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Abstract: The following chemotaxis system has been considered:
vt = ∆v − ξ∇ · (v∇w1) + χ∇ · (v∇w2) + λv − µvκ, x ∈ Ω, t > 0,

w1t = ∆w1 − w1 + wκ1 , 0 = ∆w − w + vκ2 , x ∈ Ω, t > 0,

0 = ∆w2 − w2 + vκ3 , x ∈ Ω, t > 0,

under the boundary conditions of ∂v
∂ν
= ∂w1
∂ν
= ∂w
∂ν
= ∂w2
∂ν

on ∂Ω, where Ω was a bounded smooth domain
of Rn(n ≥ 1), ν was the normal vector of ∂Ω, and the parameters were λ, µ, ξ, χ, κ1, κ2, κ3 > 0, and
κ > 1. In this paper, we showed that if either κ1κ2 < max{ 2n , κ3, κ − 1} or κ1κ2 = max{ 2n , κ3, κ − 1} with
the coefficients and initial data satisfying appropriate conditions, then the system possessed a global
classical solution. Furthermore, we also have studied the convergence of solutions to a special case of
the above system with κ = δ + 1, κ1 = 1, κ2 = κ3 = δ for δ > 0. It has been proven that if µ > 0 is large
enough, then the corresponding classical solutions exponentially converged to ((λ

µ
)

1
δ , λ
µ
, λ
µ
, λ
µ
), where the

convergence rate could be formally expressed by the parameters of the system.
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1. Introduction

To investigate the movement of microglia in Alzheimer’s disease, the authors in [1] proposed a
chemotaxis system, the so-called attraction-repulsion system, which can be formulated as

vt = ∆v − ξ∇ · (v∇w1) + χ∇ · (v∇w2) + f (v), x ∈ Ω, t > 0,

τw1t = ∆w1 + αv − βw1, x ∈ Ω, t > 0,

τw2t = ∆w2 + γv − δw2, x ∈ Ω, t > 0,

(1.1)

where Ω ⊂ Rn(n ≥ 1) is a bounded smooth domain and the parameters satisfy α, β, γ, δ, ξ, χ > 0. Here,
the unknown function v represents the microglia density, and w1, w2 represent the concentration of two
different chemical signals secreted by microglia. f (v) is the logistic term to characterize the proliferation
and death of microglia. So far, the numerous studies have been done on dynamical behavior with regard
to model (1.1), such as the global classical solvability, the long-time behavior, and the blow-up analysis
of classical solutions. Let us briefly summarize some of these achievements in this aspect.

On the one hand, assume that model (1.1) does not contain a logistic source term. For τ = 0, Tao and
Wang [2] gained the global well-posedness of the solution in high-dimensional space provided that the
repulsion mechanism plays a dominant role in the sense that χγ > ξα; meanwhile, for τ = 0, the blow-up
analysis of solutions was also explored therein in two dimensions under the conditions that χγ < ξα
and β = δ. Espejo and Suzuki [3] removed the restriction β = δ in [2] for Ω ⊂ R2 and also showed that
the blow-up result still holds provided that χγ < ξα. If repulsion mechanism dominates over attraction
mechanism with χγ > ξα, Jin [4] proved the existence of global classical solutions in two-dimensional
space and the existence of global weak solutions in three-dimensional space, respectively. For τ = 1,
Lin and Mu [5] obtained the global classical solvability in the two-dimensional setting provided that
initial data satisfy ∥v0∥L1(Ω) <

1
kξα with k > 0 depending only on Ω. It has been proven by Li and

Li [6] that the non-radial solutions of the parabolic-elliptic-elliptic version of system (1.1) will be
unbounded in finite-time for Ω ⊂ R2 in the sense that χγ < ξα and β − δ , 0. Later on, Yu-Guo-Zheng
made an extension [7] and further showed that the blow-up can be guaranteed by the condition that∫
Ω

v0 > 8π/(ξα − χγ) with χγ < ξα.
On the other hand, assume that the system has a logistic damping. As for f (s) ≤ ϱs(1 − s) for all

s ≥ 0 with ϱ > 0, Zhang and Li [8] showed that the system with τ = 0 is globally well-posed if one of
the following assumptions holds: (a) ξα − χβ ≤ ϱ; (b) n ≤ 2; (c) n−2

n ξα − χβ ≤ ϱ, n ≥ 3.Meanwhile, the
global convergence of the solutions was established for the logistic term f (s) = ϱs(1− s).Moreover, they
also investigated the global weak solvability of the system provided that logistic damping is rather mild.
As for a generalized logistic damping f (s) = λ − µsθ with λ, µ > 0 and θ > 1,Wang-Zhuang-Zheng [9]
demonstrated that if ξα = χγ, then the global classical solvability with τ = 1 can be guaranteed
by the space dimension n and parameter θ. In three-dimensional setting, for f (s) = s − µs1+θ with
µ > 0, θ ≥ 1, then the conclusions in [10] imply that the fully-parabolic system of (1.1) is globally

