We investigate the non-trivial solutions for a partial discrete Dirichlet nonlinear problem with $ p $-Laplacian by applying Ricceri's variational principle and a two non-zero critical points theorem. In addition, we identify open intervals of the parameter $ \lambda $ under appropriate constraints imposed on the nonlinear term. This allows us to ensure that the nonlinear problem has at least one or two non-trivial solutions.
Citation: Huiting He, Mohamed Ousbika, Zakaria El Allali, Jiabin Zuo. Non-trivial solutions for a partial discrete Dirichlet nonlinear problem with $ p $-Laplacian[J]. Communications in Analysis and Mechanics, 2023, 15(4): 598-610. doi: 10.3934/cam.2023030
We investigate the non-trivial solutions for a partial discrete Dirichlet nonlinear problem with $ p $-Laplacian by applying Ricceri's variational principle and a two non-zero critical points theorem. In addition, we identify open intervals of the parameter $ \lambda $ under appropriate constraints imposed on the nonlinear term. This allows us to ensure that the nonlinear problem has at least one or two non-trivial solutions.
[1] | J. Yu, B. Zheng, Modeling Wolbachia infection in mosquito population via discrete dynamical models, J. Difference Equ. Appl., 25 (2019), 1549–1567. https://doi.org/10.1080/10236198.2019.1669578 doi: 10.1080/10236198.2019.1669578 |
[2] | Z. Guo, J. Yu, The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc. (2), 68 (2003), 419–430. https://doi.org/10.1112/S0024610703004563 doi: 10.1112/S0024610703004563 |
[3] | S. Du, Z. Zhou, Multiple solutions for partial discrete Dirichlet problems involving the $p$-Laplacian, Mathematics, 8 (2020). https://doi.org/10.3390/math8112030 doi: 10.3390/math8112030 |
[4] | S. Du, Z. Zhou, On the existence of multiple solutions for a partial discrete Dirichlet boundary value problem with mean curvature operator, Adv. Nonlinear Anal., 11 (2022), 198–211. https://doi.org/10.1515/anona-2020-0195 doi: 10.1515/anona-2020-0195 |
[5] | M. Galewski, A. Orpel, On the existence of solutions for discrete elliptic boundary value problems, Appl. Anal., 89 (2010), 1879–1891. https://doi.org/10.1080/00036811.2010.499508 doi: 10.1080/00036811.2010.499508 |
[6] | S. Heidarkhani, M. Imbesi, Multiple solutions for partial discrete Dirichlet problems depending on a real parameter, J. Difference Equ. Appl., 21 (2015), 96–110. https://doi.org/10.1080/10236198.2014.988619 doi: 10.1080/10236198.2014.988619 |
[7] | S. Heidarkhani, M. Imbesi, Nontrivial solutions for partial discrete Dirichlet problems via a local minimum theorem for functionals, J. Nonlinear Funct. Anal., 42 (2019). https://doi.org/10.23952/jnfa.2019.42 doi: 10.23952/jnfa.2019.42 |
[8] | P. Mei, Z. Zhou, Homoclinic Solutions for Partial Difference Equations with Mixed Nonlinearities, J. Geom. Anal., 33 (2023). https://doi.org/10.1007/s12220-022-01166-w doi: 10.1007/s12220-022-01166-w |
[9] | G. Bisci, M. Imbesi, Discrete Elliptic Dirichlet Problems and Nonlinear Algebraic Systems, Mediterr. J. Math., 13 (2016), 263–278. https://doi.org/10.1007/s00009-014-0490-2 doi: 10.1007/s00009-014-0490-2 |
[10] | M. Ousbika, Z. El Allali, Existence and nonexistence of solution to the discrete fourth-order boundary value problem with parameters, An. Univ. Craiova Ser. Mat. Inform., 47 (2020), 42–53. |
[11] | M. Ousbika, Z. El Allali, Existence of three solutions to the discrete fourth-order boundary value problem with four parameters, Bol. Soc. Parana. Mat., 38 (2020), 177–189. https://doi.org/10.5269/bspm.v38i2.34832 doi: 10.5269/bspm.v38i2.34832 |
[12] | M. Ousbika, Z. El Allali, A discrete problem involving the $p(k)$-Laplacian operator with three variable exponents, International Journal of Nonlinear Analysis and Applications, 12 (2021), 521–532. |
[13] | M. Ousbika, Z. El Allali, An eigenvalue of anisotropic discrete problem with three variable exponents, Ukrainian Math. J., 73 (2021), 977–987. https://doi.org/10.1007/s11253-021-01971-6 doi: 10.1007/s11253-021-01971-6 |
[14] | M. Ousbika, Z. El Allali, L. Kong, On a discrete elliptic problem with a weight, J. Appl. Anal. Comput., 11 (2021), 728–740. https://doi.org/DOI10.11948/20190352 doi: 10.11948/20190352 |
[15] | S. Wang, Z. Zhou, Three solutions for a partial discrete Dirichlet boundary value problem with $p$-Laplacian, Bound. Value Probl., 2021 (2021). https://doi.org/10.1186/s13661-021-01514-9 doi: 10.1186/s13661-021-01514-9 |
[16] | F. Xiong, Z. Zhou, Small Solutions of the Perturbed Nonlinear Partial Discrete Dirichlet Boundary Value Problems with $(p, q)$-Laplacian Operator, Symmetry-basel, 13 (2021). https://doi.org/10.3390/sym13071207 doi: 10.3390/sym13071207 |
[17] | F. Xiong, Z. Zhou, Three positive solutions for a nonlinear partial discrete Dirichlet problem with $(p, q)$-Laplacian operator, Bound. Value Probl., 2022 (2022). https://doi.org/10.1186/s13661-022-01588-z doi: 10.1186/s13661-022-01588-z |
[18] | Y. Long, Nontrivial solutions of discrete Kirchhoff-type problems via Morse theory, Adv. Nonlinear Anal., 11 (2022), 1352–1364. https://doi.org/10.1515/anona-2022-0251 doi: 10.1515/anona-2022-0251 |
[19] | J. Diblik, Bounded solutions to systems of fractional discrete equations, Adv. Nonlinear Anal., 11 (2022), 1614–1630. https://doi.org/10.1515/anona-2022-0260 doi: 10.1515/anona-2022-0260 |
[20] | A. ElAmrouss, O. Hammouti, Spectrum of discrete 2n-th order difference operator with periodic boundary conditions and its applications, Opuscula Math., 41 (2021), 489–507. https://doi.org/10.7494/OpMath.2021.41.4.489 doi: 10.7494/OpMath.2021.41.4.489 |
[21] | B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 113 (2000), 401–410. https://doi.org/10.1016/S0377-0427(99)00269-1 doi: 10.1016/S0377-0427(99)00269-1 |
[22] | G. Bonanno, G. D'Agui, Two non-zero solutions for elliptic Dirichlet problems, Z. Anal. Anwend., 35 (2016), 449–464. https://doi.org/10.4171/ZAA/1573 doi: 10.4171/ZAA/1573 |
[23] | G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal., 75 (2012), 2992–3007. https://doi.org/10.1016/j.na.2011.12.003 doi: 10.1016/j.na.2011.12.003 |