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Abstract: In this paper, we consider the following discrete fractional p-Laplacian equations:
(=ADyua) + V(@)u@)"*ua) = Af(a, u(a), in Z,

where A is the parameter and f(a, u(a)) satisfies no symmetry assumption. As a result, a specific posi-
tive parameter interval is determined by some requirements for the nonlinear term near zero, and then
infinitely many homoclinic solutions are obtained by using a special version of Ricceri’s variational
principle.
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1. Introduction and main result
In this article, we study the existence of infinitely many homoclinic solutions of the following
fractional discrete p-Laplacian equations:
(—Apyu(a) + V(@)@ *u(a) = Af(a, u(a)), in Z, (1.1)

where s € (0,1) and p € (1, o) are fixed constants, V(a) € R*, A is a positive parameter, f(a,-) is a
continuous function for all a € Z and (—A,),, 1s the fractional discrete p-Laplacian given by

(=A),ula) =2 Z lu(a) = u(b)" (u(a) - u(b))K; ,a - b), inZ,

beZ,b+a
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where the discrete kernel K, has the following property: There exist two constants 0 < ¢, < Cy ),
such that ‘ c
e < Ko p(d) < gz, foralld € Z)\ {0); (1.2)
K, ,(0)=0.

The fractional operator has received more attention recent decades because of its many applications
in the real world. Many scholars have paid attention to this kind of problem, and have produced a lot of
classical works, see for example [1-3]. As a classical fractional operator, the fractional Laplacian has
wide applications in various fields such as optimization, population dynamics and so on. The fractional
Laplacian on R can be defined for O < s < 1 and v € Cg"(RN ) as

v(x) = v(y) N
Wdy, x eRY,

(=A)’v(x) = CNSP.V.f
’ mY X —y
where Cy 1s a positive constant and P.V. denotes the Cauchy principle value. In various cases involving
differential equations, the Laplace operator is replaced by either the fractional Laplace operator or other
more general operators, and hence the existence results have been obtained by employing variational
approaches, see for instance [4-7]. These alternative approaches have been found to offer improved
descriptions of numerous phenomena observed in the natural world. Correspondingly, it is necessary to
give some qualitative results by employing numerical analysis. The nonlocal feature of the fractional
Laplacian is one of the important aspects to be considered in numerical methods, which makes it
necessary to study the existence of solutions.
Let Z4, denote a grid of fixed size H > 0 on R, i.e., Zy = {Hala € Z}. In [8], the definition of the
fractional discrete Laplacian on Z4; is given by

(~A@) = Y (@) - vb)K (@ - b),

beZbta
= : (w)l
where s € (0,1), v € £, = (v : Zy = R| Xpez rpoprs < ©°) and
4T /2+s) [(lal=s)
KM (q) = { VAol Ty 4 € Z\{0},
S 0, a=0.

The above discrete kernel K7/ has the following property: There exist two constants 0 < ¢, < C, such
that for all a € Z\{0} there holds

Cs H s
‘7_{2s|a|1+2s = KS (Cl) = 7_{23|a|1+2s'

In [8], Ciaurri et al. also proved that if v is bounded then lim;_,;-(—Ag)*v(a) = —Agv(a), where Aqy 1s
there discrete Laplacian on Zgy, 1.e.

Aqpv(a) = 7_%(v(a + 1) = 2v(a) + v(a — 1)).

Moreover, under some suitable conditions and H — 0, the fractional Laplacian can be approximated
by the fractional discrete Laplacian.
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Subsequently, let us give some existence results on the fractional difference equations. Xiang et
al. [9] first investigated the fractional discrete Laplacian equations based on variational methods:

{(—Al)sv(a) + V(a)v(a) = Af(a,v(a)), forac?Z, (1.3)

v(a) — 0, as |a| — oo,
where f(a, -) is a continuous function for alla € Z, 1 > 0, V(a) € R* and

(=AD’v(a) =2 Z (v(a) — v(b))K (a — b), in Z.

beZ,b+a

Using the mountain pass theorem and Ekeland’s variational principle under some suitable conditions,
they obtained two homoclinic solutions for problem (1.3). It is evident that when p = 2, the discrete
fractional p-Laplace operator corresponds to the discrete fractional Laplace operator. After that, Ju et
al. [10] studied the following fractional discrete p-Laplacian equations

{(—Al)f,v(d) + V(@PP?v(d) = @) *v(d) + b)) *v(d), ford € Z, (1.4)

v(d) — 0, as |d| — oo,

where a € fﬁ, bel 1<g<p<r<o,a>0, V() eR", (—Al); is the fractional discrete
p-Laplacian. Under certain conditions, they employed the Nehari manifold method to achieve the exis-
tence of at least two homoclinic solutions for problem (1.4). In [11], Ju ef al. investigated the existence
of multiple solutions for the fractional discrete p-Laplacian equations with various nonlinear terms
via different Clark’s theorems. In a recent study conducted by Ju et al. in [12], it was demonstrated
that using the fountain theorem and the dual fountain theorem under the same hypotheses, two sepa-
rate sequences of homoclinic solutions were derived for the fractional discrete Kirchhoftf-Schrodinger
equations. Based on the findings from [8], it could be deduced that Eq.(1.3) can be reformulated as the
renowned discrete version of the Schrodinger equation

= Ap(é) + V(OuE&) = Af(&, u(8)), inZ. (1.5)

It is worth mentioning that in [13], Agarwal et al. first employed the variational methods to analyze
Eq.(1.5). Here, We give some literature on the study of difference equations using the critical point
theory, see [14—16].

In particular, we observe that both the nonlinear terms in [11, 12] have the following symmetry
condition:

(S) f(a,v)isoddinv.

Therefore, in this paper, we consider the nonlinear term without condition (S), and study the existence
of multiple homoclinic solutions of problem (1.1). For this, let us first recall if the solution v of Eq.(1.1)
satisfies v(d) — 0 as |d| — oo, then v is called a homoclinic solution. Suppose that V(a) and f(a, u(a))
in problem (1.1) satisfy the following assumptions:

(V) V € £' and there is a constant V,, € (0, inf,cz V(a)]; (£ is defined in next section)
(F) If(a,un)| < C(|u|”_1 + |u|H) for any a € Z and u € R, where p <t < co and C > 0 is a constant.
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Set
max<r Yqez Fa,{(a .
A = liminf v Zaez F(@, C )),B :=lims ,0 = ,
T-0* T’ 0+ T’ Gy IV,

ducz Fla,1(a)  — CVo
up 0

where F(a,u) = j(;u f(a,n)dn and C, C, will appear in next section. Here we give the main conclusion
of our paper as follows.

Theorem 1.1. Suppose that (V) and (F) are satisfied. Furthermore, the following inequality holds:
A < OB. Then, for every A € (%, %), problem (1.1) possesses infinitely many nontrivial homo-
clinic solutions. In addition, their critical values and their {*-norms tend to zero.

The rest of this article is arranged as follows: In Section 2, we introduce some definitions and give
some preliminary results. In Section 3, we give the proof of Theorem 1.1. In Section 4, we give an
example to demonstrate the main result.

Here we illustrate some notations used in this paper:

e C,Cy,, Cy, Cpand C, are diverse positive constants.
e — denotes the embedding.
e — denotes the strong convergence.

2. Preliminaries

First we give some basic definitions.
Let 1 < w < oo, we give the definition of the space (¢, ||-||,,) as follows:

(125 B S @l < o}, if 1 <0 <
v =
{y . Z — R|sup, ., [u(@)| < oo}, if w = oo;
(Buez @), if 1 < w < oo;
lull,, == :
sup,.; lu(a)l, if w = oo.
Through the corresponding conclusions in [17], we know that £“ is a Banach space. Moreover, {“! —
€2 and ||ull,, < llull,, if 1 <) < w; < oo
Next, we give the variational framework and some lemmas of this paper.
The space (Q, ||-||Q) is defined by

0= {a 1Z— R[ DD le@—o®I K, ya=b)+ ) V@l < oo} :

acZ beZ dezZ

ol = (012, + > V@lo@)

deZ

=Y D lo@ - o)l Kspla=b)+ ) V@lo(@).

acZ bez dez

Lemma 2.1. (see [10, Lemma 2.1]) If ¢ € €%, then [€]s, < Cyulléll, < 0.
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Lemma 2.2. (see [11, Lemma 2.2]) Under the hypothesis (V), (Q, ||-||Q) is a reflexive Banach space,

and
1/p
) := [Z V(a)|a<a>|"] :

aczZ

is an equivalent norm of Q.

Through Lemma 2.2, we obtain that there exist 0 < C; < C,, such that

Clll” < llullyy < Cp llll” 2.1)

Lemma 2.3. Under the hypothesis (V), Q — (" is continuous for all p < r < oo,

Proof. Using the above conclusions and (V), we can deduce that

1

lerl, < llerl, = (Z |a<a)|”] <V, [Z V(a) |a(a)|ﬂ) Voeo.

acz acz

As desired.

