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1. Introduction

Let d, h ∈ N∗ and N[1, d] = {1, 2, 3, ....., d}. We study the following partial discrete Dirichlet
nonlinear problem:

−∆1

(
φp (∆1w(l − 1, q))

)
− ∆2

(
φp (∆2w(l, q − 1))

)
= λg(l, q) f (w(l, q)) ,

∀ (l, q) ∈ N [1, d] × N [1, h] ,
w(l, 0) = 0 = w(l, h + 1), ∀l ∈ N[0, d + 1],
w(0, q) = 0 = w(d + 1, q), ∀q ∈ N[0, h + 1],

(1.1)

where ∆1w(l− 1, q) = w(l, q)−w(l− 1, q) and ∆2w(l, q− 1) = w(l, q)−w(l, q− 1), the p-Laplacian φp is
defined by φp(t) = |t|p−2t, 1 < p < +∞, λ > 0 is a real parameter, g : N [1, d] × N [1, h] →]0,+∞[ is a
positive valued function and f : R→ R is continuous.

Nonlinear difference equations appear as numerical solutions and as discrete analogues of differential
equations which model diverse phenomena in many fields. In the past few years, the study of difference

https://www.aimspress.com/journal/cam
http://dx.doi.org/10.3934/cam.2023030


599

equations has attracted much interest and appeared in a large variety of applications [1]. Guo and Yu [2]
were the first to apply the variational method to the difference equations in 2003. Since then, many
results on difference equations have been obtained by utilizing variational method and critical point
theory [3–20].

The study of partial discrete nonlinear problems with two or more discrete variables is greatly used
as mathematical models in a variety of disciplines. Applying critical point theory, some authors have
showed the existence findings of non-trivial solutions for the classical partial discrete nonlinear problem
with p = 2.

In 2010, Galewski and Orpel [5] established at least one non-trivial solution by employing the
Mountain Pass Lemma. Molica Bisci and Imbesi [9] in 2014 determined an unbounded sequence
of solutions. Heidarkhani and Imbesi [6] in 2015 investigated the existence of three solutions. The
same authors in 2019 discussed the existence of non-trivial solutions [7] for a class of partial discrete
nonlinear problems with the help of a local minimum theorem. In 2021 [14], we generalized the case of
p = 2 by adding a weight as follows

−∆1(p(l − 1, q)∆1w(l − 1, q)) − ∆2(p(l, q − 1)∆2w(l, q − 1)) = λ f ((l, q),w(l, q)),
∀ (l, q) ∈ N [1, d] × N [1, h] ,

w(l, 0) = w(l, h + 1) = 0, ∀l ∈ N[1, d],
w(0, q) = w(d + 1, q) = 0, ∀q ∈ N[1, h],

where p : N[0, d] × N[0, h]→]0,+∞[ fulfills

p(0, q) = 0, ∀q ∈ N[1, h], and p(l, 0) = 0, ∀l ∈ N[1, d].

Moreover, by combining variational methods with the Morse theory, Long [18] investigated a Kirchhoff-
type Dirichlet boundary value problem and provided some results on the existence of non-trivial solutions.
Specifically, Josef Diblik [19] explored the existence of bounded solutions to discrete equations of fractional
order. In addition, Abdelrachid El Amrouss and Omar Hammouti [20] discussed the existence of solutions to
a discrete 2n-th order nonlinear problems. As for the case of p-Laplacian, recently in [3, 17], the authors
showed the existence of multiple positive solutions by utilizing variational methods.

However, the existence of multiple non-trivial solutions to problem (1.1) have rarely been discussed
in terms of the variational principe of Ricceri and a two non-zero critical points theorem. Motivated
by the studies in the references above, it is our first attempt to investigate the non-trivial solutions to
problem (1.1), subject to certain criteria imposed on the nonlinear term f which is supposed to be
sign-changing.

The following is the structure of this paper. We give some basic preliminaries and an illustration of
the framework associated to problem (1.1) in Section 2. We give our primary findings and their proofs
in Section 3. We provide a few examples to demonstrate our key findings in Section 4. We reach a
conclusion in the final segment.

2. Preliminaries

We introduce the corresponding variational framework. For this, we consider the following
dh-dimensional Banach space
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H = {w : N[0, d + 1] × N[0, h + 1]→ R such that w(l, 0) = w(l, h + 1) =

w(0, q) = w(d + 1, q) = 0, ∀l ∈ N[0, d + 1], ∀q ∈ N[0, h + 1]},

which is endowed by the norm

‖w‖ =

 d∑
l=1

h∑
q=1

|w(l, q)|p


1
p

, w ∈ H. (2.1)

For w ∈ H, we put
‖w‖∞ = max {|w(l, q)|, (l, q) ∈ N[1, d] × N[1, h]} . (2.2)

The functionals Φ, Ψ : H → R are defined by

Φ(w) =

h∑
q=1

d+1∑
l=1

1
p
|∆1w(l − 1, q)|p +

d∑
l=1

h+1∑
q=1

1
p
|∆2w(l, q − 1)|p , (2.3)

and

Ψ(w) =

h∑
q=1

d∑
l=1

g(l, q)F(w(l, q)), (2.4)

where F(w) =
∫ w

0
f (s)ds for every w ∈ R.

Define the energy functional Eλ : H → R of problem (1.1) as

Eλ(w) = Φ(w) − λΨ(w). (2.5)

Lemma 2.1. [3] The functionals Φ, Ψ and Eλ are differentiable in sense of Gâteaux and for any w,v
∈ H we have

Φ
′

(w)(v) = −

h∑
q=1

d∑
l=1

[
∆1

(
φp (∆1w(l − 1, q))

)
+ ∆2

(
φp (∆2w(l, q − 1))

)]
v(l, q) (2.6)

Ψ
′

(w)(v) =

h∑
q=1

d∑
l=1

g(l, q) f (w(l, q))v(l, q), (2.7)

E
′

λ(w) (v) = [Φ
′

(w) − λΨ
′

(w)] (v)

= −

h∑
q=1

d∑
l=1

[∆1

(
φp (∆1w(l − 1, q))

)
+ ∆2

(
φp (∆2w(l, q − 1))

)
+ λg(l, q) f (w(l, q))]v(l, q).

(2.8)

We say that w∗ ∈ H is a critical point of the functional Eλ if Eλ(w∗)(v) = 0 for all v ∈ H.
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Remark 2.2. Every critical point of the functional Eλ is a weak solution for problem (1.1).

Indeed, let w∗ ∈ H be an arbitrary critical point of functional Eλ. So

w∗(l, 0) = w∗(l, h + 1) = 0, ∀l ∈ N[1, d], w∗(0, q) = w∗(d + 1, q) = 0, ∀q ∈ N[1, h],

and
Eλ(w∗)(v) = 0, for all v ∈ H.

Then, from (2.8) we have

−

h∑
q=1

d∑
l=1

[∆1

(
φp (∆1w∗(l − 1, q))

)
+ ∆2

(
φp (∆2w∗(l, q − 1))

)
+ λg(l, q) f (w∗(l, q))]v(l, q) = 0.

Since v ∈ H is arbitrary, therefore

−∆1

(
φp (∆1w∗(l − 1, q))

)
− ∆2

(
φp (∆2w∗(l, q − 1))

)
− λg(l, q) f (w∗(l, q)) = 0,

for every (l, q) ∈ N[1, d] × N[1, h]. We conclude that every critical point of the functional Eλ is a weak
solution for problem (1.1).

Lemma 2.3. [3] For all w ∈ H, we have

‖w‖p
∞ ≤

p
4p (d + h + 2)p−1Φ(w).

Lemma 2.4. For all w ∈ H, we have

4p

pdh(d + h + 2)p−1 ‖w‖
p ≤ Φ(w) ≤

2p+1

p
‖w‖p.

Proof. Let w ∈ H, from Lemma 2.3 we get

|w(l, q)|p ≤
p

4p (d + h + 2)p−1Φ(w)

for all (l, q) ∈ N[1, d] × N[1, h]. Then

‖w‖p =

d∑
l=1

h∑
q=1

|w(l, q)|p ≤
dhp
4p (d + h + 2)p−1Φ(w), ∀w ∈ H,

so
4p

dhp(d + h + 2)p−1 ‖w‖
p ≤ Φ(w).

Furthermore, for all (l, q) ∈ N[1, d] × N[1, h] we obtain

|∆1w(l − 1, q)|p = |w(l, q) − w(l − 1, q)|p ≤ (|w(l, q)| + |w(l − 1, q)|)p .

Since the function t 7−→ |t|p (t ≥ 0) is convex, then we get

|∆1w(l − 1, q)|p ≤ 2p−1 (|w(l, q)|p + |w(l − 1, q)|p) ,
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so

d+1∑
l=1

h∑
q=1

|∆1w(l − 1, q)|p ≤ 2p−1

 d+1∑
l=1

h∑
q=1

|w(l, q)|p +

d+1∑
l=1

h∑
q=1

|w(l − 1, q)|p


≤ 2 × 2p−1

 d∑
l=1

h∑
q=1

|w(l, q)|p


≤ 2p‖w‖p.

Similarly, we prove that

d∑
l=1

h+1∑
q=1

|∆2w(l, q − 1)|p ≤ 2p‖w‖p.

Thus

Φ(w) ≤
2p+1

p
‖w‖p, ∀ w ∈ H.

�

Now, we recall the basic tools that will be used in the next section. According to the following
Ricceri’s variational principle described in [ [21], Theorem 2.1], we can achieve the first result.

Theorem 2.5. Assume that Φ,Ψ : X → R are two Gâteaux differentiable functionals, where X is
a reflexive real Banach space. Furthermore, Φ is strongly continuous, sequentially weakly lower
semicontinuous as well as coercive in X, whereas Ψ is sequentially weakly upper semicontinuous in X.
Let Jλ = Φ − λΨ, λ ∈ R, and define

ϕ(r) = inf
w∈Φ−1(]−∞,r[)

sup
v∈Φ−1(]−∞,r[)

Ψ(v) − Ψ(w)

r − Φ(w)
.

Then, for any r > inf
X

Φ and λ ∈
]
0,

1
ϕ(r)

[
, the functional Jλ restricted to Φ−1(] −∞, r[) admits a global

minimum, which is a critical point of Jλ in X.

Our second technique is based on a two non-zero critical points theorem proved in [ [22],Theorem
2.1] and [23].

Theorem 2.6. Assume that Φ,Ψ : X → R are two continuously Gâteaux differentiable functionals
fulfilling inf

X
Φ = Φ(0) = Ψ(0) = 0, where X is a real finite dimensional Banach space. Suppose that

there exist r ∈ R and w̃ ∈ X, with 0 < Φ(w̃) < r, such that

sup
v∈Φ−1(]−∞,r[)

Ψ(v)

r
<

Ψ(w̃)
Φ(w̃)

,
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and for each

λ ∈ Λ =

Φ(w̃)
Ψ(w̃)

,
r

sup
v∈Φ−1(]−∞,r[)

Ψ(v)

 ,
the functional Jλ = Φ − λΨ satisfies the (PS)-condition and it is unbounded from below.

Then, for each λ ∈ Λ, the functional Jλ has at least two non-zero critical points wλ,1, wλ,2 such that
Jλ(wλ,1) < 0 < Jλ(wλ,2).

3. Main results

Let

G =

h∑
q=1

d∑
l=1

g(l, q), α =
22p−1

(d + h)(d + h + 2)p−1 , g0 = min
N[1,d]×N[1,h]

g(l, q).

