The following chemotaxis system has been considered:
$ \begin{equation*} \left\{ \begin{array}{ll} v_{t} = \Delta v-\xi \nabla\cdot(v \nabla w_{1})+\chi \nabla\cdot(v \nabla w_{2})+\lambda v-\mu v^{\kappa},\ &\ \ x\in \Omega, \ t>0,\\[2.5mm] w_{1t} = \Delta w_{1}-w_{1}+w^{\kappa_{1}}, \ 0 = \Delta w-w+v^{\kappa_{2}}, \ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0 = \Delta w_{2}-w_{2}+v^{\kappa_{3}}, \ &\ \ x\in \Omega, \ t>0 , \end{array} \right. \end{equation*} $
under the boundary conditions of $ \frac{\partial{v}}{\partial{\nu}} = \frac{\partial{w_{1}}}{\partial{\nu}} = \frac{\partial{w}}{\partial{\nu}} = \frac{\partial{w_{2}}}{\partial{\nu}} $ on $ \partial \Omega, $ where $ \Omega $ was a bounded smooth domain of $ \mathbb{R}^{n}(n\geq 1), \; \nu $ was the normal vector of $ \partial\Omega, $ and the parameters were $ \lambda, \mu, \xi, \chi, \kappa_{1}, \; \kappa_{2}, \kappa_{3} > 0, $ and $ \kappa > 1. $ In this paper, we showed that if either $ \kappa_{1}\kappa_{2} < \max\{\frac{2}{n}, \kappa_{3}, \kappa-1\} $ or $ \kappa_{1}\kappa_{2} = \max\{\frac{2}{n}, \kappa_{3}, \kappa-1\} $ with the coefficients and initial data satisfying appropriate conditions, then the system possessed a global classical solution. Furthermore, we also have studied the convergence of solutions to a special case of the above system with $ \kappa = \delta+1, \kappa_{1} = 1, \kappa_{2} = \kappa_{3} = \delta $ for $ \delta > 0. $ It has been proven that if $ \mu > 0 $ is large enough, then the corresponding classical solutions exponentially converged to $ ((\frac{\lambda}{\mu})^{\frac{1}{\delta}}, \frac{\lambda}{\mu}, \frac{\lambda}{\mu}, \frac{\lambda}{\mu}), $ where the convergence rate could be formally expressed by the parameters of the system.
Citation: Chang-Jian Wang, Jia-Yue Zhu. Analysis of global dynamics in an attraction-repulsion model with nonlinear indirect signal and logistic source[J]. Communications in Analysis and Mechanics, 2024, 16(4): 813-835. doi: 10.3934/cam.2024035
The following chemotaxis system has been considered:
$ \begin{equation*} \left\{ \begin{array}{ll} v_{t} = \Delta v-\xi \nabla\cdot(v \nabla w_{1})+\chi \nabla\cdot(v \nabla w_{2})+\lambda v-\mu v^{\kappa},\ &\ \ x\in \Omega, \ t>0,\\[2.5mm] w_{1t} = \Delta w_{1}-w_{1}+w^{\kappa_{1}}, \ 0 = \Delta w-w+v^{\kappa_{2}}, \ &\ \ x\in \Omega, \ t>0,\\[2.5mm] 0 = \Delta w_{2}-w_{2}+v^{\kappa_{3}}, \ &\ \ x\in \Omega, \ t>0 , \end{array} \right. \end{equation*} $
under the boundary conditions of $ \frac{\partial{v}}{\partial{\nu}} = \frac{\partial{w_{1}}}{\partial{\nu}} = \frac{\partial{w}}{\partial{\nu}} = \frac{\partial{w_{2}}}{\partial{\nu}} $ on $ \partial \Omega, $ where $ \Omega $ was a bounded smooth domain of $ \mathbb{R}^{n}(n\geq 1), \; \nu $ was the normal vector of $ \partial\Omega, $ and the parameters were $ \lambda, \mu, \xi, \chi, \kappa_{1}, \; \kappa_{2}, \kappa_{3} > 0, $ and $ \kappa > 1. $ In this paper, we showed that if either $ \kappa_{1}\kappa_{2} < \max\{\frac{2}{n}, \kappa_{3}, \kappa-1\} $ or $ \kappa_{1}\kappa_{2} = \max\{\frac{2}{n}, \kappa_{3}, \kappa-1\} $ with the coefficients and initial data satisfying appropriate conditions, then the system possessed a global classical solution. Furthermore, we also have studied the convergence of solutions to a special case of the above system with $ \kappa = \delta+1, \kappa_{1} = 1, \kappa_{2} = \kappa_{3} = \delta $ for $ \delta > 0. $ It has been proven that if $ \mu > 0 $ is large enough, then the corresponding classical solutions exponentially converged to $ ((\frac{\lambda}{\mu})^{\frac{1}{\delta}}, \frac{\lambda}{\mu}, \frac{\lambda}{\mu}, \frac{\lambda}{\mu}), $ where the convergence rate could be formally expressed by the parameters of the system.
[1] | M. Luca, A. Chavez-Ross, L. Edelstein-Keshet, A. Mogliner, Chemotactic signalling, microglia, and Alzheimer's disease senile plague: Is there a connection? Bull. Math. Biol., 65 (2003), 673–730. https://doi.org/10.1016/S0092-8240(03)00030-2 |
[2] | Y. Tao, Z. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1–36. https://doi.org/10.1142/S0218202512500443 doi: 10.1142/S0218202512500443 |
[3] | E. Espejo, T. Suzuki, Global existence and blow-up for a system describing the aggregation of microglia, Appl. Math. Lett., 35 (2014), 29–34. https://doi.org/10.1016/j.aml.2014.04.007 doi: 10.1016/j.aml.2014.04.007 |
[4] | H. Jin, Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422 (2015), 1463–1478. https://doi.org/10.1016/j.jmaa.2014.09.049 doi: 10.1016/j.jmaa.2014.09.049 |
[5] | K. Lin, C. Mu, Global existence and convergence to steady states for an attraction-repulsion chemotaxis system, Nonlinear Anal.: Real World Appl., 31 (2016), 630–642. https://doi.org/10.1016/j.nonrwa.2016.03.012 doi: 10.1016/j.nonrwa.2016.03.012 |
[6] | Y. Li, Y. Li, Blow-up of nonradial solutions to attraction-repulsion chemotaxis system in two dimensions, Nonlinear Anal.: Real World Appl., 30 (2016), 170–183. https://doi.org/10.1016/j.nonrwa.2015.12.003 doi: 10.1016/j.nonrwa.2015.12.003 |
[7] | H. Yu, Q. Guo, S. Zheng, Finite time blow-up of nonradial solutions in an attraction-repulsion chemotaxis system, Nonlinear Anal.: Real World Appl., 34 (2017), 335–342. https://doi.org/10.1016/j.nonrwa.2016.09.007 doi: 10.1016/j.nonrwa.2016.09.007 |
[8] | Q. Zhang, Y. Li, An attraction-repulsion chemotaxis system with logistic source, Z. Angew. Math. Mech., 96 (2016), 570–584. https://doi.org/10.1002/zamm.201400311 doi: 10.1002/zamm.201400311 |
[9] | W. Wang, M. Zhuang, S. Zheng, Positive effects of repulsion on boundedness in a fully parabolic attraction-repulsion chemotaxis system with logistic source, J. Differ. Equ., 264 (2018), 2011–2027. https://doi.org/10.1016/j.jde.2017.10.011 doi: 10.1016/j.jde.2017.10.011 |
[10] | D. Li, C. Mu, K. Lin, L. Wang, Large time behavior of solution to an attraction-repulsion chemotaxis system with logistic source in three dimensions, J. Math. Anal. Appl., 448 (2017), 914–936. https://doi.org/10.1016/j.jmaa.2016.11.036 doi: 10.1016/j.jmaa.2016.11.036 |
[11] | P. Zheng, C. Mu, X. Hu, Boundedness in the higher dimensional attraction-repulsion chemotaxis-growth system, Comput. Math. Appl., 72 (2016), 2194–2202. https://doi.org/10.1016/j.camwa.2016.08.028 doi: 10.1016/j.camwa.2016.08.028 |
[12] | L. Hong, M. Tian, S. Zheng, An attraction-repulsion chemotaxis system with nonlinear productions, J. Math. Anal. Appl., 484 (2020), 123703. https://doi.org/10.1016/j.jmaa.2019.123703 doi: 10.1016/j.jmaa.2019.123703 |
[13] | X. Zhou, Z. Li, J. Zhao, Asymptotic behavior in an attraction-repulsion chemotaxis system with nonlinear productions, J. Math. Anal. Appl., 507 (2022), 125763. https://doi.org/10.1016/j.jmaa.2021.125763 doi: 10.1016/j.jmaa.2021.125763 |
[14] | T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 109. https://doi.org/10.1007/s00033-023-01976-0 doi: 10.1007/s00033-023-01976-0 |
[15] | C. Wang, Z. Zheng, X. Zhu, Dynamic behavior analysis to a generalized chemotaxis-consumption system, J. Math. Phys., 65 (2024), 011503. https://doi.org/10.1063/5.0176530 doi: 10.1063/5.0176530 |
[16] | A. Columbu, S. Frassu, G. Viglialoro, Properties of given and detected unbounded solutions to a class of chemotaxis models, Stud. Appl. Math., 151 (2023), 1349–1379. https://doi.org/10.1111/sapm.12627 doi: 10.1111/sapm.12627 |
[17] | C. Wang, L. Zhao, X. Zhu, A blow-up result for attraction-repulsion system with nonlinear signal production and generalized logistic source, J. Math. Anal. Appl., 518 (2023), 126679. https://doi.org/10.1016/j.jmaa.2022.126679 doi: 10.1016/j.jmaa.2022.126679 |
[18] | E. Keller, L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5 |
[19] | D. Liu, Y. Tao, Boundedness in a chemotaxis system with nonlinear signal production, Appl. Math. J. Chin. Univ. Ser. B, 31 (2016), 379–388. https://doi.org/10.1007/s11766-016-3386-z doi: 10.1007/s11766-016-3386-z |
[20] | M. Winkler, A critical blow-up exponent in a chemotaxis system with nonlinear signal production, Nonlinearity, 31 (2018), 2031–2056. https://doi.org/10.1088/1361-6544/aaaa0e doi: 10.1088/1361-6544/aaaa0e |
[21] | T. Li, G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differential Integral Equations, 34 (2021), 315–336. https://doi.org/10.57262/die034-0506-315 doi: 10.57262/die034-0506-315 |
[22] | Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252 (2012), 692–715. https://doi.org/10.1016/j.jde.2011.08.019 doi: 10.1016/j.jde.2011.08.019 |
[23] | M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., 35 (2010), 1516–1537. https://doi.org/10.1080/03605300903473426 doi: 10.1080/03605300903473426 |
[24] | T. Xiang, Dynamics in a parabolic-elliptic chemotaxis system with growth source and nonlinear secretion, Commun. Pure Appl. Anal., 18 (2019), 255–284. https://doi.org/10.3934/cpaa.2019014 doi: 10.3934/cpaa.2019014 |
[25] | W. Zhang, P. Niu, S. Liu, Large time behavior in a chemotaxis model with logistic growth and indirect signal production, Nonlinear Anal.: Real World Appl., 50 (2019), 484–497. https://doi.org/10.1016/j.nonrwa.2019.05.002 doi: 10.1016/j.nonrwa.2019.05.002 |
[26] | M. Ding, W. Wang, Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production, Discrete Contin, Dyn. Syst. Ser. B, 24 (2019), 4665–4684. https://doi.org/10.3934/dcdsb.2018328 doi: 10.3934/dcdsb.2018328 |
[27] | G. Ren, Global solvability in a Keller-Segel-growth system with indirect signal production, Calc. Var., 61 (2022), 207. https://doi.org/10.1007/s00526-022-02313-5 doi: 10.1007/s00526-022-02313-5 |
[28] | D. Li, Z. Li, Asymptotic behavior of a quasilinear parabolic-elliptic-elliptic chemotaxis system with logistic source, Z. Angew. Math. Phys., 73 (2022), 22. https://doi.org/10.1007/s00033-021-01655-y doi: 10.1007/s00033-021-01655-y |
[29] | C. Wang, P. Wang, X. Zhu, Global dynamics in a chemotaxis system involving nonlinear indirect signal secretion and logistic source, Z. Angew. Math. Phys., 74 (2023), 237. https://doi.org/10.1007/s00033-023-02126-2 doi: 10.1007/s00033-023-02126-2 |
[30] | C. Wang, J. Zhu, Global boundedness in an attraction-repulsion chemotaxis system involving nonlinear indirect signal mechanism, J. Math. Anal. Appl., 531 (2024), 127876. https://doi.org/10.1016/j.jmaa.2023.127876 doi: 10.1016/j.jmaa.2023.127876 |
[31] | S. Wang, J. Hu, X. Xiao, Global boundedness in a parabolic-parabolic-elliptic attraction-repulsion chemotaxis system with nonlinear productions, Discrete Contin. Dyn. Syst.- B, 28 (2023), 3537–3546. https://doi.org/10.3934/dcdsb.2022229 doi: 10.3934/dcdsb.2022229 |
[32] | G. Ren, B. Liu, Global dynamics for an attraction-repulsion chemotaxis model with logistic source, J. Differ.Equ., 268 (2020), 4320–4373. https://doi.org/10.1016/j.jde.2019.10.027 doi: 10.1016/j.jde.2019.10.027 |
[33] | D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215 (2005), 52–107. https://doi.org/10.1016/j.jde.2004.10.022 doi: 10.1016/j.jde.2004.10.022 |
[34] | O. Ladyzhenskaya, V. Solonnikov and N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, AMS, Providence, RI, 1968. |
[35] | X. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis model, Z. Angew. Math. Phys, 67 (2016), 11. https://doi.org/10.1007/s00033-015-0601-3 doi: 10.1007/s00033-015-0601-3 |
[36] | X. Bai, M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553–583. https://doi.org/10.1512/iumj.2016.65.5776 doi: 10.1512/iumj.2016.65.5776 |
[37] | A. Friedman, Partial Differential Equations, Holt, Rinehart Winston, New York, 1969. |