In this paper, we consider the following discrete fractional $ p $-Laplacian equations:
$ \begin{equation*} (-\Delta_{1})^{s}_{p}u(a)+V(a)|u(a)|^{p-2}u(a) = \lambda f(a, u(a)), \; \mbox{in}\ \mathbb{Z}, \end{equation*} $
where $ \lambda $ is the parameter and $ f(a, u(a)) $ satisfies no symmetry assumption. As a result, a specific positive parameter interval is determined by some requirements for the nonlinear term near zero, and then infinitely many homoclinic solutions are obtained by using a special version of Ricceri's variational principle.
Citation: Chunming Ju, Giovanni Molica Bisci, Binlin Zhang. On sequences of homoclinic solutions for fractional discrete $ p $-Laplacian equations[J]. Communications in Analysis and Mechanics, 2023, 15(4): 586-597. doi: 10.3934/cam.2023029
In this paper, we consider the following discrete fractional $ p $-Laplacian equations:
$ \begin{equation*} (-\Delta_{1})^{s}_{p}u(a)+V(a)|u(a)|^{p-2}u(a) = \lambda f(a, u(a)), \; \mbox{in}\ \mathbb{Z}, \end{equation*} $
where $ \lambda $ is the parameter and $ f(a, u(a)) $ satisfies no symmetry assumption. As a result, a specific positive parameter interval is determined by some requirements for the nonlinear term near zero, and then infinitely many homoclinic solutions are obtained by using a special version of Ricceri's variational principle.
[1] | J. Diblík, Bounded solutions to systems of fractional discrete equations, Adv. Nonlinear Anal., 11 (2022), 1614–1630. https://doi.org/10.1515/anona-2022-0260 doi: 10.1515/anona-2022-0260 |
[2] | X. Mingqi, V. Rădulescu, B. Zhang, Fractional Kirchhoff problems with critical Trudinger-Moser nonlinearity, Calc. Var. Partial Differential Equations, 58 (2019), 57. https://doi.org/10.1007/s00526-019-1499-y doi: 10.1007/s00526-019-1499-y |
[3] | P. Pucci, M. Xiang, B. Zhang, Existence and multiplicity of entire solutions for fractional $p$-Kirchhoff equations, Adv. Nonlinear Anal., 5 (2016), 27–55. https://doi.org/10.1515/anona-2015-0102 doi: 10.1515/anona-2015-0102 |
[4] | A. El Amrouss, O. Hammouti, Spectrum of discrete $2n$-th order difference operator with periodic boundary conditions and its applications, Opuscula Math., 41 (2021), 489–507. https://doi.org/10.7494/OpMath.2021.41.4.489 doi: 10.7494/OpMath.2021.41.4.489 |
[5] | Y. Long, Nontrivial solutions of discrete Kirchhoff-type problems via Morse theory, Adv. Nonlinear Anal., 11 (2022), 1352–1364. https://doi.org/10.1515/anona-2022-0251 doi: 10.1515/anona-2022-0251 |
[6] | G. Molica Bisci, Sequence of weak solutions for fractional equations, Math. Res. Lett., 21 (2014), 241–253. https://dx.doi.org/10.4310/MRL.2014.v21.n2.a3 doi: 10.4310/MRL.2014.v21.n2.a3 |
[7] | G. Molica Bisci, V. Rădulescu, R. Servadei, Variational Methods for Nonlocal Fractional Equations, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2016. https://doi.org/10.1017/CBO9781316282397 |
[8] | O. Ciaurri, L. Roncal, P. R. Stinga, J. L. Torrea, J. L. Varona, Nonlocal discrete diffusion equations and the fractional discrete Laplacian, regularity and applications, Adv. Math., 330 (2018), 688–738. https://doi.org/10.1016/j.aim.2018.03.023 doi: 10.1016/j.aim.2018.03.023 |
[9] | M. Xiang, B. Zhang, Homoclinic solutions for fractional discrete Laplacian equations, Nonlinear Anal., 198 (2020), 111886. https://doi.org/10.1016/j.na.2020.111886 doi: 10.1016/j.na.2020.111886 |
[10] | X. Ju, H. Die, M. Xiang, The Nehari manifold method for discrete fractional $p$-Laplacian equations, Adv. Difference Equ., 2020 (2020), 559. https://doi.org/10.1186/s13662-020-03014-z doi: 10.1186/s13662-020-03014-z |
[11] | C. Ju, B. Zhang, On fractional discrete $p$-Laplacian equations via Clark's theorem, Appl. Math. Comput., 434 (2022), 127443. https://doi.org/10.1016/j.amc.2022.127443 doi: 10.1016/j.amc.2022.127443 |
[12] | C. Ju, G. Molica Bisci, B. Zhang, Infinitely many homoclinic solutions for fractional discrete Kirchhoff-Schrödinger equations, Adv. Contin. Discret. M., 2023 (2023), 31. https://doi.org/10.1186/s13662-023-03777-1 doi: 10.1186/s13662-023-03777-1 |
[13] | R. P. Agarwal, K. Perera, D. O'Regan, Multiple positive solutions of singular and nonsingular discrete problems via variational methods, Nonlinear Anal., 58 (2004), 69–73. https://doi.org/10.1016/j.na.2003.11.012 doi: 10.1016/j.na.2003.11.012 |
[14] | A. Cabada, A. Iannizzotto, S. Tersian, Multiple solutions for discrete boundary value problems, J. Math. Anal. Appl., 356 (2009), 418–428. https://doi.org/10.1016/j.jmaa.2009.02.038 doi: 10.1016/j.jmaa.2009.02.038 |
[15] | X. Cai, J. Yu, Existence theorems for second-order discrete boundary value problems, J. Math. Anal. Appl., 320 (2006), 649–661. https://doi.org/10.1016/j.jmaa.2005.07.029 doi: 10.1016/j.jmaa.2005.07.029 |
[16] | S. Du, Z. Zhou, On the existence of multiple solutions for a partial discrete Dirichlet boundary value problem with mean curvature operator, Adv. Nonlinear Anal., 11 (2022), 198–211. https://doi.org/10.1515/anona-2020-0195 doi: 10.1515/anona-2020-0195 |
[17] | M. Fabian, P. Habala, P. Hájek, V. Montesinos, V. Zizler, Banach Space Theory, Springer, New York, 2011. https://doi.org/10.1007/978-1-4419-7515-7 |
[18] | B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 113 (2000), 401–410. https://doi.org/10.1016/s0377-0427(99)00269-1 doi: 10.1016/s0377-0427(99)00269-1 |
[19] | G. Bonanno, G. Molica Bisci, Infinitely many solutions for a Dirichlet problem involving the $p$-Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 140A (2010), 737–752. https://doi.org/10.1017/S0308210509000845 doi: 10.1017/S0308210509000845 |