In this paper, a boundary integral equation method is proposed for the fluid-solid interaction scattering problem, and a high-precision numerical method is developed. More specifically, by introducing the Helmholtz decomposition, the corresponding problem is transformed into a coupled boundary value problem for the Helmholtz equation. Based on the integral equation method, the coupled value problem is reduced to a system of three coupled hypersingular integral equations. Semi-discrete and fully-discrete collocation methods are proposed for the singular integral equations. The presented method is based on trigonometric interpolation and discretized singular operators applied to differentiated interpolation. The convergence of the method is verified by a numerical experiment.
Citation: Yao Sun, Pan Wang, Xinru Lu, Bo Chen. A boundary integral equation method for the fluid-solid interaction problem[J]. Communications in Analysis and Mechanics, 2023, 15(4): 716-742. doi: 10.3934/cam.2023035
In this paper, a boundary integral equation method is proposed for the fluid-solid interaction scattering problem, and a high-precision numerical method is developed. More specifically, by introducing the Helmholtz decomposition, the corresponding problem is transformed into a coupled boundary value problem for the Helmholtz equation. Based on the integral equation method, the coupled value problem is reduced to a system of three coupled hypersingular integral equations. Semi-discrete and fully-discrete collocation methods are proposed for the singular integral equations. The presented method is based on trigonometric interpolation and discretized singular operators applied to differentiated interpolation. The convergence of the method is verified by a numerical experiment.
[1] | F. J. Fahy, P. Gardonio, Sound and Structural Vibration: Radiation, Transmission and Response, Academic Press, London, 2007. https://doi.org/10.1016/B978-0-12-373633-8.X5000-5 |
[2] | M. Fatemi, J. F. Greenleaf, Ultrasound-Stimulated Vibro-Acoustic Spectrography, Science, 280 (1998), 82–85. https://doi.org/10.1126/science.280.5360.8 doi: 10.1126/science.280.5360.8 |
[3] | H. Morand, R. Ohayon, Fluid Structure Interaction, Wiley, New York, 1995. https://doi.org/10.1007/3-540-34596-5 |
[4] | M. Sanna, Numerical simulation of fluid-structure interaction between acoustic and elastic waves, Nihon Rinsho, 70 (2011), 685–696. https://doi.org/10.1051/aacus/2021014 doi: 10.1051/aacus/2021014 |
[5] | B. Desjardins, M. J. Esteban, C. Grandmont and P. Le Tallec, Weak solutions for a fluid-elastic structure interaction model, Revista Matem$\acute{a}$tica Complutense, 2 (2001), 523–538. https://doi.org/10.5209/rev-REMA.2001.v14.n2.17030 doi: 10.5209/rev-REMA.2001.v14.n2.17030 |
[6] | G. Hsiao, R. E. Kleinman, G. F. Roach, Weak Solutions of Fluid-Solid Interaction Problems, Math. Nachr., 218 (2000), 139–163. https://doi.org/10.1002/1522-2616 doi: 10.1002/1522-2616 |
[7] | A. Bernardo, A. M$\acute{a}$rquez, S. Meddahi, Analysis of an interaction problem between an electromagnetic field and an elastic body, Int. J. Num. Anal. Model., 7 (2010), 749–765. http://www.math.ualberta.ca/ijnam/Volume-7-2010/No-4-10/2010-04-10.pdf |
[8] | G. N. Gatica, A. M$\acute{a}$rquez, S. Meddahi, Analysis of the coupling of BEM, FEM, and mixed-FEM for a two-dimensional fluid-solid interaction problem, Appl. Num. Math., 59 (2009), 2735–2750. https://doi.org/10.1016/j.apnum.2008.12.025 doi: 10.1016/j.apnum.2008.12.025 |
[9] | G. N. Gatica, A. M$\acute{a}$rquez, S. Meddahi, Analysis of the Coupling of Lagrange and Arnold-Falk-Winther Finite Elements for a Fluid-Solid Interaction Problem in Three Dimensions, SIAM J. Numer. Anal., 50 (2012), 1648–1674. https://doi.org/10.1137/110836705 doi: 10.1137/110836705 |
[10] | X. Jiang, P. Li, An adaptive finite element PML method for the acoustic-elastic interaction in three dimensions, Commun. Comput. Phys., 22 (2017), 1486–1507. https://doi.org/10.4208/cicp.OA-2017-0047 doi: 10.4208/cicp.OA-2017-0047 |
[11] | G. C. Everstine, F. M. Henderson, Coupled finite element/boundary element approach for fluid-structure interaction, J. Acoust. Soc. Amer., 87 (1990), 1938–1947. https://doi.org/10.1121/1.399320 doi: 10.1121/1.399320 |
[12] | G. N. Gatica, A. M$\acute{a}$rquez, S. Meddahi, Analysis of an augmented fully-mixed finite element method for a three-dimensional fluid-solid interaction problem, Int. J. Num. Anal. Model., 11 (2014), 624–656. http://www.math.ualberta.ca/ijnam/Volume-11-2014/No-3-14/2014-03-10.pdf |
[13] | D. T. Wilton, Acoustic radiation and scattering from elastic structures, Int. J. Numer. Meth. Eng., 13 (1978), 123–138. https://doi.org/10.1002/nme.1620130109 doi: 10.1002/nme.1620130109 |
[14] | A. Boström, Scattering of stationary acoustic waves by an elastic obstacle immersed in a fluid, J. Acoust. Soc. Amer., 67 (1980), 390–398. https://doi.org/10.1121/1.383925 doi: 10.1121/1.383925 |
[15] | A. Boström, Scattering of acoustic waves by a layered elastic obstacle in a fluid-An improved nullfield approach, J. Acoust. Soc. Amer., 76 (1984), 588–593. https://doi.org/10.1121/1.391154 doi: 10.1121/1.391154 |
[16] | B. Yildirim, S. Lin, S. Mathur, J.Y. Murthy, A parallel implementation of fluid-solid interaction solver using an immersed boundary method, Computers Fluids, 86 (2013), 251–274. |
[17] | Q. Zhang, R. D. Guy, B. Philip, A projection preconditioner for solving the implicit immersed boundary equations, Numer. Math. Theor. Meth. Appl., 7 (2014), 473–498. https://doi.org/10.1017/S100489790000129X doi: 10.1017/S100489790000129X |
[18] | Y. He, J. Shen, Unconditionally stable pressure-correction schemes for a linear fluid-structure interaction problem, Numer. Math. Theor. Meth. Appl., 7 (2014), 537–554. https://doi.org/10.1017/S1004897900001331 doi: 10.1017/S1004897900001331 |
[19] | J. Li, H. Liu, Y. Wang, Recovering an electromagnetic obstacle by a few phaseless backscattering measurements, Inverse Problems, 33 (2017), 035011. https://doi.org/10.1088/1361-6420/aa5bf3 doi: 10.1088/1361-6420/aa5bf3 |
[20] | H. Liu, M. Petrini, L. Rondi, J. Xiao, Stable determination of sound-hard polyhedral scatterers by a minimal number of scattering measurements, J. Differential Equations, 262 (2017), 1631–1670. https://doi.org/10.1016/j.jde.2016.10.021 doi: 10.1016/j.jde.2016.10.021 |
[21] | H. Liu, L. Rondi, J. Xiao, Mosco convergence for $H(curl)$ spaces, higher integrability for Maxwell's equations, and stability in direct and inverse EM scattering problems, J. Eur. Math. Soc., 21 (2019), 2945–2993. https://doi.org/10.4171/JEMS/895 doi: 10.4171/JEMS/895 |
[22] | J. Li, P. Li, H. Liu, X. Liu, Recovering multiscale buried anomalies in a two-layered medium, Inverse Problems, 31 (2015), 105006. https://doi.org/10.1088/0266-5611/31/10/105006 doi: 10.1088/0266-5611/31/10/105006 |
[23] | M. Abdelwahed, L. C. Berselli, N. Chorfi, On the uniqueness for weak solutions of steady double-phase fluids, Adv. Nonlinear Anal., 11 (2022), 454–468. https://doi.org/10.1515/anona-2020-0196 doi: 10.1515/anona-2020-0196 |
[24] | R. Farwig, R. Kanamaru, Optimality of Serrin type extension criteria to the Navier-Stokes equations, Adv. Nonlinear Anal., 10 (2021), 1071–1085. https://doi.org/10.1515/anona-2020-0130 doi: 10.1515/anona-2020-0130 |
[25] | M. Jenaliyev, M. Ramazanov, M. Yergaliyev, On the numerical solution of one inverse problem for a linearized two-dimensional system of Navier-Stokes equations, Opuscula Math., 42 (2022), 709–725. https://doi.org/10.7494/OpMath.2022.42.5.709 doi: 10.7494/OpMath.2022.42.5.709 |
[26] | Y. Sun, X. Lu, B. Chen, The method of fundamental solutions for the high frequency acoustic-elastic problem and its relationship to a pure acoustic problem, Eng. Anal. Bound. Elem., 156 (2023), 299–310. https://doi.org/10.1016/j.enganabound.2023.08.010 doi: 10.1016/j.enganabound.2023.08.010 |
[27] | Y. Wang, W. Wu, Initial boundary value problems for the three-dimensional compressible elastic Navier-Stokes-Poisson equations, Adv. Nonlinear Anal., 10 (2021), 1356–1383. https://doi.org/10.1515/anona-2020-0184 doi: 10.1515/anona-2020-0184 |
[28] | F. Bu, J. Lin, F. Reitich, A fast and high-order method for the three-dimensional elastic wave scattering problem, J. Comput. Phy., 258 (2014), 856–870. https://doi.org/10.1016/j.jcp.2013.11.009 doi: 10.1016/j.jcp.2013.11.009 |
[29] | M. Costabel, E. Stephan, A direct boundary integral equation method for transmission problems, J. Math. Anal. Appl., 106 (1985), 205–220. https://doi.org/10.1016/0022-247X(85)90118-0 doi: 10.1016/0022-247X(85)90118-0 |
[30] | G. Hsiao, L. Xu, A system of boundary integral equations for the transmission problem in acoustics, J. Comput. Appl. Math., 61 (2011), 1017–1029. https://doi.org/10.1016/j.apnum.2011.05.003 doi: 10.1016/j.apnum.2011.05.003 |
[31] | R. Kleinman, P. Martin, On single integral equations for the transmission problem of acoustics, SIAM J. Appl. Math., 48 (1998), 307–325. https://doi.org/10.1137/0148016 doi: 10.1137/0148016 |
[32] | Y. Sun, Indirect boundary integral equation method for the Cauchy problem of the Laplace equation, J. Sci. Comput., 71 (2017), 469–498. https://doi.org/10.1007/s10915-016-0308-4 doi: 10.1007/s10915-016-0308-4 |
[33] | C. Luke, P. Martin, Fluid-solid interaction: acoustic scattering by a smooth elastic obstacle, SIAM J. Appl. Math., 55 (1995), 904–923. https://doi.org/10.1137/S0036139993259027 doi: 10.1137/S0036139993259027 |
[34] | E. Atkinson, The numerical solution of integral equations of the second kind, Cambridge University Press, Cambridge, 1997. https://doi.org/10.1017/CBO9780511626340 |
[35] | B. Alpert, Hybrid Gauss-trapezoidal quadrature rules, SIAM J. Sci. Comput., 20 (1999), 1551–1584. https://doi.org/10.1137/S106482759732514 doi: 10.1137/S106482759732514 |
[36] | R. Kress, On the numerical solution of a hypersingular integral equation in scattering theory, J. Comput. Appl. Math., 61 (1995), 345–360. https://doi.org/10.1016/0377-0427(94)00073-7 doi: 10.1016/0377-0427(94)00073-7 |
[37] | R. Kress, I. H. Sloan, On the numerical solution of a logarithmic integral equation of the first kind for the Helmholtz equation, Numer. Math., 66 (1993), 199–214. https://doi.org/10.1007/BF01385694 doi: 10.1007/BF01385694 |
[38] | R. Kress, A collocation method for a hypersingular boundary integral equation via trigonometric differentiation, J. Integral Equations Appl., 26 (2014), 197–213. https://doi.org/10.1216/JIE-2014-26-2-197 doi: 10.1216/JIE-2014-26-2-197 |
[39] | D. S. Jones, Low frequency scattering by a body in lubricated contact, Quarterly Journal of Mechanics and Applied Mathematics, 36 (1983), 111–138. https://doi.org/10.1093/qjmam/36.1.111 doi: 10.1093/qjmam/36.1.111 |
[40] | D. Natroshvili, G. Sadunishvili, I. Sigua, Some remarks concerning Jones eigenfrequencies and Jones modes, Georgian Mathematical Journal, 12 (2005), 337–348. https://doi.org/10.1515/GMJ.2005.337 doi: 10.1515/GMJ.2005.337 |
[41] | T. Yin, G. C. Hsiao, L. Xu, Boundary integral equation methods for the two dimensional fluid-solid interaction problem, SIAM J. Numer. Anal., 55 (2017), 2361–2393. https://doi.org/10.1137/16M107567 doi: 10.1137/16M107567 |
[42] | H. Dong, J. Lai, P. Li, Inverse obstacle scattering for elastic waves with phased or phaseless far-field data, SIAM J. Imaging Sci., 12 (2019), 809–838. https://doi.org/10.1137/18M122726 doi: 10.1137/18M122726 |
[43] | H. Dong, J. Lai, P. Li, An inverse acoustic-elsatic interaction problem with phased or phaseless far-field data, Inverse Probl., 36 (2020), 035014. https://doi.org/10.1088/1361-6420/ab693e doi: 10.1088/1361-6420/ab693e |
[44] | R. Kress, Linear integral equations, 3$^{rd}$ ed., Spronger, New York, 2014. https://doi.org/10.1007/978-1-4614-9593-2 |
[45] | J. Lai, P. Li, A framework for simulation of multiple elastic scattering in two dimensions, SIAM J. Sci. Comput., 41 (2019), 3276–3299. https://doi.org/10.1137/18M123281 doi: 10.1137/18M123281 |
[46] | D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3$^{rd}$ edn (New York: Springer), 2013. https://link.springer.com/book/10.1007/978-1-4614-4942-3 |
[47] | H. Dong, J. Lai, P. Li, A highly accurate boundary integral method for the elastic obstaclescattering problem, Math. Comput., 90 (2021), 2785–2814. https://doi.org/10.1090/mcom/3660 doi: 10.1090/mcom/3660 |
[48] | A. Kirsch, An introduction to the mathematical theory of inverse problems, New York, 2011. https://doi.org/10.1007/978-1-4419-8474-6 |
[49] | Z. Fu, Q. Xi, Y. Gu, J. Li, W. Qu, L. Sun, et al. Singular boundary method: A review and computer implementation aspects, Eng. Anal. Bound. Elem., 147 (2023), 231–266. https://doi.org/10.1016/j.enganabound.2022.12.004 doi: 10.1016/j.enganabound.2022.12.004 |
[50] | Z. Fu, Q. Xi, Y. Li, H. Huang, T. Rabczuket, Hybrid FEM-SBM solver for structural vibration induced underwater acoustic radiation in shallow marine environment, Comput. Meth. Appl. Mech. Eng., 369 (2020), 113236. https://doi.org/10.1016/j.cma.2020.113236 doi: 10.1016/j.cma.2020.113236 |
[51] | Z. Fu, W. Chen, P. H. Wen, C. Z. Zhang, Singular boundary method for wave propagation analysis in periodic structures, J. Sound Vib., 425 (2018), 170–188. https://doi.org/10.1016/j.jsv.2018.04.005 doi: 10.1016/j.jsv.2018.04.005 |