Research article

Global existence and uniform boundedness to a bi-attraction chemotaxis system with nonlinear indirect signal mechanisms

  • Received: 08 August 2023 Revised: 17 October 2023 Accepted: 25 October 2023 Published: 02 November 2023
  • 35K55, 35Q92, 35A01, 92C17

  • In this paper, we study the following quasilinear chemotaxis system

    $ \begin{equation*} \left\{ \begin{array}{ll} u_{t} = \Delta u-\chi \nabla \cdot (\varphi (u)\nabla v)-\xi \nabla \cdot (\psi(u)\nabla w)+f(u), \ &\ \ x\in \Omega, \ t>0, \ \\ 0 = \Delta v-v+v_{1}^{\gamma_{1}}, \ 0 = \Delta v_{1}-v_{1}+u^{\gamma_{2}}, \ &\ \ x\in \Omega, \ t>0, \ \\ 0 = \Delta w-w+w_{1}^{\gamma_{3}}, \ 0 = \Delta w_{1}-w_{1}+u^{\gamma_{4}}, \ &\ \ x\in \Omega, \ t>0, \end{array} \right. \end{equation*} $

    in a smoothly bounded domain $ \Omega\subset\mathbb{R}^{n}(n\geq 1) $ with homogeneous Neumann boundary conditions, where $ \varphi(\varrho)\leq\varrho(\varrho+1)^{\theta-1}, $ $ \psi(\varrho)\leq\varrho(\varrho+1)^{l-1} $ and $ f(\varrho)\leq a \varrho-b\varrho^{s} $ for all $ \varrho\geq0, $ and the parameters satisfy $ a, b, \chi, \xi, \gamma_{2}, \gamma_{4} > 0, $ $ s > 1, $ $ \gamma_{1}, \gamma_{3}\geq1 $ and $ \theta, l\in \mathbb{R}. $ It has been proven that if $ s \geq\max\{ \gamma_{1}\gamma_{2}+\theta, \gamma_{3}\gamma_{4}+l\}, $ then the system has a nonnegative classical solution that is globally bounded. The boundedness condition obtained in this paper relies only on the power exponents of the system, which is independent of the coefficients of the system and space dimension $ n. $ In this work, we generalize the results established by previous researchers.

    Citation: Chang-Jian Wang, Jia-Yue Zhu. Global existence and uniform boundedness to a bi-attraction chemotaxis system with nonlinear indirect signal mechanisms[J]. Communications in Analysis and Mechanics, 2023, 15(4): 743-762. doi: 10.3934/cam.2023036

    Related Papers:

  • In this paper, we study the following quasilinear chemotaxis system

    $ \begin{equation*} \left\{ \begin{array}{ll} u_{t} = \Delta u-\chi \nabla \cdot (\varphi (u)\nabla v)-\xi \nabla \cdot (\psi(u)\nabla w)+f(u), \ &\ \ x\in \Omega, \ t>0, \ \\ 0 = \Delta v-v+v_{1}^{\gamma_{1}}, \ 0 = \Delta v_{1}-v_{1}+u^{\gamma_{2}}, \ &\ \ x\in \Omega, \ t>0, \ \\ 0 = \Delta w-w+w_{1}^{\gamma_{3}}, \ 0 = \Delta w_{1}-w_{1}+u^{\gamma_{4}}, \ &\ \ x\in \Omega, \ t>0, \end{array} \right. \end{equation*} $

    in a smoothly bounded domain $ \Omega\subset\mathbb{R}^{n}(n\geq 1) $ with homogeneous Neumann boundary conditions, where $ \varphi(\varrho)\leq\varrho(\varrho+1)^{\theta-1}, $ $ \psi(\varrho)\leq\varrho(\varrho+1)^{l-1} $ and $ f(\varrho)\leq a \varrho-b\varrho^{s} $ for all $ \varrho\geq0, $ and the parameters satisfy $ a, b, \chi, \xi, \gamma_{2}, \gamma_{4} > 0, $ $ s > 1, $ $ \gamma_{1}, \gamma_{3}\geq1 $ and $ \theta, l\in \mathbb{R}. $ It has been proven that if $ s \geq\max\{ \gamma_{1}\gamma_{2}+\theta, \gamma_{3}\gamma_{4}+l\}, $ then the system has a nonnegative classical solution that is globally bounded. The boundedness condition obtained in this paper relies only on the power exponents of the system, which is independent of the coefficients of the system and space dimension $ n. $ In this work, we generalize the results established by previous researchers.



    加载中


    [1] E. Keller, L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5
    [2] E. Galakhova, O. Salieva, J. Tello, On a Parabolic-Elliptic system with chemotaxis and logistic type growth, J. Differ. Equ., 261 (2016), 4631–4647. https://doi.org/10.1016/j.jde.2016.07.008 doi: 10.1016/j.jde.2016.07.008
    [3] S. Ishida, T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569–2596. https://doi.org/10.3934/dcdsb.2013.18.2569 doi: 10.3934/dcdsb.2013.18.2569
    [4] S. Ishida, K. Seki, T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differ. Equ., 256 (2014), 2993–3010. https://doi.org/10.1016/j.jde.2014.01.028 doi: 10.1016/j.jde.2014.01.028
    [5] H. Jin, Z. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differ. Equ., 260 (2016), 162–196. https://doi.org/10.1016/j.jde.2015.08.040 doi: 10.1016/j.jde.2015.08.040
    [6] L. Wang, C. Mu, P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differ. Equ., 256 (2014), 1847–1872. https://doi.org/10.1016/j.jde.2013.12.007 doi: 10.1016/j.jde.2013.12.007
    [7] P. Zheng, On a generalized volume-filling chemotaxis system with nonlinear signal production, Monatsh. Math., 198 (2022), 211–231. https://doi.org/10.1007/s00605-022-01669-2 doi: 10.1007/s00605-022-01669-2
    [8] K. Osaki, A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441–469.
    [9] T. Nagai, T. Senba, K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411–433.
    [10] D. Horstmann, G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159–177. https://doi.org/10.1017/s0956792501004363 doi: 10.1017/s0956792501004363
    [11] T. Senba, T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time, Methods Appl. Anal., 8 (2001), 349–367. https://doi.org/10.4310/maa.2001.v8.n2.a9 doi: 10.4310/maa.2001.v8.n2.a9
    [12] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equ., 248 (2010), 2889–2905. https://doi.org/10.1016/j.jde.2010.02.008 doi: 10.1016/j.jde.2010.02.008
    [13] M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767. https://doi.org/10.1016/j.matpur.2013.01.020 doi: 10.1016/j.matpur.2013.01.020
    [14] J. I. Tello, M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differ. Equ., 32 (2007), 849–877. https://doi.org/10.1080/03605300701319003 doi: 10.1080/03605300701319003
    [15] M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., 35 (2010), 1516–1537. https://doi.org/10.1080/03605300903473426 doi: 10.1080/03605300903473426
    [16] M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differ. Equ., 257 (2014), 1056–1077. https://doi.org/10.1016/j.jde.2014.04.023 doi: 10.1016/j.jde.2014.04.023
    [17] X. Cao, Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 3369–3378. https://doi.org/10.3934/dcdsb.2017141 doi: 10.3934/dcdsb.2017141
    [18] G. Ren, B. Liu, Global dynamics for an attraction-repulsion chemotaxis model with logistic source, J. Differ. Equ., 268 (2020), 4320–4373. https://doi.org/10.1016/j.jde.2019.10.027 doi: 10.1016/j.jde.2019.10.027
    [19] G. Ren, B. Liu, Global boundedness and asymptotic behavior in a quasilinear attraction-repulsion chemotaxis model with nonlinear signal production and logistic-type source, Math. Models Methods Appl. Sci., 30 (2020), 2619–2689. https://doi.org/10.1142/s0218202520500517 doi: 10.1142/s0218202520500517
    [20] C. Wang, L. Zhao, X. Zhu, A blow-up result for attraction-repulsion system with nonlinear signal production and generalized logistic source, J. Math. Anal. Appl., 518 (2023), 126679. https://doi.org/10.1016/j.jmaa.2022.126679 doi: 10.1016/j.jmaa.2022.126679
    [21] C. Wang, J. Zhu, Global boundedness in an attraction-repulsion chemotaxis system involving nonlinear indirect signal mechanism, J. Math. Anal. Appl., 531 (2024), 127876. https://doi.org/10.1016/j.jmaa.2023.127876 doi: 10.1016/j.jmaa.2023.127876
    [22] T. Xiang, J. Zheng, A new result for 2D boundedness of solutions to a chemotaxis-haptotaxis model with/without sub-logistic source, Nonlinearity, 32 (2019), 4890–4911. https://doi.org/10.1088/1361-6544/ab41d5 doi: 10.1088/1361-6544/ab41d5
    [23] J. Zheng, Boundedness of the solution of a higher-dimensional parabolic-ODE-parabolic chemotaxis-haptotaxis model with generalized logistic source, Nonlinearity, 30 (2017), 1987–2009. https://doi.org/10.1088/1361-6544/aa675e doi: 10.1088/1361-6544/aa675e
    [24] J. Zheng, Y. Ke, Large time behavior of solutions to a fully parabolic chemotaxis-haptotaxis model in $N$ dimensions, J. Differ. Equ., 266 (2019), 1969–2018. https://doi.org/10.1016/j.jde.2018.08.018 doi: 10.1016/j.jde.2018.08.018
    [25] Y. Ke, J. Zheng, An optimal result for global existence in a three-dimensional Keller-Segel-Navier-Stokes system involving tensor-valued sensitivity with saturation, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 109. https://doi.org/10.1007/s00526-019-1568-2 doi: 10.1007/s00526-019-1568-2
    [26] M. Winkler, How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system? Trans. Amer. Math. Soc., 369 (2017), 3067–3125. https://doi.org/10.1090/tran/6733 doi: 10.1090/tran/6733
    [27] M. Winkler, Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotational flux components, J. Evol. Equ., 18 (2018), 1267–1289. https://doi.org/10.1007/s00028-018-0440-8 doi: 10.1007/s00028-018-0440-8
    [28] J. Zheng, An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion, J. Differ. Equ., 267 (2019), 2385–2415. https://doi.org/10.1016/j.jde.2019.03.013 doi: 10.1016/j.jde.2019.03.013
    [29] J. Zheng, A new result for the global existence (and boundedness) and regularity of a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization, J. Differ. Equ., 272 (2021), 164–202. https://doi.org/10.1016/j.jde.2020.09.029 doi: 10.1016/j.jde.2020.09.029
    [30] J. Zheng, Eventual smoothness and stabilization in a three-dimensional Keller-Segel-Navier-Stokes system with rotational flux, Calc. Var. Partial Differential Equations, 61 (2022), 52. https://doi.org/10.1007/s00526-021-02164-6 doi: 10.1007/s00526-021-02164-6
    [31] X. Liu, J. Zheng, Convergence rates of solutions in a predator-prey system with indirect pursuit-evasion interaction in domains of arbitrary dimension, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 2269–2293. https://doi.org/10.3934/dcdsb.2022168 doi: 10.3934/dcdsb.2022168
    [32] J. Zheng, P. Zhang, X. Liu, Some progress for global existence and boundedness in a multi-dimensional parabolic-elliptic two-species chemotaxis system with indirect pursuit-evasion interaction, Appl. Math. Lett., 144 (2023), 108729. https://doi.org/10.1016/j.aml.2023.108729 doi: 10.1016/j.aml.2023.108729
    [33] J. Zheng, P. Zhang, X. Liu, Global existence and boundedness for an N-dimensional parabolic-ellipticchemotaxis-fluid system with indirect pursuit-evasion, J. Differ. Equ., 367 (2023), 199–228. https://doi.org/10.1016/j.jde.2023.04.042 doi: 10.1016/j.jde.2023.04.042
    [34] D. Liu, Y. Tao, Boundedness in a chemotaxis system with nonlinear signal production, Appl. Math. J. Chin. Univ. Ser. B, 31 (2016), 379–388. https://doi.org/10.1007/s11766-016-3386-z doi: 10.1007/s11766-016-3386-z
    [35] Z. Wang, T. Xiang, A class of chemotaxis systems with growth source and nonlinear secretion, preprient, arXiv : 1510.07204, 2015.
    [36] M. Winkler, A critical blow-up exponent in a chemotaxis system with nonlinear signal production, Nonlinearity, 31 (2018), 2031–2056. https://doi.org/10.1088/1361-6544/aaaa0e doi: 10.1088/1361-6544/aaaa0e
    [37] G. Viglialoro, Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source, J. Math. Anal. Appl., 439 (2016), 197–212. https://doi.org/10.1016/j.jmaa.2016.02.069 doi: 10.1016/j.jmaa.2016.02.069
    [38] L. Wang, Y. Li, C. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 34 (2014), 789–802. https://doi.org/10.3934/dcds.2014.34.789 doi: 10.3934/dcds.2014.34.789
    [39] M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261–272. https://doi.org/10.1016/j.jmaa.2011.05.057 doi: 10.1016/j.jmaa.2011.05.057
    [40] M. Winkler, Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation, Z. Angew. Math. Phys., 69 (2018), 40. https://doi.org/10.1007/s00033-018-0935-8 doi: 10.1007/s00033-018-0935-8
    [41] Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252 (2012), 692–715. https://doi.org/10.1016/j.jde.2011.08.019 doi: 10.1016/j.jde.2011.08.019
    [42] M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse? Math Methods Appl. Sci., 33 (2010), 12–24. https://doi.org/10.1002/mma.1146 doi: 10.1002/mma.1146
    [43] J. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differ. Equ., 259 (2015), 120–140. https://doi.org/10.1016/j.jde.2015.02.003 doi: 10.1016/j.jde.2015.02.003
    [44] K. Lin, C. Mu, H. Zhong, A blow-up result for a quasilinear chemotaxis system with logistic source in higher dimensions, J. Math. Anal. Appl., 464 (2018), 435–455. https://doi.org/10.1016/j.jmaa.2018.04.015 doi: 10.1016/j.jmaa.2018.04.015
    [45] H. Yi, C. Mu, G. Xu, P. Dai, A blow-up result for the chemotaxis system with nonlinear signal production and logistic source, Discrete Contin. Dyn. Syst. B, 26 (2021), 2537–2559. https://doi.org/10.3934/dcdsb.2020194 doi: 10.3934/dcdsb.2020194
    [46] Q. Zhang, Y. Li, Boundedness in a quasilinear fully parabolic Keller-Segel system with logistic source, Z. Angew. Math. Phys., 66 (2015), 2473–2484. https://doi.org/10.1007/s00033-015-0532-z doi: 10.1007/s00033-015-0532-z
    [47] W. Zhang, P. Niu, S. Liu, Large time behavior in a chemotaxis model with logistic growth and indirect signal production, Nonlinear Anal. Real World Appl., 50 (2019), 484–497. https://doi.org/10.1016/j.nonrwa.2019.05.002 doi: 10.1016/j.nonrwa.2019.05.002
    [48] M. Ding, W. Wang, Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019), 4665–4684. https://doi.org/10.3934/dcdsb.2018328 doi: 10.3934/dcdsb.2018328
    [49] S. Wu, Boundedness in a quasilinear chemotaxis model with logistic growth and indirect signal production, Acta. Appl. Math., 176 (2021), 9. https://doi.org/10.1007/s10440-021-00454-x doi: 10.1007/s10440-021-00454-x
    [50] G. Ren, Global solvability in a Keller-Segel-growth system with indirect signal production, Calc. Var. Partial Differential Equations, 61 (2022), 207. https://doi.org/10.1007/s00526-022-02313-5 doi: 10.1007/s00526-022-02313-5
    [51] D. Li, Z. Li, Asymptotic behavior of a quasilinear parabolic-elliptic-elliptic chemotaxis system with logistic source, Z. Angew. Math. Phys., 73 (2022), 22. https://doi.org/10.1007/s00033-021-01655-y doi: 10.1007/s00033-021-01655-y
    [52] C. Wang, Y. Zhu, X. Zhu, Long time behavior of the solution to a chemotaxis system with nonlinear indirect signal production and logistic source, Electron. J. Qual. Theory Differ. Equations, 2023 (2023), 1–21. https://doi.org/10.14232/ejqtde.2023.1.11 doi: 10.14232/ejqtde.2023.1.11
    [53] B. Hu, Y. Tao, To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111–2128. https://doi.org/10.1142/s0218202516400091 doi: 10.1142/s0218202516400091
    [54] X. Li, Global existence and boundedness of a chemotaxis model with indirect production and general kinetic function, Z. Angew. Math. Phys., 71 (2020), 96–117. https://doi.org/10.1007/s00033-020-01339-z doi: 10.1007/s00033-020-01339-z
    [55] C. Liu, G. Ren, B. Liu, Boundedness in a higher-dimensional singular chemotaxis-growth system with indirect signal production, Z. Angew. Math. Phys., 74 (2023), 119. https://doi.org/10.1007/s00033-023-02017-6 doi: 10.1007/s00033-023-02017-6
    [56] C. Wang, Z. Zheng, Global boundedness for a chemotaxis system involving nonlinear indirect consumption mechanism, Discrete Contin. Dyn. Syst. B, (2023), In press. https://doi.org/10.3934/dcdsb.2023171
    [57] M. Luca, A. Chavez-Ross, L. Edelstein-Keshet, A. Mogilner, Chemotactic signaling, microglia, and Alzheimer's disease senile plaques: Is there a connection? Bull. Math. Biol., 65 (2003), 673–730. https://doi.org/10.1016/S0092-8240(03)00030-2 doi: 10.1016/S0092-8240(03)00030-2
    [58] L. Hong, M. Tian, S. Zheng, An attraction-repulsion chemotaxis system with nonlinear productions, J. Math. Anal. Appl., 484 (2020), 123703. https://doi.org/10.1016/j.jmaa.2019.123703 doi: 10.1016/j.jmaa.2019.123703
    [59] X. Zhou, Z. Li, J. Zhao, Asymptotic behavior in an attraction-repulsion chemotaxis system with nonlinear productions, J. Math. Anal. Appl., 507 (2022), 125763. https://doi.org/10.1016/j.jmaa.2021.125763 doi: 10.1016/j.jmaa.2021.125763
    [60] Y. Wang, A quasilinear attraction-repulsion chemotaxis system of parabolic-elliptic type with logistic source, J. Math. Anal. Appl., 441 (2016), 259–292. https://doi.org/10.1016/j.jmaa.2016.03.061 doi: 10.1016/j.jmaa.2016.03.061
    [61] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.
    [62] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, New York: Universitext. Springer, (2011). https://doi.org/10.1007/978-0-387-70914-7
    [63] O. Ladyženskaja, V. Solonnikov, N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, Amer. Math. Soc. Transl. 23, Providence, RI, (1968).
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1023) PDF downloads(145) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog