Research article Special Issues

Conformal-type energy estimates on hyperboloids and the wave-Klein-Gordon model of self-gravitating massive fields

  • Received: 31 December 2022 Revised: 20 March 2023 Accepted: 04 April 2023 Published: 22 April 2023
  • 35L72, 35L05, 83C05

  • In this article we revisit the global existence result of the wave-Klein-Gordon model of the system of the self-gravitating massive field. Our new observation is that, by applying the conformal energy estimates on hyperboloids, we obtain mildly increasing energy estimate up to the top order for the Klein-Gordon component, which clarify the question on the hierarchy of the energy bounds of the Klein-Gordon component in our previous work. Furthermore, a uniform-in-time energy estimate is established for the wave component up to the top order, as well as a scattering result. These improvements indicate that the partial conformal symmetry of the Einstein-massive scalar system will play an important role in the global analysis.

    Citation: Senhao Duan, Yue MA, Weidong Zhang. Conformal-type energy estimates on hyperboloids and the wave-Klein-Gordon model of self-gravitating massive fields[J]. Communications in Analysis and Mechanics, 2023, 15(2): 111-131. doi: 10.3934/cam.2023007

    Related Papers:

  • In this article we revisit the global existence result of the wave-Klein-Gordon model of the system of the self-gravitating massive field. Our new observation is that, by applying the conformal energy estimates on hyperboloids, we obtain mildly increasing energy estimate up to the top order for the Klein-Gordon component, which clarify the question on the hierarchy of the energy bounds of the Klein-Gordon component in our previous work. Furthermore, a uniform-in-time energy estimate is established for the wave component up to the top order, as well as a scattering result. These improvements indicate that the partial conformal symmetry of the Einstein-massive scalar system will play an important role in the global analysis.



    加载中


    [1] L. Andersson, D. Fajman, Nonlinear stability of the Milne model with matter, preprint, arXiv: 1709.00267. https://doi.org/10.48550/arXiv.1709.00267
    [2] L. Bieri, An extension of the stability theorem of the Minkowski space in general relativity, J. Differ. Geom., 86 (2010), 17–70. https://doi.org/10.48550/arXiv.0904.0620 doi: 10.48550/arXiv.0904.0620
    [3] L. Bieri, N. Zipser, Extensions of the stability theorem of the Minkowski space in general relativity, AMS/IP Studies Adv. Math. 45. Amer. Math. Soc., International Press, Cambridge, 2009. https://doi.org/10.1090/amsip/045
    [4] L. Bigorgne, D. Fajman, J. Joudioux, J. Smulevici, M. Thaller, Asymptotic Stability of Minkowski Space-Time with non-compactly supported massless Vlasov matter, Arch. Ration. Mech. Anal., 242 (2021), 1–147. https://doi.org/10.1007/s00205-021-01639-2 doi: 10.1007/s00205-021-01639-2
    [5] X. Chen, Global stability of Minkowski spacetime for a spin-1/2 field, preprint, arXiv: 2201.08280v5. https://doi.org/10.48550/arXiv.2201.08280
    [6] Y. Choquet-Bruhat, Théorème d'existence pour certain systèmes d'équations aux dérivées partielles non-linéaires (French) [Existence theorems for some systems of nonlinear partial differential equations], Acta Math., 88 (1952), 141–225. https://doi.org/10.1007/BF02392131 doi: 10.1007/BF02392131
    [7] D. Christodoulou, S. Klainerman, The global nonlinear stability of the Minkowski space, Princeton Math. Ser. 41, 1993. https://doi.org/10.1515/9781400863174
    [8] S. Dong, P. G. LeFloch, Z. Wyatt, Global evolution of the $U(1)$ Higgs Boson: nonlinear stability and uniform energy bounds, In Annales Henri Poincaré, 22 (2021), 677–713. https://doi.org/10.1007/s00023-020-00955-9
    [9] S. Duan, Y. Ma, W. Zhang, Nonlinear stability of a type of totally geodesic wave maps in non-isotropic Riemannian manifolds, priprint, arXiv: 2204.12525v2. https://doi.org/10.48550/arXiv.2204.12525
    [10] D. Fajman, J. Joudioux, J. Smulevici, A vector field method for relativistic transport equations with applications, Anal. PDE, 10 (2017), 1539–1612. https://doi.org/10.2140/apde.2017.10.1539 doi: 10.2140/apde.2017.10.1539
    [11] D. Fajman, J. Joudioux, J. Smulevici, The stability of the Minkowski space for the Einstein-Vlasov system, Anal. PDE, 14 (2021), 425–531. https://doi.org/10.2140/apde.2021.14.425 doi: 10.2140/apde.2021.14.425
    [12] D. Fajman, Z. Wyatt, Attractors of the Einstein-Klein-Gordon system, Commun. Part. Diff. Eq., 46 (2021), 1–30. https://doi.org/10.1080/03605302.2020.1817072 doi: 10.1080/03605302.2020.1817072
    [13] L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathématique & Applications 26, Springer-Verlag, Berlin, 1997. https://doi.org/9783540629214
    [14] P. Hintz, A. Vasy, Stability of Minkowski space and polyhomogeneity of the metric, Ann. PDE 6 (2020), 146. https://doi.org/10.1007/s40818-020-0077-0 doi: 10.1007/s40818-020-0077-0
    [15] A. D. Ionescu, B. Pausader, On the global regularity for a wave-Klein-Gordon coupled system, Acta Math. Sin., 35 (2019), 933–986. https://doi.org/10.1007/s10114-019-8413-6 doi: 10.1007/s10114-019-8413-6
    [16] A.D. Ionescu, B. Pausader, The Einstein-Klein-Gordon coupled system: global stability of the Minkowski solution, Princeton University Press, Princeton, NJ, 2021. https://doi.org/10.2307/j.ctv1z2hmps
    [17] S. Katayama, Global solutions and the asymptotic behavior for nonlinear wave equations with small initial data, MSJ Memoirs, 36. Mathematical Society of Japan, Tokyo, 2017. x+298 pp. https://doi.org/10.2969/msjmemoirs/036010000
    [18] C. Kauffman, H. Lindblad, Global stability of Minkowski space for the Einstein-Maxwell-Klein-Gordon system in generalized wave coordinates, preprint, arXiv: 2109.03270. https://doi.org/10.48550/arXiv.2109.03270
    [19] S. Klainerman, Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four spacetime dimensions, Commu. Pur. Appl. Math., 38 (1985), 631–641. https://doi.org/10.1002/cpa.3160380512 doi: 10.1002/cpa.3160380512
    [20] P. G. LeFloch, Y. Ma, The global nonlinear stability of Minkowski space for self-gravitating massive fields, The wave-Klein-Gordon model, Commun. Math. Phys., 346 (2016), 603–665. https://doi.org/10.1007/s00220-015-2549-8 doi: 10.1007/s00220-015-2549-8
    [21] P. G. LeFloch, Y. Ma, The global nonlinear stability of Minkowski space for self-gravitating massive fields, World Scientific Press, 2018. https://doi.org/10.48550/arXiv.1511.03324
    [22] P.G. LeFloch, Y. Ma, Nonlinear stability of self-gravitating massive fields: a wave-Klein-Gordon model, preprint, arXiv: 2212.07463v1. https://doi.org/10.48550/arXiv.2212.07463
    [23] H. Lindblad, I. Rodnianski, The global stability of Minkowski spacetime in harmonic gauge, Ann. Math., 171 (2010), 1401–1477. https://doi.org/10.4007/annals.2010.171.1401 doi: 10.4007/annals.2010.171.1401
    [24] H. Lindblad, M. Taylor, Global stability of Minkowski space for the Einstein–Vlasov system in the harmonic gauge, Arch. Ration. Mech. Anal., 235 (2020), 517–633. https://doi.org/10.1007/s00205-019-01425-1 doi: 10.1007/s00205-019-01425-1
    [25] J. Loizelet, Solutions globales des équations d'Einstein-Maxwell (French) [Global solutions of the Einstein-Maxwell equations], Annales de la Faculté des sciences de Toulouse: Mathématiques, 18 (2009), 495–540. https://doi.org/10.5802/afst.1212 doi: 10.5802/afst.1212
    [26] Y. Ma, Global solutions of nonlinear wave-Klein-Gordon system in two spatial dimensions: A prototype of strong coupling case, J. Differ. Equations, 287 (2021), 236–294. https://doi.org/10.48550/arXiv.2008.10023 doi: 10.48550/arXiv.2008.10023
    [27] M. Taylor, The Global Nonlinear Stability of Minkowski Space for the Massless Einstein–Vlasov System, Ann. PDE, 9 (2017). https://doi.org/10.1007/s40818-017-0026-8 doi: 10.1007/s40818-017-0026-8
    [28] J. H. Wang, Future stability of the $1+3$ Milne model for the Einstein-Klein-Gordon system, Classical Quant. Grav., 36 (2019), 225010. https://doi.org/10.1088/1361-6382/ab4dd3 doi: 10.1088/1361-6382/ab4dd3
    [29] Q. Wang, An intrinsic hyperboloid approach for Einstein Klein-Gordon equations, J. Differ. Geom., 115 (2020), 27–109. https://doi.org/10.4310/jdg/1586224841 doi: 10.4310/jdg/1586224841
    [30] W. Wong, Small data global existence and decay for two dimensional wave maps, preprint, arXiv: 1712.07684v2. https://doi.org/10.48550/arXiv.1712.07684
    [31] N. Zipser, The global nonlinear stability of the trivial solution of the Einstein-Maxwell equa- tions, Ph.D thesis, Harvard University, 2000.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1385) PDF downloads(127) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog