term integration of fractional differential systems, Commun. Nonlinear Sci. Numer. Simul., 106 (2022), 106096. https://doi.org/10.1016/j.cnsns.2021.106096 doi: 10.1016/j.cnsns.2021.106096
    [9] D. Baleanu, S. Etemad, H. Mohammadi, Sh. Rezapour, A novel modeling of boundary value problems on the glucose graph, Commun. Nonlinear Sci. Numer. Simul., 100 (2021), 105844. https://doi.org/10.1016/j.cnsns.2021.105844 doi: 10.1016/j.cnsns.2021.105844
    [10] C. P. Li, Z. Q. Li, The blow-up and global existence of solution to Caputo-Hadamard fractional partial differential equation with fractional Laplacian, J. Nonlinear Sci., 31 (2021), 80. https://doi.org/10.1007/s00332-021-09736-y doi: 10.1007/s00332-021-09736-y
    [11] S. M. Allen, J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085–1095. https://doi.org/10.1016/0001-6160(79)90196-2 doi: 10.1016/0001-6160(79)90196-2
    [12] J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. Ⅰ. interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102
    [13] J. Kim, Phase-field models for multi-component fluid flows, Commun. Comput. Phys., 12 (2012), 613–661. https://doi.org/10.4208/cicp.301110.040811a doi: 10.4208/cicp.301110.040811a
    [14] Q. Du, J. Yang, Z. Zhou, Time-fractional Allen-Cahn equations: analysis and numerical methods, J. Sci. Comput., 85 (2020), 1–30. https://doi.org/10.1007/s10915-020-01351-5 doi: 10.1007/s10915-020-01351-5
    [15] H. Liao, T. Tang, T. Zhou, A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations, J. Comput. Phys., 414 (2020), 109473. https://doi.org/10.1016/j.jcp.2020.109473 doi: 10.1016/j.jcp.2020.109473
    [16] T. Tang, H. Yu, T. Zhou, On energy dissipation theory and numerical stability for time-fractional phase field equations, SIAM J. Sci. Comput., 41 (2019), A3757–A3778. https://doi.org/10.1137/18M1203560 doi: 10.1137/18M1203560
    [17] B. Jin, B. Li, Z. Zhou, Numerical analysis of nonlinear subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), 1–23. https://doi.org/10.1137/16M1089320 doi: 10.1137/16M1089320
    [18] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
    [19] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142
    [20] C. P. Li, M. Cai, Theory and Numerical Approximations of Fractional Integrals and Derivatives, SIAM, Philadelphia, 2019.
    [21] C. P. Li, Z. Q. Li, Z. Wang, Mathematical analysis and the local discontinuous Galerkin method for Caputo-Hadamard fractional partial differential equation, J. Sci. Comput., 85 (2020), 41. https://doi.org/10.1007/s10915-020-01353-3 doi: 10.1007/s10915-020-01353-3
    [22] Z. Wang, L. Sun, Mathematical analysis of the Hadamard-type fractional Fokker-Planck equation, Mediterr. J. Math., 20 (2023), 245. https://doi.org/10.1007/s00009-023-02445-8 doi: 10.1007/s00009-023-02445-8
    [23] Z. Wang, C. Ou, S. Vong, A second-order scheme with nonuniform time grids for Caputo-Hadamard fractional sub-diffusion equations, J. Comput. Appl. Math., 414 (2022), 114448. https://doi.org/10.1016/j.cam.2022.114448 doi: 10.1016/j.cam.2022.114448
    [24] K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426–447. https://doi.org/10.1016/j.jmaa.2011.04.058 doi: 10.1016/j.jmaa.2011.04.058
    [25] J. Vanterler, C. Sousa, C. E. De Oliveira, A Gronwall inequality and the Cauchy-type problem by means of $\psi$-Hilfer operator, Differ. Equ. Appl., 11 (2019), 87–106. https://doi.org/10.7153/dea-2019-11-02 doi: 10.7153/dea-2019-11-02
    [26] H. Liao, D. Li, J. Zhang, Sharp error estimate of nonuniform L1 formula for linear reaction-subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), 1112–1133. https://doi.org/10.1137/17M1131829 doi: 10.1137/17M1131829
    [27] Z. Wang, A nonuniform L2-1$_\sigma$/LDG method for the Caputo-Hadamard time-fractional convection-diffusion equation, Advanced Studies: Euro-Tbilisi Mathematical Journal, 16 (2023), 89–115. https://doi.org/10.32513/asetmj/193220082328 doi: 10.32513/asetmj/193220082328
    [28] J. Ren, H. Liao, J. Zhang, Z. Zhang, Sharp $H^1$-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems, J. Comput. Appl. Math., 389 (2021), 113352. https://doi.org/10.1016/j.cam.2020.113352 doi: 10.1016/j.cam.2020.113352
    [29] P. Castillo, B. Cockburn, D. Schötzau, C. Schwab, Optimal a priori error estimates for the $hp$-version of the local discontinuous Galerkin method for convection-diffusion problems, Math. Comput., 71 (2002), 455–478. https://www.ams.org/journals/mcom/2002-71-238/S0025-5718-01-01317-5/S0025-5718-01-01317-5.pdf.
    [30] R. H. Guo, L. Y. Ji, Y. Xu, High order local discontinuous Galerkin methods for the Allen-Cahn equation: analysis and simulation, J. Comput. Math., 34 (2016), 135–158. https://doi.org/10.4208/jcm.1510-m2014-0002 doi: 10.4208/jcm.1510-m2014-0002
    [31] B. Dong, C. W. Shu, Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems, SIAM J. Numer. Anal., 47 (2009), 3240–326. https://doi.org/10.1137/080737472 doi: 10.1137/080737472
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(787) PDF downloads(171) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog