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Abstract: In this paper, we consider the following discrete fractional p-Laplacian equations:

(−∆1)s
pu(a) + V(a)|u(a)|p−2u(a) = λ f (a, u(a)), in Z,

where λ is the parameter and f (a, u(a)) satisfies no symmetry assumption. As a result, a specific posi-
tive parameter interval is determined by some requirements for the nonlinear term near zero, and then
infinitely many homoclinic solutions are obtained by using a special version of Ricceri’s variational
principle.
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1. Introduction and main result

In this article, we study the existence of infinitely many homoclinic solutions of the following
fractional discrete p-Laplacian equations:

(−∆1)s
pu(a) + V(a)|u(a)|p−2u(a) = λ f (a, u(a)), in Z, (1.1)

where s ∈ (0, 1) and p ∈ (1,∞) are fixed constants, V(a) ∈ R+, λ is a positive parameter, f (a, ·) is a
continuous function for all a ∈ Z and (−∆1)s

p is the fractional discrete p-Laplacian given by

(−∆1)s
pu(a) = 2

∑
b∈Z,b,a

|u(a) − u(b)|p−2 (u(a) − u(b))Ks,p(a − b), in Z,
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where the discrete kernel Ks,p has the following property: There exist two constants 0 < cs,p ≤ Cs,p,
such that  cs,p

|d|1+ps ≤ Ks,p(d) ≤ Cs,p

|d|1+ps , for all d ∈ Z \ {0};

Ks,p(0) = 0.
(1.2)

The fractional operator has received more attention recent decades because of its many applications
in the real world. Many scholars have paid attention to this kind of problem, and have produced a lot of
classical works, see for example [1–3]. As a classical fractional operator, the fractional Laplacian has
wide applications in various fields such as optimization, population dynamics and so on. The fractional
Laplacian on R can be defined for 0 < s < 1 and ν ∈ C∞0 (RN) as

(−∆)sν(x) = CN,sP.V.
∫
RN

ν(x) − ν(y)
|x − y|N+2s dy, x ∈ RN ,

where CN,s is a positive constant and P.V. denotes the Cauchy principle value. In various cases involving
differential equations, the Laplace operator is replaced by either the fractional Laplace operator or other
more general operators, and hence the existence results have been obtained by employing variational
approaches, see for instance [4–7]. These alternative approaches have been found to offer improved
descriptions of numerous phenomena observed in the natural world. Correspondingly, it is necessary to
give some qualitative results by employing numerical analysis. The nonlocal feature of the fractional
Laplacian is one of the important aspects to be considered in numerical methods, which makes it
necessary to study the existence of solutions.

Let ZH denote a grid of fixed size H > 0 on R, i.e., ZH = {Ha|a ∈ Z}. In [8], the definition of the
fractional discrete Laplacian on ZH is given by

(−∆H )sν(a) =
∑

b∈Z,b,a

(ν(a) − ν(b))KHs (a − b),

where s ∈ (0, 1), ν ∈ `s =
{
ν : ZH → R

∣∣∣ ∑ω∈Z
|ν(ω)|

(1+|ω|)1+2s < ∞
}

and

KHs (a) =

4sΓ(1/2+s)
√
π|Γ(−s)| ·

Γ(|a|−s)
H2sΓ(|a|+1+s) , a ∈ Z\{0},

0, a = 0.

The above discrete kernel KHs has the following property: There exist two constants 0 < cs ≤ Cs, such
that for all a ∈ Z\{0} there holds

cs

H2s|a|1+2s ≤ KHs (a) ≤
Cs

H2s|a|1+2s .

In [8], Ciaurri et al. also proved that if ν is bounded then lims→1−(−∆H )sν(a) = −∆Hν(a), where ∆H is
there discrete Laplacian on ZH , i.e.

∆Hν(a) =
1
H2 (ν(a + 1) − 2ν(a) + ν(a − 1)).

Moreover, under some suitable conditions and H → 0, the fractional Laplacian can be approximated
by the fractional discrete Laplacian.
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Subsequently, let us give some existence results on the fractional difference equations. Xiang et
al. [9] first investigated the fractional discrete Laplacian equations based on variational methods:(−∆1)sν(a) + V(a)ν(a) = λ f (a, ν(a)), for a ∈ Z,

ν(a)→ 0, as |a| → ∞,
(1.3)

where f (a, ·) is a continuous function for all a ∈ Z, λ > 0, V(a) ∈ R+ and

(−∆1)sν(a) = 2
∑

b∈Z,b,a

(ν(a) − ν(b))Ks(a − b), in Z.

Using the mountain pass theorem and Ekeland’s variational principle under some suitable conditions,
they obtained two homoclinic solutions for problem (1.3). It is evident that when p = 2, the discrete
fractional p-Laplace operator corresponds to the discrete fractional Laplace operator. After that, Ju et
al. [10] studied the following fractional discrete p-Laplacian equations(−∆1)s

pν(d) + V(d)|ν(d)|p−2ν(d) = λa(d)|ν(d)|q−2ν(d) + b(d)|ν(d)|r−2ν(d), for d ∈ Z,

ν(d)→ 0, as |d| → ∞,
(1.4)

where a ∈ `
p

p−q , b ∈ `∞, 1 < q < p < r < ∞, λ > 0, V(a) ∈ R+, (−∆1)s
p is the fractional discrete

p-Laplacian. Under certain conditions, they employed the Nehari manifold method to achieve the exis-
tence of at least two homoclinic solutions for problem (1.4). In [11], Ju et al. investigated the existence
of multiple solutions for the fractional discrete p-Laplacian equations with various nonlinear terms
via different Clark’s theorems. In a recent study conducted by Ju et al. in [12], it was demonstrated
that using the fountain theorem and the dual fountain theorem under the same hypotheses, two sepa-
rate sequences of homoclinic solutions were derived for the fractional discrete Kirchhoff-Schrödinger
equations. Based on the findings from [8], it could be deduced that Eq.(1.3) can be reformulated as the
renowned discrete version of the Schrödinger equation

− ∆µ(ξ) + V(ξ)µ(ξ) = λ f (ξ, µ(ξ)), in Z. (1.5)

It is worth mentioning that in [13], Agarwal et al. first employed the variational methods to analyze
Eq.(1.5). Here, We give some literature on the study of difference equations using the critical point
theory, see [14–16].

In particular, we observe that both the nonlinear terms in [11, 12] have the following symmetry
condition:

(S) f (a, ν) is odd in ν.

Therefore, in this paper, we consider the nonlinear term without condition (S), and study the existence
of multiple homoclinic solutions of problem (1.1). For this, let us first recall if the solution ν of Eq.(1.1)
satisfies ν(d)→ 0 as |d| → ∞, then ν is called a homoclinic solution. Suppose that V(a) and f (a, u(a))
in problem (1.1) satisfy the following assumptions:

(V) V ∈ `1 and there is a constant V0 ∈ (0, infa∈Z V(a)]; (`1 is defined in next section)
(F ) | f (a, u)| ≤ C

(
|u|p−1 + |u|t−1

)
for any a ∈ Z and u ∈ R, where p < t < ∞ and C > 0 is a constant.
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Set

A := lim inf
τ→0+

max|ζ |≤τ
∑

a∈Z F(a, ζ(a))
τp , B := lim sup

τ→0+

∑
a∈Z F(a, τ(a))

τp , θ :=
CsV0

Cb ‖V‖1
,

where F(a, u) =
∫ u

0
f (a, η)dη and Cs, Cb will appear in next section. Here we give the main conclusion

of our paper as follows.

Theorem 1.1. Suppose that (V) and (F ) are satisfied. Furthermore, the following inequality holds:
A < θB. Then, for every λ ∈

(
Cb‖V‖1

pB , CsV0
pA

)
, problem (1.1) possesses infinitely many nontrivial homo-

clinic solutions. In addition, their critical values and their `∞-norms tend to zero.

The rest of this article is arranged as follows: In Section 2, we introduce some definitions and give
some preliminary results. In Section 3, we give the proof of Theorem 1.1. In Section 4, we give an
example to demonstrate the main result.

Here we illustrate some notations used in this paper:

• C, Cs,ω, Cs, Cb and C∞ are diverse positive constants.
• ↪→ denotes the embedding.
• → denotes the strong convergence.

2. Preliminaries

First we give some basic definitions.
Let 1 ≤ ω ≤ ∞, we give the definition of the space (`ω, ‖·‖ω) as follows:

`ω :=


{
µ : Z→ R

∣∣∣∣∣ ∑a∈Z |µ(a)|ω < ∞
}
, if 1 ≤ ω < ∞;{

µ : Z→ R
∣∣∣∣∣ supa∈Z |µ(a)| < ∞

}
, if ω = ∞;

‖µ‖ω :=

(
∑

a∈Z |µ(a)|ω)1/ω , if 1 ≤ ω < ∞;
supa∈Z |µ(a)|, if ω = ∞.

Through the corresponding conclusions in [17], we know that `ω is a Banach space. Moreover, `ω1 ↪→

`ω2 and ‖µ‖ω2
≤ ‖µ‖ω1

if 1 ≤ ω1 ≤ ω2 ≤ ∞.
Next, we give the variational framework and some lemmas of this paper.
The space

(
Q, ‖·‖Q

)
is defined by

Q =

σ : Z→ R
∣∣∣∣∣∑

a∈Z

∑
b∈Z

|σ(a) − σ(b)|p Ks,p(a − b) +
∑
d∈Z

V(d)|σ(d)|p < ∞

 ;

‖σ‖
p
Q = [σ]p

s,p +
∑
d∈Z

V(d)|σ(d)|p

=
∑
a∈Z

∑
b∈Z

|σ(a) − σ(b)|p Ks,p(a − b) +
∑
d∈Z

V(d)|σ(d)|p.

Lemma 2.1. (see [10, Lemma 2.1]) If ξ ∈ `ω, then [ξ]s,ω ≤ Cs,ω‖ξ‖ω < ∞.
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Lemma 2.2. (see [11, Lemma 2.2]) Under the hypothesis (V),
(
Q, ‖·‖Q

)
is a reflexive Banach space,

and

‖σ‖ :=

∑
a∈Z

V(a)|σ(a)|p
1/p

.

is an equivalent norm of Q.

Through Lemma 2.2, we obtain that there exist 0 ≤ Cs ≤ Cb such that

Cs ‖µ‖
p
≤ ‖µ‖

p
Q ≤ Cb ‖µ‖

p . (2.1)

Lemma 2.3. Under the hypothesis (V), Q ↪→ `r is continuous for all p ≤ r ≤ ∞.

Proof. Using the above conclusions and (V), we can deduce that

‖σ‖r ≤ ‖σ‖p =

∑
a∈Z

|σ(a)|p


1
p

≤ V
− 1

p

0

∑
a∈Z

V(a) |σ(a)|p


1
p

, ∀ σ ∈ Q.

As desired.

Lemma 2.4. (see [10, Lemma 2.4]) IfW ⊂ Q is a compact subset, then for ∀ ι > 0, ∃ a0 ∈ N such
that ∑

|a|>a0

V(a)|ξ(a)|p


1/p

< ι, for each ξ ∈ W.

For all u ∈ Q, we define
K(u) = D(u) − λE(u)

where

D(u) =
1
p

∑
a∈Z

∑
b∈Z

|u(a) − u(b)|p Ks,p(a − b) +
1
p

∑
d∈Z

V(d)|u(d)|p =
1
p
‖u‖p

Q

and
E(u) =

∑
d∈Z

F(d, u(d)).

Clearly

inf
Q

D(µ) = inf
Q

1
p
‖µ‖

p
Q = D(0) = 0. (2.2)

Lemma 2.5. (see [10, Lemma 2.5]) Under the hypothesis (V), then D(σ) ∈ C1(Q,R) with

〈D′(σ), ξ〉 =
∑
a∈Z

∑
b∈Z

|σ(a) − σ(b)|p−2 (σ(a) − σ(b)) (ξ(a) − ξ(b)) Ks,p(a − b)

+
∑
d∈Z

V(d)|σ(d)|p−2σ(d)ξ(d),

for all σ, ξ ∈ Q.
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Lemma 2.6. (see [12, Lemma 2.6]) Under the hypotheses (V) and (F ), then E(σ) ∈ C1(Q,R) with

〈E′(σ), ξ〉 =
∑
d∈Z

f (d, σ(d))ξ(d)

for all σ, ξ ∈ Q.

Combining Lemma 2.5 and Lemma 2.6, we know that K(σ) ∈ C1(Q,R).

Lemma 2.7. Under the hypotheses (V) and (F ), then for ∀ λ > 0, every critical point of K is a
homoclinic solution of problem (1.1).

Proof. Assume σ be a critical point of K, we get for ∀ ξ ∈ Q∑
a∈Z

∑
b∈Z

|σ(a) − σ(b)|p−2 (σ(a) − σ(b)) (ξ(a) − ξ(b)) Ks,p(a − b) +
∑
a∈Z

V(a)|σ(a)|p−2σ(a)ξ(a)

=λ
∑
a∈Z

f (a, σ(a))ξ(a). (2.3)

For each a ∈ Z, we define ed ∈ Q as follows:

ed(a) :=

0, if a , d;
1, if a = d.

Taking ξ = ed in (2.3), we have

2
∑

b∈Z,b,a

|u(a) − u(b)|p−2 (u(a) − u(b))Ks,p(a − b) + V(a)|u(a)|p−2u(a) = λ f (a, σ(a)).

So σ is a solution of problem (1.1). Moreover, by Lemma 2.3 and σ ∈ Q, we know σ(a) → 0 as
|a| → ∞. Thus, σ is a homoclinic solution of problem (1.1).

3. Proof of main result

In this section, we shall use the following Thoerem 3.1 to prove our main result. In fact, this theorem
is a special version of Ricceri’s variational principle [18, Lemma 2.5].

Theorem 3.1. (see [19, Lemma 2.1]) Let Q be a reflexive Banach space, K(µ) := D(µ) + λE(µ) for
each µ ∈ Q, where D, E ∈ C1(Q,R), D is coercive, and λ is a real positive parameter. For every
γ > infQ D(µ), let

η(γ) := inf
µ∈D−1((−∞,γ))

(
supν∈D−1((−∞,γ)) E(ν)

)
− E(µ)

γ − D(µ)
,

and
ρ := lim inf

γ→(infQ D(µ))+
η (γ)

If ρ < +∞, then for every λ ∈ (0, 1
ρ
), the following conclusions holds only one:

(a) there exists a global minimum of D which is a local minimum of K.
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(b) there exists a sequence {µm} of pairwise distinct critical points (local minima) of K, with
limm→∞ D(µm) = infQ D(µ), which converges to a global minimum of D.

Remark 3.1. Obviously, ρ ≥ 0. In addition, when ρ = 0, we think that 1
ρ

= +∞.

Proof of Theorem 1.1. Let us recall

A = lim inf
τ→0+

max|ζ |≤τ
∑

a∈Z F(a, ζ(a))
τp , B = lim sup

τ→0+

∑
a∈Z F(a, τ(a))

τp , θ =
CsV0

Cb ‖V‖1
,

where F(a, u) =
∫ u

0
f (a, ω)dω. Fix λ ∈

(
Cb‖V‖1

pB , CsV0
pA

)
and set K,D, E as in Section 2. By Lemma 2.2,

Lemma 2.5 and Lemma 2.6, we know Q be a reflexive Banach space and D, E ∈ C1(Q,R). Because of

D(µ) =
1
p

∑
a∈Z

∑
b∈Z

|µ(a) − µ(b)|p Ks,p(a − b) +
1
p

∑
d∈Z

V(d)|µ(d)|p =
1
p
‖µ‖

p
Q → +∞

as ‖µ‖Q → +∞, i.e. D is coercive. Now, we show that ρ < +∞. For this purpose, let {δn} be a positive
sequence such that limn→∞ δn = 0 and

lim
n→∞

max|ζ |≤δn

∑
a∈Z F(a, ζ(a))
δ

p
n

= A.

Put
γn :=

CsV0

p
δp

n ,

for all n ∈ N. Clearly, limn→∞ γn = 0. For n > 0 is big enough, by Lemma 2.2 and (2.1), we can derive
that

D−1 ((−∞, γn)) ⊂ {ν ∈ Q : |ν(d)| ≤ δn, d ∈ Z} . (3.1)

Since D(0) = E(0) = 0, for each n large enough, by (3.1), we get

η(γn) = inf
µ∈D−1((−∞,γn))

(
supν∈D−1((−∞,γn))

∑
a∈Z F(a, ν(a))

)
− E(µ)

γn − D(µ)

≤

(
supν∈D−1((−∞,γn))

∑
a∈Z F(a, ν(a))

)
− E(0)

γn − D(0)

=
supν∈D−1((−∞,γn))

∑
a∈Z F(a, ν(a))

γn

≤
max|w|≤δn

∑
a∈Z F(a,w(a))
γn

=
p max|w|≤δn

∑
a∈Z F(a,w(a))

CsV0δ
p
n

.

Therefore, by (2.2), we acquire that

ρ = lim inf
γ→(infQ D(µ))+

η (γ) = lim inf
γn→0+

η (γn) ≤ lim
n→∞

η (γn)

≤ lim
n→∞

p max|w|≤δn

∑
a∈Z F(a,w(a))

CsV0δ
p
n

=
pA

CsV0
. (3.2)
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From (3.2), we get

λ ∈

(
Cb ‖V‖1

pB
,
CsV0

pA

)
⊂

(
0,

1
ρ

)
.

Next, we verify that 0 is not a local minimum of K. First, suppose that B = +∞. Choosing M such
that M > Cb‖V‖1

pλ and let {hn} be a sequence of positive numbers, with limn→∞ hn = 0, there exists n1 ∈ N

such that for all n ≥ n1 ∑
a∈Z

F(a, hn) > Mhp
n . (3.3)

Therefore, let {ln} be a sequence in Q defined by

ln(a) := hn, for all a ∈ Z.

It is easy to infer that ‖ln(a)‖Q → 0 as n→ ∞. By (V), (2.1) and (3.3), we obtain

K(ln) = D(ln) − λE(ln)

=
1
p
‖ln‖

p
Q − λ

∑
a∈Z

F (a, ln)

=
1
p
‖ln‖

p
Q − λ

∑
a∈Z

F (a, hn)

≤
Cb

p
‖ln‖

p
− λ

∑
a∈Z

F (a, hn)

=
Cb

p

∑
a∈Z

V(a) |ln(a)|p − λ
∑
a∈Z

F (a, hn)

=
Cb

p

∑
a∈Z

V(a)

 |hn|
p
− λ

∑
a∈Z

F (a, hn)

<
Cb

p
‖V‖1 hp

n − λMhp
n

=

(
Cb

p
‖V‖1 − λM

)
hp

n .