Theorem 3.1. Assume that

lim sup
w→0

F(w)
wp = +∞.

Then there is a λ0 > 0 such that, for any λ ∈]0, λ0[, problem (1.1) has at least one non-trivial solution
in H.

Proof. Lemma 2.1 implies Φ, Ψ and Eλ are the functionals in C1(H,R). The functional Φ is of class C1

on the finite dimensional space H, so is sequentially weakly lower semicontinuous. Also, the functional
Ψ is of class C1 on the finite dimensional space H, so is sequentially weakly upper semicontinuous.
Moreover, according to Lemma 2.4, we infer that Φ is coercive.

Put r =
d + h + 2

p
> 0 and c =

d + h + 2
4

. For any w ∈ H such that Φ(w) < r, from Lemma 2.3, we

get ‖w‖∞ ≤ c. Consequently

sup
Φ(w)<r

Ψ(w) = sup
w∈Φ−1(]−∞,r[)

 d∑
l=1

h∑
q=1

g(l, q)F(w(l, q))

 ≤ G max
|t|≤c

F(t). (3.1)

Let

ϕ(r) = inf
Φ(w)<r

sup
v∈Φ−1(]−∞,r[)

Ψ(v) − Ψ(w)

r − Φ(w)
.

From (3.1), we get

ϕ(r) ≤

sup
v∈Φ−1(]−∞,r[)

Ψ(v)

r
≤

1
r

G max
|t|≤c

F(t),

so
1
ϕ(r)
>

r
G max
|t|≤c

F(t)
.
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Put
λ0 =

d + h + 2
pG max

|t|≤c
F(t)

.

Therefore, owing to Theorem 2.5, for all λ ∈ ]0, λ0[ ⊂
]
0,

1
ϕ(r)

[
problem (1.1) has at least one solution

wλ ∈ Φ−1(] −∞, r[).

Next, we claim that wλ is non-zero. Indeed, let A > 0 large enough, since lim sup
w→0

F(w)
wp = +∞, then

there exists ρ > 0 such that

F(w) ≥
2(d + h)

pG
(A + 1) |w|p

for all |w| < ρ. Moreover, for a fixed sequence {wk} ⊂ R such that lim
k→∞

wk = 0, one has

lim sup
k→∞

F(wk)
|wk|

p = +∞.

Let vk = wkv for all k ∈ N, where v ∈ H such that ∀(l, q) ∈ N[1, d] × N[1, h] : v(l, q) = 1.
It is clear that vk ∈ H for all k ∈ N, and ‖vk‖ = |wk|‖v‖ → 0 as k → ∞. Therefore, for k that is large

enough, we obtain

‖vk‖ ≤
1
2

(
d + h + 2

2

) 1
p

,

so by Lemma 2.4, we infer that Φ(vk) < r and vk ∈ Φ−1(] −∞, r[) for all k ∈ N.

Furthermore, for k ∈ N sufficiently large, we deduce that

Ψ(vk)
Φ(vk)

=

p
h∑

q=1

d∑
l=1

g(l, q)F(vk(l, q))

2(d + h)|wk|
p

≥
2(d + h)(A + 1)|wk|

p

pG
×

pG
2(d + h)|wk|

p

= A + 1 > A,

then we have shown that lim sup
k→+∞

Ψ(vk)
Φ(vk)

= +∞.

Consequently, we obtain that

Eλ(vk) = Φ(vk) − λΨ(vk) < 0.

Since vk ∈ Φ−1(] −∞, r[) and wλ is a global minimun of E in Φ−1(] −∞, r[), then

Eλ(wλ) ≤ Eλ(vk) < 0 = Eλ(0H),

which yields that wλ is non-zero. �
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Second, on a basic of a two non-zero critical points theorem, we get the result as follows.

Theorem 3.2. Suppose that

(H1) There exist a, b > 0 with b < aα
1
p ,

(H2) There exist constants µ > 0 and θ > p such that

0 < θF(w) ≤ w f (w), ∀|w| ≥ µ,

(H3)
max
|w|≤a

F(w)

(4a)p <
F(b)

2(d + h)(d + h + 2)p−1bp .

Then, for all λ ∈

2(d + h)bp

pGF(b)
,

(4a)p

pG(d + h + 2)p−1max
|w|≤a

F(w)

, there exist at least two non-trivial solutions

of problem (1.1).

Proof. From Lemma 2.1, the functionals Φ and Ψ given by (2.3)-(2.4) are differentiable in sense of
Gâteaux. Clearly, H is a finite dimensional Banach space and

inf
X

Φ = Φ(0) = Ψ(0) = 0.

First, according to condition (H2) there exists C > 0 such that

F(w) ≥ C|w|θ, ∀|w| ≥ µ.

For s > 1 large enough and w ∈ H\{0}, we have

Ψ(sw) ≥ C
h∑

q=1

d∑
l=1

g(l, q)|sw(l, q)|θ

≥ sθCg0

h∑
q=1

d∑
l=1

|w(l, q)|θ.

Therefore, from (2.5) and Lemma 2.4, for all k ∈ N we get

Eλ(sw) ≤
(
2p+1

p
‖w‖p

)
sp −

λCg0

h∑
q=1

d∑
l=1

|w(l, q)|θ
 sθ. (3.2)

Since θ > p, one has Eλ(sw)→ −∞ as s→ +∞. Then the functional Eλ is unbounded from below.
Next, we show that the functional Eλ satisfies the (PS) condition. Arguing by contradiction, for

this, suppose that there exists an unbounded sequence {wk} ⊂ H such that {Eλ(wk)} is bounded and
E′λ(wk)→ 0 as k → +∞. Then, there exists a positive constant A such that

Eλ(wk) ≤ A and ‖wk‖ ≥ −
1
θ

(
E′λ(wk),wk

)
,
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for k ∈ N large enough,

A + ‖wk‖ ≥ Eλ(wk) −
1
θ

(
E′λ(wk),wk

)
. (3.3)

Moreover, we have

Eλ(wk) −
1
θ

(
E′λ(wk),wk

)
= Φ(wk) − λΨ(wk) −

1
θ

pΦ(wk) − λ
h∑

q=1

d∑
l=1

g(l, q) f (wk(l, q))wk(l, q)


=

(
1 −

p
θ

)
Φ(wk) −

λ

θ

h∑
q=1

d∑
l=1

g(l, q) (θF(wk(l, q)) − f (wk(l, q))wk(l, q)) ,

and from assumption (H2), one has

h∑
q=1

d∑
l=1

g(l, q) (θF(wk(l, q)) − f (wk(l, q))wk(l, q)) ≤
h∑

q=1

d∑
l=1

g(l, q) max
|w|≤µ
|θF(w) − w f (w)|

≤ G max
|w|≤µ
|θF(w) − w f (w)| .

Then, from Lemma 2.4, we deduce that

A + ‖wk‖ ≥
4p

pdh(d + h + 2)p−1

(
1 −

p
θ

)
‖wk‖

p −
λ

θ
G max
|w|≤µ
|θF(w) − w f (w)| .

However, this is absurd since p > 1 and θ > p. Therefore, the sequence {wk} is bounded in H which
is a finite dimensional space, then {wk} has a convergent subsequence. This shows that Eλ fulfills the
(PS) condition.

On the other hand, put

r =
(4a)p

p(d + h + 2)p−1 .

For all w ∈ H, with Φ(w) < r, from Lemma 2.3 we get ‖w‖∞ ≤ a, and we have

Ψ(w) =

h∑
q=1

d∑
l=1

g(l, q)F(w(l, q)) ≤ G max
|t|≤a

F(t).

Then
sup

Φ(w)<r
Ψ(w)

r
≤

p(d + h + 2)p−1

4p ×

G max
|t|≤a

F(t)

ap .

Choose w̃ defined by w̃(l, q) = b for all (l, q) ∈ N[1, d]×N[1, h], w(l, 0) = 0 = w(l, h+1), l ∈ N[0, d+1]
and w(0, q) = 0 = w(d + 1, q), q ∈ N[0, h + 1]. It is obvious that w̃ ∈ H and from assumption (H1), one
has

Φ(w̃) =
2(d + h)bp

p
< r.
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Moreover, we have

Ψ(w̃)
Φ(w̃)

=

h∑
q=1

d∑
l=1

g(l, q)F(w̃(l, q))

Φ(w̃)
=

p
2(d + h)bp

h∑
q=1

d∑
l=1

g(l, q)F(b) =
pGF(b)

2(d + h)bp .

According to (H3), we deduce that

sup
Φ(w)<r

Ψ(w)

r
<

Ψ(w̃)
Φ(w̃)

.

Hence all hypotheses of Theorem 2.6 are fulfilled, thus the functional Eλ has at least two non-trivial

critical points for all λ ∈

2(d + h)bp

pGF(b)
,

(4a)p

pG(d + h + 2)p−1 max
|w|≤a

F(w)

 . �

4. Examples

Example 4.1. We consider problem (1.1) with d = h = 10, p =
√

10 and the functions of the second
term are given by

g(l, q) =
1
lq
, ∀(l, q) ∈ N[1, d] × N[1, h],

f (w) = (3 − w)w2e−w, ∀w ∈ R.

By simple computations, we get that

F(w) = w3e−w, ∀w ∈ R, max
|w|≤ 11

2

F(w) =
27
e3 ,

lim
|w|→0

F(w)

w
√

10
= +∞, G =

h∑
q=1

d∑
l=1

1
lq
≈8.58.

Therefore, according to Theorem 3.1, for any λ ∈]0, 0.60[ the above problem has at least one
non-trivial solution.

Example 4.2. We give an example of function f , which satisfies the assumption (H2) of Theorem 3.2.

In fact, for p =
10
3

, take

f (w) =

1 + 11
3 w

8
3 , w ≥ 0,

1 − 11
3 (−w)

8
3 , w < 0,

we get

F(w) =

∫ w

0
f (t)dt = w + |w|

11
3 , ∀w ∈ R.

Put µ =

(
46
3

) 3
8

, θ =
7
2

, and follow the analysis below.
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1. For all w ∈ R such that |w| ≥
(
46
3

) 3
8

, we get

F(w) ≥ |w|
(
−1 + |w|

8
3
)
≥ µ

(
−1 + µ

8
3
)

=
43
3

(
46
3

) 3
8

> 0.

2. For w < 0,

w f (w) − θF(w) = w +
11
3

(−w)
11
3 −

7
2

(
w + |w|

11
3
)

=
1
6
|w|

11
3 −

5
2

w > 0.

3. For w ≥
(
46
3

) 3
8

,

w f (w) − θF(w) = w +
11
3

w
11
3 −

7
2

(
w + |w|

11
3
)

=
1
6

w
11
3 −

5
2

w

=
1
6

w
(
w

8
3 − 15

)
≥

1
18

(
46
3

) 3
8

> 0.

Then assumption (H2) holds as well.

5. Conclusion

In this work, we study the existence and multiplicity of non-trivial solutions for a discrete nonlinear
problem in a dh-dimensional Banach space. The approach allows us to prove that the energy functional
has at least one or two non-trivial critical points that are solutions of the associated problem. In order to
demonstrate how the findings might be applied to real-world situations, two examples are presented in
which a variety of presumptions are shown to be accurate.

Moreover, we have already discussed problem (1.1) in the case where g is a positive function.
As for the case where the function g changes sign, it has been left as an open question for future
research. Besides, we can tackle the existence of solution for problem (1.1), where (l, q) ∈ Z × Z and

lim
|l|+|q|−→+∞

w(l, q) = 0.
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