Lemma 2.4. (see [10, Lemma 2.4]) If W C Q is a compact subset, then for ¥V ¢ > 0, 4 ay € N such

that
1/p

Z V(a)l£(a)l? <\, foreach & € W.

lal>ag

For all u € Q, we define
K(u) = D(u) — AE(u)

where
1 1 1
D) = — > lu@) — ub)’ Kypla=b) + = > V@ = — |lull
a€Z beZ p dez p
and
E(u) = Z F(d, u(d)).
deZ
Clearly
. 1
inf D(u) = inf > llully, = D(0) = 0. (2.2)

Lemma 2.5. (see [10, Lemma 2.5]) Under the hypothesis (V), then D(c) € C'(Q,R) with

(D'(0),8) = Z Z lor(@) = o (B)P~2 (0°(a) = (b)) (£(a) — (b)) K, p(a — b)

acZ bez

+ ) V@) o (d)Ed),

deZ

forall o, & € Q.
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Lemma 2.6. (see [12, Lemma 2.6]) Under the hypotheses (V) and (F), then E(o) € C'(Q,R) with

(E'(0),8) = ) fld,o(d)Ed)

deZ
forall o, & € Q.
Combining Lemma 2.5 and Lemma 2.6, we know that K(o) € C'(Q,R).

Lemma 2.7. Under the hypotheses (V) and (F), then for Y 1 > 0, every critical point of K is a
homoclinic solution of problem (1.1).

Proof. Assume o be a critical point of K, we get for V ¢ € Q

DD lo@ = eI (0(a) - o(b)) (€(@) - EB) Ko pla—b) + Y V(@lo (@ o(a)é(a)

acZ beZ acz

=1 f(a, (@), (23)

a€’z
For each a € Z, we define e, € Q as follows:

@ 0. ifa+d:
eqygla) =
4 1, ifa=d.

Taking & = e, in (2.3), we have

2 Z lu(a) = u(b)" (u(a) — u(b))K, pa = b) + V(@)u@\"u(a) = Af(a, o(a)).

beZ.b#a
So o is a solution of problem (1.1). Moreover, by Lemma 2.3 and oo € Q, we know o(a) — 0 as
|a| = oo. Thus, o is a homoclinic solution of problem (1.1).
3. Proof of main result

In this section, we shall use the following Thoerem 3.1 to prove our main result. In fact, this theorem
is a special version of Ricceri’s variational principle [18, Lemma 2.5].

Theorem 3.1. (see [19, Lemma 2.1]) Let Q be a reflexive Banach space, K(u) := D(u) + AE(u) for
each i € Q, where D,E € C'(Q,R), D is coercive, and A is a real positive parameter. For every
¥ > infy D(u), let

(P EC) — EW)
n(y) := inf ,
HeD1((~c0,) Y — D(u)
and
;= liminf
P y—(info D(u)* n)
If p < +oo, then for every A € (0, ﬁ), the following conclusions holds only one:

(a) there exists a global minimum of D which is a local minimum of K.
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(b) there exists a sequence {u,} of pairwise distinct critical points (local minima) of K, with
lim,,,—,co D(u,,) = inf g D(u), which converges to a global minimum of D.

Remark 3.1. Obviously, p > 0. In addition, when p = 0, we think that % = +o00.
Proof of Theorem 1.1. Let us recall
Zan F(a» T(Cl)) Cs VO

max<r 2,qez Fa,{(a .
A = liminf v Zaez F(a, £ )), B = limsup ,0 = ,
0% (4 0% TP Cb ”V”l

where F(a,u) = j(;” f(a,w)dw. Fix A € (C’}')'g”‘ , Csv(’) and set K, D, E as in Section 2. By Lemma 2.2,

Lemma 2.5 and Lemma 2.6, we know Q be a reflexive Banach space and D, E € C'(Q, R). Because of

Dy = — L3S @) — )Y K pla =) + ~ Z V(@) = ||u||” — +00
a€Z belZ deZ

as |lullp — +oo, i.e. D is coercive. Now, we show that p < +oo. For this purpose, let {9,} be a positive
sequence such that lim,,_,, 6, = 0 and

. MaXy<s, ZaEZ F(Cl, é(a))
A 5

= A.

Put C v
Y, 1= =260,
p

for all n € N. Clearly, lim,,_,, ¥, = 0. For n > 0 is big enough, by Lemma 2.2 and (2.1), we can derive
that
D™ (—o0,yn) C{v € Q: )| £ 6,, d €Z}. (3.1

Since D(0) = E(0) = 0, for each n large enough, by (3.1), we get

n(y.) = inf (SupveD’l((—oo,yn)) ez Fla, v(a))) - E(u)
" peD (o) Y — D(1)
_ (9P 1) Bz Pl @) — EQO)
- ¥n — D(0)
SUPyep-1((=co,y)) ez F(a, v(a))
Yn
maXyi<s, 2aez F(a, w(a))

Y
_ PMAXpyizs, Laez F(a, W(@)
C,VoSh

Therefore, by (2.2), we acquire that

= liminf = hm 1nf ) < hm ;
p= lm D(Wn(y) n(Yn) n(yn)

. PMaX<s, 2z Fla,w(a)  pA
< lim =

= : 32
n—oo CQV()ég CSV() ( )
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From (3.2), we get

pB " pA p
Next, we verify that O is not a local minimum of K. First, suppose that B = 4+c0. Choosing M such
that M > % and let {A,} be a sequence of positive numbers, with lim,_,., &, = 0, there exists n; € N
such that for all n > n,

e (Cbnvnl csvo) . (0’ 1)_

> Fla,hy) > M. (3.3)

acz

Therefore, let {/,} be a sequence in Q defined by
l,(a):=h,, foralla € Z.
It is easy to infer that ||/,(a)ll; — 0 as n — co. By (V), (2.1) and (3.3), we obtain
K(l,) = D(,) — AE(l,)

1
= —lLliy =AY F(a,l,)

p acz
1
= —lILlIy =2 )" F(a,hy)
p a€’Z
C
< 2L =4 ) F(a,hy)
p acz
Cp
=— ) V@lh(al"-21 ) F(a,h,)
C
== (Z V(a)) hal” = A ) F (@, )
p ac’ ac’
C
< =2 \\VIly hE = AMR?
p
C
= (—b VI, - AM) .
p
So, K(I,) < 0 = K(0) for each n > n; big enough. Next, suppose that B < +co. Since 4 > %, there

exists € > O such that e < B — &X”‘ Hence, also choosing {4,} be a sequence of positive numbers,

with lim,,_,., &, = 0, there is n, € N such that for all n > n,

D Flahy) > (B-z)h. (3.4)

ac’

Arguing as before and by choosing {/,} in Q as above, we get
K(l,) = D(l,) — AE(l,)

1
= lnlly =2 ) F @)

acz
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1
= —llhlly = A " F (a,hy)
p a€’Z
C
< 2L =4 ) F(a,hy)
p ac’
C
= = > V@@ = ) F(a,hy)
p ac”Z ac”Z
& (Z v<a>] hal” = A ) F (a,hy)
p ac’z a€Z

C

< =2 \\Vll, b} = A(B - &)h],
P
C

= (?b IVIl, = A(B - a)) hp.

So, K(I,) < 0 = K(0) for each n > n, big enough. In general, O is not a local minimum of K. By
Theorem 3.1, (a) is not valid, then we have a sequence {u,} C Q of critical points of K such that

1
lim D(u,) = lim — (|, ll, = ing(,U) =0
n—oo n—oo p
and
lim K(u,) = iréf D(u) = 0.

By Lemma 2.3, we gain

llnlleo < Coollptally — O
as n — oco. By Lemma 2.7, the problem (1.1) admits infinitely many nontrivial homoclinic solutions.
In addition, their critical values and their £*-norms tend to zero. This completes the proof.

4. Example

Here, we give an example of a nonlinear term which can apply Theorem 1.1.

Example 4.1. We define
1
Y(n) = W’ forn € N,;

®O(n) = forn e N;

333}171 2

1
x(n) = W, forn e N,.

Obviously, we know that ®(n + 1) < ¥Y(n) < ®(n) for all n € N, and lim,_,, ¥(n) = lim,_, ®(n) = 0.
Set
fla,u) =0, YaeZ\N,.
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And for each a € N, let f(a,-) is a nonnegative continuous function such that
D(a)
fla,u) =0, YueR\ (¥(a),P(a)) and f(a,n)dn = x(a).
Y(a)
There are many nonlinear terms that satisfy the above conditions. Here we give one of them as an

example.
D ¥ 2
f(Cl, l/t) = Z )% ((l/l + (l’l) ;‘ (I/L)) (1)2(”) — \112(’1)) e{n}x[\y(n)’q)(n)](a, l/t)
neN,

where e,y 1s the indicator function on M X N. Then

A = lim inf P¥uisr 2aez F(a,{(a))
0% TP
< lim maXxy|<w(n) 2aez F(a, {(a))
n—oo \Pp(n)
— 111’1’1 Ztolozn+1 F(Cl, {((l))
n—oo \Ilp(n)
. Zzirﬁl )((Cl)
=1 a2 -
n1—>n; \Pp(n)
3y(n+1)
Yr(n)

< lim
n—oo
=0

and

5 = lim sup 2ez (@ L@)
=07 77
2z Fla, ()
P (n)
- Fngn)
)

> lim
n—oo

Now it is easy to see that all the assumptions of Theorem 1.1 are satisfied, hence the corresponding
conclusion can be delivered by Theorem 1.1.
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