So, K(ln) < 0 = K(0) for each n ≥ n1 big enough. Next, suppose that B < +∞. Since λ > Cb‖V‖1
pB , there

exists ε > 0 such that ε < B − Cb‖V‖1
pλ . Hence, also choosing {hn} be a sequence of positive numbers,

with limn→∞ hn = 0, there is n2 ∈ N such that for all n ≥ n2∑
a∈Z

F(a, hn) > (B − ε) hp
n . (3.4)

Arguing as before and by choosing {ln} in Q as above, we get

K(ln) = D(ln) − λE(ln)

=
1
p
‖ln‖

p
Q − λ

∑
a∈Z

F (a, ln)
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=
1
p
‖ln‖

p
Q − λ

∑
a∈Z

F (a, hn)

≤
Cb

p
‖ln‖

p
− λ

∑
a∈Z

F (a, hn)

=
Cb

p

∑
a∈Z

V(a) |ln(a)|p − λ
∑
a∈Z

F (a, hn)

=
Cb

p

∑
a∈Z

V(a)

 |hn|
p
− λ

∑
a∈Z

F (a, hn)

<
Cb

p
‖V‖1 hp

n − λ(B − ε)hp
n

=

(
Cb

p
‖V‖1 − λ(B − ε)

)
hp

n .

So, K(ln) < 0 = K(0) for each n ≥ n2 big enough. In general, 0 is not a local minimum of K. By
Theorem 3.1, (a) is not valid, then we have a sequence {µn} ⊂ Q of critical points of K such that

lim
n→∞

D(µn) = lim
n→∞

1
p
‖µn‖Q = inf

Q
D(µ) = 0

and
lim
n→∞

K(µn) = inf
Q

D(µ) = 0.

By Lemma 2.3, we gain
‖µn‖∞ ≤ C∞ ‖µn‖Q → 0

as n → ∞. By Lemma 2.7, the problem (1.1) admits infinitely many nontrivial homoclinic solutions.
In addition, their critical values and their `∞-norms tend to zero. This completes the proof.

4. Example

Here, we give an example of a nonlinear term which can apply Theorem 1.1.

Example 4.1. We define

Ψ(n) :=
1

333n , for n ∈ N+;

Φ(n) :=
1

333n−1 , for n ∈ N+;

χ(n) :=
1

3(p+1)33n−3 , for n ∈ N+.

Obviously, we know that Φ(n + 1) < Ψ(n) < Φ(n) for all n ∈ N+ and limn→∞Ψ(n) = limn→∞Φ(n) = 0.
Set

f (a, u) = 0, ∀ a ∈ Z \ N+.
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And for each a ∈ N+, let f (a, ·) is a nonnegative continuous function such that

f (a, u) = 0, ∀ u ∈ R \ (Ψ(a),Φ(a)) and
∫ Φ(a)

Ψ(a)
f (a, η)dη = χ(a).

There are many nonlinear terms that satisfy the above conditions. Here we give one of them as an
example.

f (a, u) =
∑
n∈N+

χ(n)
2

((
u +

Φ(n) + Ψ(n)
2

)
2

Φ2(n) − Ψ2(n)

)
e{n}×[Ψ(n),Φ(n)](a, u)

where eM×N is the indicator function on M × N. Then

A = lim inf
τ→0+

max|ζ |≤τ
∑

a∈Z F(a, ζ(a))
τp

≤ lim
n→∞

max|ζ |≤Ψ(n)
∑

a∈Z F(a, ζ(a))
Ψp(n)

= lim
n→∞

∑∞
a=n+1 F(a, ζ(a))

Ψp(n)

= lim
n→∞

∑∞
a=n+1 χ(a)
Ψp(n)

≤ lim
n→∞

3χ(n + 1)
Ψp(n)

= 0

and

B = lim sup
τ→0+

∑
a∈Z F(a, ζ(a))

τp

≥ lim
n→∞

∑
a∈Z F(a, ζ(a))

Φp(n)

≥ lim
n→∞

F(n, ζ(n))
Φp(n)

≥ lim
n→∞

χ(n)
Φp(n)

= +∞.

Now it is easy to see that all the assumptions of Theorem 1.1 are satisfied, hence the corresponding
conclusion can be delivered by Theorem 1.1.
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