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Abstract: In this paper, we study the global C∞ regularity of solutions to the boundary layer equations
for two-dimensional steady compressible flow under the favorable pressure gradient. To our knowledge,
the difficulty of the proof is the degeneracy near the boundary. By using the regularity theory and
maximum principles of parabolic equations together with the von Mises transformation, we give a
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that Oleinik type solutions smooth up the boundary y = 0 for any x > 0.
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1. Introduction

In this paper, we study the 2D steady compressible Prandtl equations in {x > 0, y > 0}:

u∂xu + v∂yu −
1
ρ
∂2

yu = −
∂xP(ρ)
ρ

,

∂x(ρu) + ∂y(ρv) = 0,
u|x=0 = u0(y), lim

y→∞
u = U(x),

u|y=0 = v|y=0 = 0,

(1.1)

where (u, v) is velocity field, ρ(x) and U(x) are the traces at the boundary {y = 0} of the density and the
tangential velocity of the outer Euler flow. The states ρ,U satisfy the Bernoulli law

U∂xU +
∂xP(ρ)
ρ
= 0. (1.2)

The pressure P(ρ) is a strictly increasing function of ρ with 0 < ρ0 ≤ ρ ≤ ρ1 for some positive constants
ρ0 and ρ1.
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In this paper, we assume that the pressure satisfies the favorable pressure gradient ∂xP ≤ 0, which
implies that

∂xρ ≤ 0.

The boundary layer is a very important branch in fluid mechanics. Ludwig Prandtl [14] first proposed
the related theory of the boundary layer in 1904. Since then, many scholars have devoted themselves to
studying the mathematical theory of the boundary layer [1, 7–9, 11, 12, 17–19, 21–24, 26, 27]. For more
complex fluids, such as compressible fluids, one can refer to [19, 20, 28] and the references therein for
more details. Here, for our purposes, we only list some relevant works.

There are three very natural problems about the steady boundary layer: (i) Boundary layer separation,
(ii) whether Oleinik’s solutions are smooth up to the boundary for any x > 0 and (iii) vanishing viscosity
limit of the steady Navier-Stokes system. Next, we will introduce the relevant research progress in these
three aspects. The separation of the boundary layer is one of the very important research contents in the
boundary layer theory. [17]. The earliest mathematical theory in this regard was proposed by Caffarelli
and E in an unpublished paper [25]. Their results show that the existence time x∗ of the solutions to the
steady Prandtl equations in the sense of Oleinik is finite under the adverse pressure gradient. Moreover,
the family uµ(x, y) = µ−

1
2 u(x∗ − µx, µ

1
4 y) is compact in C0(R2

+). Later, Dalibard and Masmoudi [4] proved
the solution behaves near the separation as ∂yu(x, 0) ∼ (x∗ − x)

1
2 for x < x∗. Shen, Wang and Zhang [18]

found that the solution near the separation point behaves like ∂yu(x, y) ∼ (x∗ − x)
1
4 for x < x∗. The above

work further illustrates that the boundary layer separation is a very complex phenomenon. Recently, there
were also some results about the steady compressible boundary layer separation [28]. The authors found
that if the heat transfer in the boundary layer disappeared, then the singularity would be the same as that in
the incompressible case. There is still relatively little mathematical theory on the separation of unsteady
boundary layers. This is because back-flow and separation no longer occur simultaneously. When the
boundary layer back-flow occurs, the characteristics of the boundary layer will continue to maintain for
a period of time. Therefore, it is very important to study the back-flow point for further research on
separation. Recently, Wang and Zhu [21] studied the back-flow problem of the two-dimensional unsteady
boundary layer, which is a important work. It is very interesting to further establish the mathematical
theory of the unsteady boundary layer separation.

Due to degenerate near the boundary, the high regularity of the solution of the boundary layer equation
is a very difficult and meaningful work. In a local time 0 < x < x∗ ≪ 1, Guo and Iyer [6] studied the
high regularity of of the Prandtl equations. Oleinik and Samokhin [13] studied the existence of solutions
of steady Prandtl equations and Wang and Zhang [23] proved that Oleinik’s solutions are smooth up
to the boundary y = 0 for any x > 0. The goal of this paper is to prove the global C∞ regularity of
the two-dimensional steady compressible Prandtl equations. Recently, Wang and Zhang [24] found the
explicit decay for general initial data with exponential decay by using the maximum principle.

In addition, in order to better understand the relevant background knowledge, we will introduce some
other related work. As the viscosity goes to zero, the solutions of the three-dimensional evolutionary
Navier-Stokes equations to the solutions of the Euler equations are an interesting problem. Beirão da
Veiga and Crispo [2] proved that in the presence of flat boundaries convergence holds uniformly in time
with respect to the initial data’s norm. For the non-stationary Navier-Stokes equations in the 2D power
cusp domain, the formal asymptotic expansion of the solution near the singular point is constructed and
the constructed asymptotic decomposition is justified in [15, 16] by Pileckas and Raciene.
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Before introducing the main theorem, we introduce some preliminary knowledge. To use the von
Mises transformation, we set

ũ(x, y) = ρ(x)u(x, y), ṽ(x, y) = ρ(x)v(x, y), ũ0(y) = ρ(0)u0(y),

then we find that (ũ, ṽ) satisfies:

ũ∂xũ + ṽ∂yũ − ∂2
y ũ −

∂xρ

ρ
ũ2 = −ρ∂xP(ρ),

∂xũ + ∂yṽ = 0,
ũ|x=0 = ũ0(y), lim

y→∞
ũ = ρ(x)U(x),

ũ|y=0 = ṽ|y=0 = 0.

(1.3)

By the von Mises transformation

x = x, ψ(x, y) =
∫ y

0
ũ(x, z)dz, w = ũ2, (1.4)

∂xũ =
∂xω

2
√
ω
+
∂ψω∂xψ

2
√
ω

, ∂yũ =
∂ψω

2
, ∂2

y ũ =

√
ω∂2

ψω

2
, (1.5)

and (1.3)–(1.5), we know that w(x, ψ) satisfies:

∂xw −
√

w∂2
ψw − 2

∂xρ

ρ
w = −2ρ∂xP(ρ), (1.6)

with

w(x, 0) = 0, w(0, ψ) = w0(ψ), lim
ψ→+∞

w = (ρ(x)U(x))2. (1.7)

In addition, we have

2∂yũ = ∂ψw, 2∂2
y ũ =

√
w∂2

ψw. (1.8)

In [5], Gong, Guo and Wang studied the existence of the solutions of system (1.1) by using the von
Mises transformation and the maximal principle proposed by Oleinik and Samokhin in [13]. Specifically,
they proved that:

Theorem 1.1. If the initial data u0 satisfies the following conditions:

u ∈ C2,α
b ([0,+∞))(α > 0), u(0) = 0, ∂yu(0) > 0, ∂yu(y) ≥ 0 for y ∈ [0,+∞),

lim
y→+∞

u(y) = U(0) > 0, ρ−1(0)∂2
yu(y) − ρ−1(0)∂xP(0) = O(y2) (1.9)

and ρ ∈ C2([0, X0]), then there exists 0 < X ≤ X0 such that system (1.1) admits a solution u ∈
C1([0, X) × R+). The solution has the following properties:
(i) u is continuous and bounded in [0, X] × R+; ∂yu, ∂2

yu are continuous and bounded in [0, X) × R+;
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v, ∂yv, ∂xu are locally bounded in [0, X) × R+.
(ii) u(x, y) > 0 in [0, X) × R+ and for any x̄ < X, there exists y0,m > 0 such that for all (x, y) ∈
[0, x̄] × [0, y0],

∂yu(x, y) ≥ m > 0.

(iii) if ∂xP ≤ 0(∂xρ ≤ 0), then
X = +∞.

Remarks 1.2. u ∈ C2,α
b ([0,+∞))(α > 0) means that u is Hölder continuity and bounded.

This theorem shows that under the favorable pressure gradient, the solution is global-in-x. However,
if the pressure is an adverse pressure gradient, then boundary layer separation will occur. Xin and
Zhang [26] studied the global existence of weak solutions of unsteady Prandtl equations under the
favorable pressure gradient. For the unsteady compressible Prandtl equation, similar results are obtained
in [3]. Recently, Xin, Zhang and Zhao [27] proposed a direct proof of the existence of global weak
solutions of the Prandtl equation. The key content of this paper is that they have studied the uniqueness
and regularity of weak solutions. This method can be applied to the compressible Prandtl equation.

Our main results are as follows:

Theorem 1.3. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition
(1.9) and the known function ρ and ∂xP are smooth. Then, there exists a constant C > 0 depending only
on ε, X, u0, P(ρ), k,m such that for any (x, y) ∈ [ε, X] × [0,+∞),

|∂k
x∂

m
y u(x, y)| ≤ C,

where X, ε are positive constants with ε < X and m, k are any positive integers.

Remarks 1.4. Our methods may be used to other related models. There are similar results for the
magnetohydrodynamics boundary layer and the thermal boundary layer. This work will be more difficult
due to the influence of temperature and the magnetic field.

Due to the degeneracy near the boundary ψ = 0, the proof of the main result is divided into two parts,
Theorem 1.5 and Theorem 1.6. This is similar to the result of the incompressible boundary layer, despite
the fluid being compressible and the degeneracy near the boundary. Different from the incompressible
case [23], we have no divergence-free conditions, which will bring new terms. It is one of the difficulties
in this paper to deal with these terms. Now, we will briefly introduce our proof framework. First, we
prove the following theorem in the domain [ε, X] × [0,Y1] for a small Y1. The key ingredients of proof
is that we employ interior priori estimates and the maximum principle developed by Krylov [10].

Theorem 1.5. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition
(1.9) and the known function ρ and ∂xP are smooth. Then, there exists a small constant Y1 > 0 and a
large constant C > 0 depending only on ε, X,Y1, u0, P(ρ), k,m such that for any (x, y) ∈ [ε, X] × [0,Y1],

|∂k
x∂

m
y u(x, y)| ≤ C,

where X, ε are positive constants with ε < X and m, k are any positive integers.
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Next, we prove the following theorem in the domain [ε, X]× [Y2,+∞) for a small positive constant Y2.
The key of proof is that we prove (1.6) is a uniform parabolic equation in the domain [ε, X]× [Y2,+∞) in
Section 4. Once we have (1.6) is a uniform parabolic equation, the global C∞ regularity of the solution
is a direct result of interior Schauder estimates and classical parabolic regularity theory. The proof can
be given similarly to the steady incompressible boundary layer. For the sake of simplicity of the paper,
more details can be found in [23] and we omit it here.

Theorem 1.6. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition
(1.9) and the known function ρ and ∂xP are smooth. Then, there exists a constant Y0 > 0 such that for
any constant Y2 ∈ (0,Y0), there exists a constant C > 0 depending only on ε, X,Y2, u0, P(ρ), k,m such
that for any (x, y) ∈ [ε, X] × [Y2,+∞),

|∂k
x∂

m
y u(x, y)| ≤ C,

where X, ε are positive constants with ε < X and m, k are any positive integers.

Therefore, Theorem 1.3 can be directly proven by combining Theorem 1.5 with Theorem 1.6.
The organization of this paper is as follows. In Section 2, we study lower order and higher order

regularity estimates. In Section 3, we prove Theorem 1.5 in the domain near y = 0 by transforming back
to the original coordinates (x, y). In Section 4, we prove (1.6) is a uniform parabolic equation by using
the maximum principle and we also prove the Theorem 1.3.

2. Lower order and higher order regularity estimates

2.1. Lower order regularity estimates

In this subsection, we study the lower order regularity estimates using the standard interior a priori
estimates developed by Krylov [10].

Lemma 2.1. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9)
and the known function ρ and ∂xP are smooth. Assume 0 < ε < X, then there exists some positive
constants δ1 > 0 and C independent of ψ such that for any (x, ψ) ∈ [ε, X] × [0, δ1],

|∂xw(x, ψ)| ≤ Cψ.

Proof. Due to Lemma 2.1 in [5] (or Theorem 2.1.14 in [13]), there exists δ1 > 0 for any (x, ψ) ∈
[0, X] × [0, δ1], such that for some α ∈ (0, 1

2 ) and positive constants m,M (we assume δ1 < 1),

|∂xw| ≤ Cψ
1
2+α, 0 < m < ∂ψw < M, mψ < w < Mψ. (2.1)

By (1.6), we obtain

∂x∂xw −
√

w∂2
ψ∂xw =

(∂xw)2

2w
+ 2

ρ∂xP∂xw
2w

+
∂xρ

ρ
∂xw + 2∂x

(
∂xρ

ρ

)
w − 2∂x[ρ∂xP].

Take a smooth cutoff function 0 ≤ ϕ(x) ≤ 1 in [0, X] such that

ϕ(x) = 1, x ∈ [ε, X], ϕ(x) = 0, x ∈ [0,
ε

2
],
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then

∂x
[
∂xwϕ(x)

]
−
√

w∂2
ψ

[
∂xwϕ(x)

]
=

(∂xw)2

2w
ϕ(x) + 2

ρ∂xP∂xw
2w

ϕ(x) +
∂xρ

ρ
∂xwϕ(x)

+ 2∂x

(
∂xρ

ρ

)
wϕ(x) − 2∂x(ρ∂xP)ϕ(x) + ∂xw∂xϕ(x) :=W.

Combining with (2.1), we know

|W| ≤ Cψ2α +Cψα−
1
2 +Cψα+

1
2 +Cψ +C ≤ Cψα−

1
2 . (2.2)

We take φ(ψ) = µ1ψ − µ2ψ
1+β with constants µ1, µ2, then by (2.1) and (2.2), we get

∂x
[
∂xwϕ(x) − φ

]
−
√

w∂2
ψ

[
∂xwϕ(x) − φ

]
≤ |W| − µ2

√
wβ(1 + β)ψβ−1

≤ Cψα−
1
2 − µ2

√
mβ(1 + β)ψβ−

1
2 .

By taking µ2 sufficiently large and α = β, for (x, ψ) ∈ (0, X] × (0, δ1), we have

∂x
[
∂xwϕ(x) − φ

]
−
√

w∂2
ψ

[
∂xwϕ(x) − φ

]
< 0.

For any ψ ∈ [0, δ1], let µ1 ≥ µ2, and we have

(∂xwϕ − φ) (0, ψ) ≤ 0,

and take µ1 large enough depending on M, δ1, µ2 such that

(∂xwϕ − φ) (x, δ1) ≤ Mδ
1
2+α

1 − µ1δ1 + µ2δ
1+β
1 ≤ 0.

Since w(x, 0) = 0, we know that for any x ∈ [0, X],

(∂xwϕ − φ) (x, 0) = 0.

By the maximum principle, it holds in [0, X] × [0, δ1] that

(∂xwϕ − φ) (x, ψ) ≤ 0.

Let δ1 be chosen suitably small, for (x, ψ) ∈ [ε, X] × [0, δ1], and we obtain

∂xw(x, ψ) ≤ µ1ψ − µ2ψ
1+β ≤

µ1

2
ψ.

Considering −∂xwϕ − φ, the result −∂xw ≤
µ1
2 ψ in [ε, X] × [0, δ1] can be proved similarly. This

completes the proof of the lemma.

Lemma 2.2. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9)
and the known function ρ and ∂xP are smooth. Assume 0 < ε < X, then there exists some positive
constants δ2 > 0 and C independent of ψ such that for any (x, ψ) ∈ [ε, X] × [0, δ2],

|∂ψ∂xw(x, ψ)| ≤ C, |∂2
xw(x, ψ)| ≤ Cψ−

1
2 , |∂2

ψ∂xw(x, ψ)| ≤ Cψ−1.
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Proof. From Lemma 2.1, there exists δ1 > 0 such that for any (x, ψ) ∈ [ ε2 , X] × [0, δ1],

|∂xw(x, ψ)| ≤ Cψ.

Let Ψ0 = min{23δ1,
ε
2 }, for any (x0, ψ0) ∈ [ε, X] × (0,Ψ0], and we denote

Ω =
{
(x, ψ)|x0 − ψ

3
2
0 ≤ x ≤ x0,

1
2
ψ0 ≤ ψ ≤

3
2
ψ0

}
.

By the definition of Ψ0, we know Ω ⊆ [ ε2 , X] × [0, δ1], then it holds in Ω that

|∂xw| ≤ Cψ. (2.3)

The following transformation f is defined:

Ω→ Ω̃ := [−1, 0]x̃ × [−
1
2
,

1
2

]ψ̃, (x, ψ) 7→ (x̃, ψ̃),

where x − x0 = ψ
3
2
0 x̃, ψ − ψ0 = ψ0ψ̃.

Since ∂x̃ = ψ
3
2
0 ∂x, ∂ψ̃ = ψ0∂ψ, it holds in Ω that

∂x̃

(
ψ−1

0 w
)
− ψ

− 1
2

0

√
w∂2

ψ̃

(
ψ−1

0 w
)
− 2

∂x̃ρ

ρ
(ψ−1

0 w) = −2ρ∂x̃Pψ−1
0 .

Combining with (2.1), we get 0 < c ≤ ψ−
1
2

0

√
w ≤ C, |ψ−1

0 w| ≤ C, and for any z̃1, z̃2 ∈ Ω̃,

|ψ
− 1

2
0

√
w(z̃1) − ψ−

1
2

0

√
w(z̃2)| = ψ−

1
2

0
|w (z̃1) − w (z̃2)|
√

w (z̃1) +
√

w (z̃2)
≤ C

ψ0 |z̃1 − z̃2|

ψ0
= C |z̃1 − z̃2| .

This means that for any α ∈ (0, 1), we have

|ψ
− 1

2
0

√
w|
Cα(Ω̃) ≤ C.

Since P and ρ are smooth, we have

|ρ−1∂x̃ρ|C0,1([−1,0]x̃) + |ρ∂x̃Pψ−1
0 |C0,1([−1,0]x̃) ≤ C.

By standard interior priori estimates (see Theorem 8.11.1 in [10] or Proposition 2.3 in [23]), we have

|wψ−1
0 |Cα([− 1

2 ,0]x̃×[− 1
4 ,

1
4 ]ψ̃) + |∂

2
ψ̃
wψ−1

0 |Cα([− 1
2 ,0]x̃×[− 1

4 ,
1
4 ]ψ̃) ≤ C. (2.4)

Let f := ∂xwψ−1
0 , which satisfies

∂x̃ f −
√

w

ψ
1
2
0

∂2
ψ̃

f −
∂2
ψ̃
w

2
√

wψ
1
2
0

f − 2
∂x̃ρ

ρ
f = −2∂x[ρ∂x̃P]ψ−1

0 + 2∂x

(
∂x̃ρ

ρ

)
(ψ−1

0 w).

By (2.3), we have | f | ≤ C in Ω̃. Due to

∣∣∣ψ 1
2
0 w−

1
2 (z̃1) − ψ

1
2
0 w−

1
2 (z̃2)

∣∣∣ = ψ 1
2
0

∣∣∣∣w(z̃1)−w(z̃2)
w(z̃1)w(z̃2)

∣∣∣∣
w−

1
2 (z̃1) + w−

1
2 (z̃2)

≤ C |z̃1 − z̃2| ,
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we have ∣∣∣ψ 1
2
0 w−

1
2
∣∣∣
Cα(Ω̃)

≤ C. (2.5)

Since
∂2
ψ̃
w

2
√

wψ
1
2
0

= ∂2
ψ̃
wψ−1

0

ψ
1
2
0

2
√

w
,

which along with (2.4) and (2.5) gives

∣∣∣∣∣ ∂2
ψ̃
w

2
√

wψ
1
2
0

∣∣∣∣∣
Cα([− 1

2 ,0]x̃×[− 1
4 ,

1
4 ]ψ̃)
≤ C.

As before, by (2.4) and the density ρ and P are smooth, via the standard interior a priori estimates, it
yield that

|∂x̃ f |L∞([− 1
4 ,0]x̃×[− 1

8 ,
1
8 ]ψ̃) + |∂ψ̃ f |L∞([− 1

4 ,0]x̃×[− 1
8 ,

1
8 ]ψ̃) + |∂

2
ψ̃

f |L∞([− 1
4 ,0]x̃×[− 1

8 ,
1
8 ]ψ̃) ≤ C.

Therefore, we obtain

|∂2
xw (x0, ψ0) | ≤ Cψ−

1
2

0 , |∂ψ∂xw (x0, ψ0) | ≤ C, |∂2
ψ∂xw (x0, ψ0) | ≤ Cψ−1

0 .

This completes the proof of the lemma.

2.2. Higher order regularity estimates

In this subsection, we study the higher order regularity estimates using the maximum principle. The
two main results of this subsection are Lemma 2.3 and Lemma 2.7.

Lemma 2.3. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9)
and the known function ρ and ∂xP are smooth. Assume 0 < ε < X and k ≥ 2, then there exists some
positive constants δ > 0 and C independent of ψ such that for any (x, ψ) ∈ [ε, X] × [0, δ],

|∂k
xw| ≤ Cψ, |∂ψ∂

k
xw| ≤ C, |∂2

ψ∂
k
xw| ≤ Cψ−1.

Proof. By Lemma 2.1 and Lemma 2.2, we may inductively assume that for 0 ≤ j ≤ k − 1, there holds
that in

[
ε
2 , X

]
× [0, δ3] (assume δ3 ≪ 1),

|∂ψ∂
j
xw| ≤ C, |∂2

ψ∂
j
xw| ≤ Cψ−1, |∂ j

xw| ≤ Cψ, |∂ j
x

√
w| ≤ Cψ

1
2 , |∂k

xw| ≤ Cψ−
1
2 . (2.6)

We will prove that there exists δ4 < δ3 so that in [ε, X] × [0, δ4],

|∂ψ∂
k
xw| ≤ C, |∂2

ψ∂
k
xw| ≤ Cψ−1, |∂k

xw| ≤ Cψ, |∂k
x

√
w| ≤ Cψ

1
2 , |∂k+1

x w| ≤ Cψ−
1
2 . (2.7)

The above results are deduced from the following Lemma 2.4, Lemma 2.5 and Lemma 2.6.
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Lemma 2.4. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9)
and the known function ρ and ∂xP are smooth. Assume that (2.6) holds, then there is a positive constant
M1 for any (x, ψ) ∈

[
7ε
8 , X

]
× [0, δ3] and 0 < β ≪ 1,

|∂k
xw| < M1ψ

1−β, |∂k
x

√
w| ≤ M1ψ

1
2−β.

Proof. Take a smooth cutoff function 0 ≤ ϕ(x) ≤ 1 in [0, X] such that

ϕ(x) = 1, x ∈ [
7ε
8
, X], ϕ(x) = 0, x ∈ [0,

5ε
8

].

As in [23], fix any h < ε
8 . Set

Ω = {(x, ψ)|0 < x ≤ X, 0 < ψ < δ3} ,

and let
(i) f = ∂k−1

x w(x−h,ψ)−∂k−1
x w(x,ψ)

−h ϕ + Mψ lnψ, (x, ψ) ∈ [ 5ε
8 , X] × [0,+∞),

(ii) f = Mψ lnψ, (x, ψ) ∈ [0, 5ε
8 ) × [ψ,+∞),

so we get f (x, 0) = 0, f (0, ψ) ≤ 0. We know

f (x, δ3) ≤ C (δ3)−
1
2 + Mδ3 ln δ3 ≤ 0,

where M is large enough. Then, by choosing the appropriate M, we know that the positive maximum of
f cannot be achieved in the interior. Finally, the lemma can be proven by the arbitrariness of h.

Assume that there exists a point

p0 = (x0, ψ0) ∈ Ω,

such that

f (p0) = max
Ω̄

f > 0.

It is easy to know that

x0 >
5ε
8
, ∂k−1

x w(x0 − h, ψ0) < ∂k−1
x w(x0, ψ0).

By (2.1), denote ξ =
√

m, we have

−
√

w∂2
ψ(Mψ lnψ) = −M

√
wψ−1 ≤ −ξMψ−

1
2 . (2.8)
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By (1.6), a direct calculation gives

∂x∂
k−1
x w−

√
w∂2

ψ∂
k−1
x w

= −2∂k−1
x (ρ∂xP) +

k−2∑
m=1

Cm
k−1

(
∂k−1−m

x

√
w
)
∂2
ψ∂

m
x w +

(
∂k−1

x

√
w
)
∂2
ψw

+ 2
k−1∑
m=0

Cm
k−1∂

k−1−m
x

(
∂xρ

ρ

)
∂m

x w

= −2∂k−1
x (ρ∂xP) +

k−2∑
m=1

Cm
k−1

(
∂k−1−m

x

√
w
)
∂2
ψ∂

m
x w +

∂k−1
x w

2
√

w
∂xw
√

w

+

(
∂k−1

x w
2
√

w

)
2ρ∂xP
√

w
−

(
∂k−1

x w
2
√

w

) 2∂xρ

ρ
w

√
w
+ 2

k−1∑
m=0

Cm
k−1∂

k−1−m
x

(
∂xρ

ρ

)
∂m

x w

+

k−2∑
m=0

Cm
k−2∂

2
ψw∂m+1

x w∂k−2−m
x

1
2
√

w

:=
4∑

i=1

Ii

and

I1 = −2∂k−1
x (ρ∂xP) +

k−2∑
m=1

Cm
k−1

(
∂k−1−m

x

√
w
)
∂2
ψ∂

m
x w +

∂k−1
x w

2
√

w
∂xw
√

w
,

I2 =
ρ∂xP

w
∂k−1

x w,

I3 = −
∂xρ

ρ
∂k−1

x w + 2
k−1∑
m=0

Cm
k−1∂

k−1−m
x

(
∂xρ

ρ

)
∂m

x w,

I4 =

k−2∑
m=0

Cm
k−2∂

2
ψw∂m+1

x w∂k−2−m
x

1
2
√

w
.

For x ≥ 5ε
8 , we consider the following equality

∂x f1 −
√

w (p1)∂2
ψ f1 =

√
w(p1) −

√
w(p)

−h
∂2
ψ∂

k−1
x w(p) +

4∑
i=1

1
−h

(Ii (p1) − Ii(p)) , (2.9)

where

f1 =
1
−h

(∂k−1
x w (p1) − ∂k−1

x w(p)),

with p1 = (x − h, ψ), p = (x, ψ).
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For any x ≥ 5ε
8 , by (2.6), it is easy to conclude that∣∣∣∣∣ 1

−h
(
√

w(p1) −
√

w(p))∂2
ψ∂

k−1
x w(p)

∣∣∣∣∣ ≤ Cψ−
1
2 ,∣∣∣∣∣ 1

−h
(I1(p1) − I1(p))

∣∣∣∣∣ ≤ Cψ−
1
2 ,∣∣∣∣∣∣∣

4∑
i=3

1
−h

(Ii(p1) − Ii(p))

∣∣∣∣∣∣∣ ≤ Cψ−
1
2 ,

(2.10)

where C is dependent on the parameter h.
Since

1
−h

(I2(p1) − I2(p)) = f1 ·
[ρ∂xP

w
(p1)

]
+ ∂k−1

x w(p)
1
−h

[ρ∂xP
w

(p1) −
ρ∂xP

w
(p)

]
,

combining with (2.6), f1(p0) > 0 and ∂xP ≤ 0, it holds at p = p0 that

1
−h

(I2 (p1) − I2(p0)) ≤ C. (2.11)

Summing up (2.10) and (2.11), we conclude that at p = p0,

∂x f1 −
√

w∂2
ψ f1 ≤ C0ψ

− 1
2 .

This along with (2.8) shows that for x ≥ 5ε
8 , it holds at p = p0 that

∂x f −
√

w∂2
ψ f ≤ Cψ−

1
2 − ξMψ−

1
2 . (2.12)

By taking M large enough, we have ∂x f (p0) −
√

w∂2
ψ f (p0) < 0. By the definition of p0, we obtain

∂x f (p0) −
√

w∂2
ψ f (p0) ≥ 0,

which leads to a contradiction. Therefore, for M chosen as above and independent of h, we have

max
Ω̄

f ≤ 0.

We can similarly prove that minΩ̄ f ≥ 0 by replacing Mψ lnψ in f with −Mψ lnψ. By the
arbitrariness of h, for any (x, ψ) ∈ ( 7ε

8 , X] × (0, δ3] we have

|∂k
xw| ≤ −Mψ lnψ.

Due to

2
√

w∂k
x

√
w +

k−1∑
m=1

Cm
k (∂m

x

√
w∂k−m

x

√
w) = ∂k

x(
√

w
√

w) = ∂k
xw, (2.13)

which along with (2.6) shows that in (7
8ε, X] × (0, δ3],

|
√

w∂k
x

√
w| ≤ −Cψ lnψ.
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Lemma 2.5. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition
(1.9) and the known function ρ and ∂xP are smooth. Assume that (2.6) holds, then for any (x, ψ) ∈
[ 15

16ε, X] × [0, δ3],

|∂k
xw| ≤ Cψ, |∂k

x

√
w| ≤ Cψ

1
2 .

Proof. Take a smooth cutoff function ϕ(x) so that

ϕ(x) = 1, x ∈ [
15ε
16

, X], ϕ(x) = 0, x ∈ [0,
7ε
8

].

Set
f = ∂k

xwϕ − µ1ψ + µ2ψ
3
2−β

with constants µ1, µ2. Let β be small enough in Lemma 2.4. Then it holds in [ 7ε
8 , X] × [0, δ3] that

|∂k
xw| ≤ Cψ1−β, |∂k

x

√
w| ≤ Cψ

1
2−β. (2.14)

We denote
Ω = {(x, ψ)|0 < x ≤ X, 0 < ψ < δ3} .

As in [23], we have f (x, 0) = 0, f (0, ψ) ≤ 0 and f (x, δ3) ≤ 0 by taking µ1 large depending on µ2. We
claim that the maximum of f cannot be achieved in the interior.

By (1.6), we have

∂x∂
k
xw−
√

w∂2
ψ∂

k
xw

= −2∂k
x(ρ∂xP) +

k−1∑
m=0

Cm
k (∂k−m

x

√
w)∂2

ψ∂
m
x w + 2

k∑
m=0

Cm
k ∂

k−m
x

(
∂xρ

ρ

)
∂m

x w,

and

∂2
ψ∂

m
x w = ∂m

x ∂
2
ψw = ∂m

x

(
∂xw
√

w
+

2ρ∂xP
√

w
−

2∂xρ

ρ

√
w
)
.

For any x ≥ 7ε
8 , 0 ≤ j ≤ k − 1 and 0 ≤ m ≤ k − 1, from (2.6) and (2.14), we get

|∂ j
xw| ≤ Cψ, |∂k

xw| ≤ Cψ1−β, |∂k−m
x

√
w| ≤ Cψ

1
2−β.

Then let β ≪ 1
2 , for 0 ≤ m ≤ k − 1 and x ≥ 7ε

8 , we obtain

|∂2
ψ∂

m
x w| ≤ Cψ

1
2−β +Cψ−

1
2 +Cψ

1
2−β ≤ Cψ−

1
2 .

Therefore, we conclude that for x ≥ 7ε
8 ,

∂x∂
k
xw −

√
w∂2

ψ∂
k
xw ≤ C +Cψ−β +Cψ1−β ≤ Cψ−β.

By the above inequality and (2.1), it holds at p = p0 that

∂x f −
√

w∂2
ψ f = ∂x∂

k
xw −

√
w∂2

ψ∂
k
xw + ∂

k
xw∂xϕ −

√
w∂2

ψ(−µ1ψ + µ2ψ
3
2−β)

≤ C2ψ
−β − ξµ2ψ

−β,
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where ξ =
(

3
2 − β

) (
1
2 − β

) √
m > 0. Then we have ∂x f −

√
w∂2

ψ f < 0 in Ω by taking µ2 large depending
on C2. This means that the maximum of f cannot be achieved in the interior. Therefore, we have

max
Ω̄

f ≤ 0.

In the same way, we can prove that

max
Ω̄
−∂k

xwϕ − µ1ψ + µ2ψ
3
2−β ≤ 0.

So, for any (x, ψ) ∈ [15
16ε, X] × [0, δ3], we have

|∂k
xw| ≤ µ1ψ − µ2ψ

3
2−β ≤ µ1ψ.

Combining with (2.6) and (2.13), it holds in [15
16ε, X] × [0, δ3] that

|∂k
x

√
w| ≤ Cψ

1
2 .

This completes the proof of the lemma.

Lemma 2.6. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition
(1.9) and the known function ρ and ∂xP are smooth. Assume that (2.6) holds, then for any (x, ψ) ∈
[ε, X] × [0, δ4],

|∂ψ∂
k
xw| ≤ C, |∂2

ψ∂
k
xw| ≤ Cψ−1, |∂k+1

x w| ≤ Cψ−
1
2 .

Proof. By Lemma 2.5 and (2.6), for any (x, ψ) ∈ [ 15
16ε, X] × [0, δ3],

|∂ j
xw| ≤ Cψ, |∂ j

x

√
w| ≤ Cψ

1
2 , 0 ≤ j ≤ k. (2.15)

Set Ψ0 = min{ 23δ3,
ε

16 }, for (x0, ψ0) ∈ [ε, X] × (0,Ψ0], we denote

Ω =
{
(x, ψ)|x0 − ψ

3
2
0 ≤ x ≤ x0,

1
2
ψ0 ≤ ψ ≤

3
2
ψ0

}
.

A direct calculation gives

∂x∂
k
xw −

√
w∂2

ψ∂
k
xw = − 2∂k

x(ρ∂xP) + ∂k
x

√
w∂2

ψw +
k−2∑
m=1

Cm
k

(
∂k−m

x

√
w
)
∂2
ψ∂

m
x w

+Ck−1
k

∂xw
2
√

w
∂2
ψ∂

k−1
x w + 2

k∑
m=0

Cm
k ∂

k−m
x

(
∂xρ

ρ

)
∂m

x w.

By (1.6), we obtain

∂2
ψ∂

m
x w = ∂m

x ∂
2
ψw

= ∂m
x

(
∂xw
√

w
+

2ρ∂xP
√

w
− 2

∂xρ

ρ

√
w
)

=
∂m+1

x w
√

w
+

m∑
l=1

Cl
m∂

m−l+1
x w∂l

x
1
√

w
+ ∂m

x

(
2ρ∂xP
√

w

)
− ∂m

x

(
2
∂xρ

ρ

√
w
)
,
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and

∂k
x

√
w = ∂k−1

x
∂xw
2
√

w
=

∂k
xw

2
√

w
+

k−1∑
l=1

Cl
k−1∂

k−1−l+1
x w∂l

x
1

2
√

w
,

then

∂x∂
k
xw−
√

w∂2
ψ∂

k
xw

= − 2∂k
x(ρ∂xP) +

k−2∑
m=1

Cm
k (∂k−m

x

√
w)∂2

ψ∂
m
x w

+
∂k

xw
2
√

w
∂2
ψw +

k−1∑
l=1

Cl
k−1∂

k−1−l+1
x w∂l

x

(
1

2
√

w

)
∂2
ψw

+Ck−1
k
∂xw∂k

xw
2w

+ 2
k∑

m=0

Cm
k ∂

k−m
x

(
∂xρ

ρ

)
∂m

x w

+Ck−1
k

∂xw
2
√

w

 k−1∑
l=1

Cl
k−1∂

k−l
x w∂l

x
1
√

w
+ ∂k−1

x

(
2ρ∂xP
√

w

)
− ∂k−1

x

(
2
∂xρ

ρ

√
w
) .

The following transformation f is defined:

Ω→ Ω̃ := [−1, 0]x̃ × [−
1
2
,

1
2

]ψ̃, (x, ψ) 7→ (x̃, ψ̃),

where x − x0 = ψ
3
2
0 x̃, ψ − ψ0 = ψ0ψ̃.

Let f = ∂k
xwψ

−1
0 , we get

∂x̃ f−
√

w

ψ
1
2
0

∂2
ψ̃

f −
1

2
√

w
∂2
ψwψ

3
2
0 f −

∂xw
2w

ψ
3
2
0 f

= −2ψ
1
2
0 ∂

k
x(ρ∂xP) + ψ

1
2
0

k−2∑
m=1

Cm
k (∂k−m

x

√
w)∂2

ψ∂
m
x w

+ ψ
1
2
0

k−1∑
l=1

Cl
k−1∂

k−l
x w

(
∂l

x
1

2
√

w

)
∂2
ψw

+ 2ψ
1
2
0

k∑
m=0

Cm
k ∂

k−m
x

(
∂xρ

ρ

)
∂m

x w

+ ψ
1
2
0
∂xw
2
√

w

 k−1∑
l=1

Cl
k−1∂

k−l
x w∂l

x
1
√

w
+ ∂k−1

x

(
2ρ∂xP
√

w

)
− ∂k−1

x

(
2
∂xρ

ρ

√
w
)

:= F.

From the proof of Lemma 2.2 and Lemma 2.6, we know that in Ω̃ for α ∈ (0, 1),

| f | ≤ C, 0 < c ≤ ψ−
1
2

0

√
w ≤ C, |ψ

− 1
2

0

√
w|
Cα(Ω̃) ≤ C.
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By (2.6), (2.15) and the equality

∂ψ
(
∂2
ψ∂

m
x w

)
=
∂ψ∂

m+1
x w
√

w
−
∂ψw∂m+1

x w

2(
√

w)3
+

m∑
l=1

Cl
m∂

m−l+1
x ∂ψw∂l

x
1
√

w

+

m∑
l=1

Cl
m∂

m−l+1
x w∂l

x
∂ψw

−2(
√

w)3
+ ∂m

x

(
ρ∂xP∂ψw

−(
√

w)3

)
− ∂m

x

(
∂xρ

ρ

∂ψw
√

w

)
,

we can conclude that for j ≤ k − 1 and m ≤ k − 2,∣∣∣∇x̃,ψ̃∂
j
x

√
w
∣∣∣ ≤ Cψ

1
2
0 ,

∣∣∣∇x̃,ψ̃∂
j
x
( 1
√

w
)∣∣∣ ≤ Cψ−

1
2

0 ,
∣∣∣∇x̃,ψ̃∂

2
ψ∂

m
x w

∣∣∣ ≤ Cψ−
1
2

0 .

Combining (2.4) with (2.5), we can obtain

|
1

2
√

w
∂2
ψwψ

3
2
0 +

∂xw
2w

ψ
3
2
0 |Cα(Ω̃) + |F|Cα(Ω̃) ≤ C.

By the standard interior priori estimates, we obtain

|∂x̃ f |L∞([− 1
4 ,0]x̃×[− 1

8 ,
1
8 ]ψ̃) + |∂ψ̃ f |L∞([− 1

4 ,0]x̃×[− 1
8 ,

1
8 ]ψ̃) + |∂

2
ψ̃

f |L∞([− 1
4 ,0]x̃×[− 1

8 ,
1
8 ]ψ̃) ≤ C.

Therefore, this means that

|∂k+1
x w (x0, ψ0) | ≤ Cψ−

1
2

0 , |∂ψ∂
k
xw (x0, ψ0) | ≤ C, |∂2

ψ∂
k
xw (x0, ψ0) | ≤ Cψ−1

0 .

Since (x0, ψ0) is arbitrary, this completes the proof of the lemma.

Lemma 2.7. If u is a solution for equation (1.1) in Theorem 1.1, assume u0 satisfies the condition (1.9)
and the known function ρ and ∂xP are smooth. Assume 0 < ε < X and integer m, k ≥ 0, then there exists
a positive constant δ > 0 such that for any (x, ψ) ∈ [ε, X] × [0, δ],

|∂m
ψ∂

k
xw| ≤ Cψ1−m. (2.16)

Proof. From Lemma 2.1, (2.1), Lemma 2.2 and Lemma 2.3, a direct calculation can prove that∣∣∣∂k
x

1
√

w

∣∣∣ ≤ Cψ−
1
2 ,

∣∣∣∂k
x∂ψ

1
√

w

∣∣∣ ≤ Cψ−
3
2 ,

∣∣∣∂k
x∂

2
ψ

1
√

w

∣∣∣ ≤ Cψ−
5
2 ,

and (2.16) holds for m = 0, 1, 2. Then for 0 ≤ m ≤ j with j ≥ 1, we inductively assume that

|∂m
ψ∂

k
xw| ≤ Cψ1−m,

∣∣∣∂k
x∂

m
ψ

1
√

w

∣∣∣ ≤ Cψ−
1
2−m. (2.17)

In the next part, we will prove that (2.17) still holds for m = j + 1.
By (1.6), we obtain

∂
j+1
ψ ∂k

xw = ∂
j−1
ψ ∂k

x∂
2
ψw

= ∂k
x∂

j−1
ψ

(
∂xw
√

w
+

2ρ∂xP
√

w
− 2

∂xρ

ρ

w
√

w

)
= ∂k

x

 j−1∑
i=0

Ci
j−1∂

j−1−i
ψ ∂xw∂i

ψ

1
√

w
+ 2ρ∂xP∂ j−1

ψ

1
√

w
− 2

∂xρ

ρ

j−1∑
i=0

Ci
j−1∂

j−1−i
ψ w∂i

ψ

1
√

w

 .
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Combining with (2.17), we get

|∂
j+1
ψ ∂k

xw| ≤ Cψ
3
2− j +Cψ

1
2− j +Cψ

3
2− j ≤ Cψ

1
2− j. (2.18)

By straight calculations, we get

0 = ∂k
x∂

j+1
ψ

( 1
√

w
1
√

w
w
)

= ∂k
x

[
2
√

w∂ j+1
ψ

1
√

w
+

j∑
i=1

j+1−i∑
l=0

Ci
j+1C

l
j+1−i

(
∂i
ψ

1
√

w

) (
∂l
ψ

1
√

w

)
∂

j+1−l−i
ψ w

+

j∑
l=0

Cl
j+1

1
√

w

(
∂l
ψ

1
√

w

)
∂

j+1−l
ψ w

]
.

Combining the above equality with (2.17), we can conclude that∣∣∣∂k
x∂

j+1
ψ

1
√

w

∣∣∣ ≤ Cψ−
3
2− j.

This completes the proof of the lemma.

3. Proof of Theorem 1.5

In this section, we will prove the regularity of the solution u in the domain

{(x, ψ)|ε ≤ x ≤ X, 0 ≤ y ≤ Y1} .

Proof of Theorem 1.5:

Proof. For the convenience of proof, we denote

(x̃, ψ) =
(
x,

∫ y

0
ũdy

)
.

A direct calculation gives (see P13 in [23])

∂y =
√

w∂ψ, ∂x = ∂x̃ + ∂xψ(x, y)∂ψ, ∂xψ =
1
2
√

w
∫ ψ

0
w−

3
2∂x̃wdψ.

By (2.1) and Lemma 2.3, we have |∂xψ| ≤ Cψ. Due to ∂y =
√

w∂ψ, we obtain

∂k
x2∂yũ =

(
∂x̃ + ∂xψ∂ψ

)k
∂ψw,

∂k
x2∂

2
y ũ =

(
∂x̃ + ∂xψ∂ψ

)k
(
∂x̃w + 2ρ∂xP − 2

∂xρ

ρ
w
)

=
(
∂x̃ + ∂xψ∂ψ

)k
(∂x̃w) + 2∂k

x̃(ρ∂xP) − 2
(
∂xρ

ρ

)
(∂x̃ + ∂xψ∂ψ)kw − 2∂k

x̃

(
∂xρ

ρ

)
w.
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By |∂xψ| ≤ Cψ and Lemma 2.7, we obtain that Theorem 1.5 holds for m = 0, 1, 2,

|∂k
x∂yũ| + |∂k

x∂
2
y ũ| ≤ C. (3.1)

We inductively assume that for any integer k and m ≥ 1,

|∂k
x∂

j
yũ| ≤ C, j ≤ m. (3.2)

A direct calculation gives

∂k
x∂

m+1
y ũ

= ∂k
x∂

m−1
y ∂2

y ũ

= ∂k
x∂

m−1
y

(
ũ∂xũ − ∂yũ

∫ y

0
∂xũdy −

∂xρ

ρ
ũ2

)
= ∂k

x

( m−1∑
i=0

Ci
m−1∂

m−1−i
y ũ∂i

y∂xũ −
m−2∑
i=0

Ci+1
m−1∂

m−1−i
y ũ∂i

y∂xũ − ∂m
y ũ

∫ y

0
∂xũdy −

∂xρ

ρ
∂m−1

y ũ2
)
,

and we can deduce from (3.1) and (3.2) that

|∂k
x∂

j
yũ| ≤ C, j ≤ m + 1. ⇒ |∂k

x∂
j
yu| ≤ C, j ≤ m + 1.

This completes the proof of the theorem.

4. Proof of Theorem 1.3 and 1.6

In this section, we prove our main theorem. The key point is to prove that (1.6) is a uniform parabolic
equation. The proof is based on the classical parabolic maximum principle. The specific proof details
are as follows.

Proof. By (1.2) and ∂xP ≤ 0, we obtain

C ≥ U2(x) = U2(0) − 2
∫ x

0

∂xP(ρ)
ρ

dx ≥ U2(0).

By (1.7) and w increasing in ψ (see below), we know that there exists some positive constants Ψ and C0

such that for any (x, ψ) ∈ [0, X] × [Ψ,+∞),

w ≥ C0U2(0). (4.1)

From Theorem 1.1, we know that there exists positive constants y0,M,m such that for any (x, ψ) ∈
[0, X] × [0, y0] (we can take y0 to be small enough),

M ≥ ∂yũ(x, y) ≥ m. (4.2)

The fact that ψ ∼ y2 is near the boundary y = 0 (see Remark 4.1 in [23]), for some small positive
constant 0 < κ < 1, we get

κ

2
y2

0 ≤ ψ ≤ κy
2
0 ⇒ σy0 ≤ y ≤

y0

2
, (4.3)
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for some constant σ > 0 depends on κ,m,M.
We denote

Ω =
{
(x, ψ)|0 ≤ x ≤ X,

κ

2
y2

0 ≤ ψ ≤ +∞
}
.

By (4.2) and (4.3), we get ũ(x, σy0) ≥ mσy0, then for any x ∈ [0, X], we have

w(x,
κ

2
y2

0) ≥ m2σ2y2
0. (4.4)

Since the initial data u0 satisfies the condition (1.9) and w = ũ2, we know w(0, ψ) > 0 for ψ > 0 and
there exists a positive constant ζ, such that for ψ ∈ [ κ2y2

0,Ψ],

w(0, ψ) > ζ. (4.5)

Then, we only consider

Ω1 =
{
(x, ψ)|0 ≤ x ≤ X,

κ

2
y2

0 ≤ ψ ≤ Ψ
}
.

We denote H(x, ψ) := e−λx∂ψw(x, ψ), which satisfies the following system in the region
Ω0 = {(x, ψ)|0 ≤ x < X, 0 < ψ < +∞}:∂xH −

∂ψw

2
√

w
∂ψH −

√
w∂2

ψH + (λ − 2
∂xρ

ρ
)H = 0,

H|x=0 = ∂ψw0(ψ), H|ψ=0 = 2e−λx∂yũ|y=0, H|ψ=+∞ = 0.
(4.6)

Then, we choose λ properly large such that λ − 2∂xρ

ρ
≥ 0. Due to

H|x=0 = ∂ψw0(ψ) ≥ 0, H|ψ=0 = 2e−λx∂yũ|y=0 > 0, H|ψ=+∞ = 0,

it follows that

H(x, ψ) = e−λxF(x, ψ) = e−λx∂ψw ≥ 0, (x, ψ) ∈ [0, X∗) × R+,

which means ∂ψw ≥ 0 in [0, X) × R+. Hence, w is increasing in ψ. Therefore, we know that there exists
a positive constant λ ≥ m2σ2y2

0 such that for any x ∈ [0, X],

w(x,Ψ) ≥ λ. (4.7)

By (1.6), for any ε > 0, we know W := w + εx satisfies the following system in Ω1 :
∂xW −

√
w∂2

ψW − 2
∂xρ

ρ
W = F ,

W |x=0 = W0 > ζ, W |ψ= κ2 y2
0
= W1 ≥ m2σ2y2

0, W |ψ=Ψ = W2 ≥ λ,

where

F = −2ρ∂xP + ε − 2εx
∂xρ

ρ
.
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Since ∂xP ≤ 0, we know the diffusive term F > 0. Therefore, the minimum cannot be reached inside
Ω1. Set

η0 = min {W0,W1,W2} ,

then by the maximum principle, we obtain W = w + εx ≥ η0. Let ε→ 0, we have w ≥ η0 in Ω1. Then
we denote

η = min
{
η0,C0U2(0)

}
> 0,

combining with (4.1), we have w ≥ η in Ω. Therefore, there exists some positive constant c such that
c ≤ w in Ω. From Theorem 1.1, we have w ≤ C in Ω. In sum, there exists positive constants c,C such
that c ≤ w ≤ C in Ω. This further means that

0 <
√

c ≤
√

w ≤
√

C, (4.8)

where C depends on X. Therefore, we prove (1.6) is a uniform parabolic equation. Furthermore, by
Theorem 1.1, we know ∂yũ, ∂2

y ũ are continuous and bounded in [0, X) × R+. Combining ρ, ∂xP are
smooth, (4.8) with

2∂yũ = ∂ψw, 2∂2
y ũ =

√
w∂2

ψw = ∂xw − 2
∂xρ

ρ
w + 2ρ∂xP(ρ),

we obtain

∥
√

w∥Cα(Ω) ≤ C.

Once we have the above conclusion, the proof of Theorem 1.6 can be given in a similar fashion to [23].
Here, we provide a brief explanation for the reader’s convenience. More details can be found in [23].

Step 1: For any (x1, ψ1) ∈ [ε, X] × [κy2
0,+∞), we denote

Ωx1,ψ1 =
{
(x, ψ)|x1 −

ε

2
≤ x ≤ x1, ψ1 −

κ

2
y2

0 ≤ ψ ≤ ψ1 +
κ

2
y2

0
}
.

Step 2: Note that the known function ρ, ∂xP is smooth, we can repeat interior Schauder estimates in
Ωx1,ψ1 to achieve uniform estimates independent of choice of (x1, ψ1) for any order derivatives of w. Since
the width and the length of Ωx1,ψ1 are constants and the estimates employed are independent of (x1, ψ1),
restricting the estimates to the point (x1, ψ1), we can get for any m < +∞, |∇mw(x1, ψ)| ≤ CX,m,y0,ε.

Step 3: Since (x1, ψ1) is arbitrary, we have for any m < +∞, |∇mw(x1, ψ)| ≤ CX,m,y0,ε in [ε, X] ×
[κy2

0,+∞). Then, as in Section 3, we can prove Theorem 1.6.

Finally, Theorem 1.3 is proven by combining Theorem 1.5 and Theorem 1.6.
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