well-posed provided that β, δ ≥ 1
2 and µ ≥ max

{ (
41
2 ξα + 9χγ

)θ
,
(

41
2 χγ + 9ξα

)θ }
.Moreover, whenever

v0 . 0 and for any θ ∈ N, the global convergence of solutions was also established. However, it should
be mentioned that the convergence rate was still unknown therein. For the case f (u) = λs − µs2 with
λ ≥ 0 and µ > 0, the higher-dimensional boundedness problem with n ≥ 3 has been shown in [11] in
the sense that if β = δ, there exists θ0 > 0 such that ξα + χγ < µθ0.
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The signal production in the above literature discussed is usually linear. Recently, the system
involving nonlinear signal secretion mechanism has been widely studied. For instance, when f (s) ≤
s(λ−µsθ) and the last two equations of (1.1) were replaced by 0 = ∆w1−αw1+βvk and 0 = ∆w2−γw2+δvl,

respectively, with λ, µ, α, β, θ, γ, δ, k, l > 0, Hong-Tian-Zheng [12] obtained the global well-posedness
of the system in the sense that k < max{l, θ, 2

n }.Moreover, when k = max{l, θ} ≥ 2
n , the same statement

still holds provided that if one of the following assumptions is true: (a) k = l = θ, kn−2
kn (αξ − γχ) < µ;

(b) k = l > θ, αξ − γχ < 0; (c) k = θ > l, kn−2
kn αξ < µ. Zhou-Li-Zhao [13] further obtained the

global boundedness under the corresponding critical cases: (a) k = l = θ, kn−2
kn (αξ − γχ) = µ; (b)

k = l > θ, αξ − γχ = 0, nk(nk − 2) < 4, 0 < k = l ≤ 1 with n ≥ 2; (c) k = θ > l, kn−2
kn αξ = µ.Moreover,

the long-time behavior of solutions was also developed therein. As a further exploration of these, some
more generalized models, such as the attraction-repulsion chemotaxis model involving both production
and consumption (see [14, 15]) and the attraction-repulsion chemotaxis model with nonlinear diffusions
(see [16, 17]), have been considered and many colorful dynamical behaviors can be found therein.

When removing the repulsion mechanism in system (1.1), we get the Keller-Segel [18], which reads vt = ∆v − ξ∇ · (v∇w1) + f (v), x ∈ Ω, t > 0,

τw1t = ∆w1 + g(v,w1), x ∈ Ω, t > 0.
(1.2)

If f (v) = 0 and g(v,w1) satisfies −w1 ≤ g(v,w1) ≤ Kvα − w1 with K, α > 0, then the global solvability
with τ = 1 established by Liu and Tao [19] can be ensured by the condition 0 < α < 2

n . Moreover,
assuming that f (v) = 0 and the second equation has taken the form of 0 = ∆w1 −

1
|Ω|

∫
Ω

vκ + vκ with
κ > 0,Winkler [20] proved that if the number κ > 2

n , then the classical solutions would be unbounded in
finite time in radial setting; otherwise, if κ < 2

n , the solutions remain bounded in Ω × (0,∞). For more
studies on (1.2) and its variants, we refer the reader to [21–24] for more details.

In the attraction-repulsion model and Keller-Segel model mentioned above, the attraction and
repulsion signals are produced by cell itself, directly. In the realistic environment, the secretion of signal
substance may undergo some complicated processes. Attraction or repulsion signals may not come
directly from the cell, but rather be secreted by another signal substance. The phenomenon may be
formulated by the following system: vt = ∆v − ∇ · (v∇w1) + f (v), x ∈ Ω, t > 0,

τw1t = ∆w1 − w1 + w2, τw2t = ∆w2 − w2 + v, x ∈ Ω, t > 0,
(1.3)

where w2 stands for the indirect signal concentration. Suppose that f (s) = ϱ(s − sγ) for all s ≥ 0 with
ϱ, γ > 0. Zhang-Niu-Liu [25] obtained global well-posedness of the system with τ = 1 provided that
γ > n

4 +
1
2 with n ≥ 2. Later on, the similar statement was also discussed on some more generalized

systems involving nonlinear diffusions in [26]. Ren [27] discussed the global generalized solvability
of system (1.3) when the initial data satisfied some appropriate regularity conditions. In addition, the
convergence of generalized solutions was also discussed therein. For system (1.3) with τ = 0, Li and
Li [28] explored the global well-posedness for a quasi-linear system and also explored the limit behavior
of the homogeneous steady state.

The existing studies implied that the indirect signal is typically represented by a linear function of
cell density. It is rare to see that attraction or repulsion mechanisms are both indirect and nonlinear
in a chemotaxis model. Based on the complexity of signal production, including nonlinear indirect
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mechanisms of signals in a chemotaxis model may be more realistic. In [29] we have studied the global
well-posedness for a nonlinear indirect parabolic-parabolic-elliptic system. In addition, more recently,
the authors in [30] further extended this work to study the parabolic-parabolic-elliptic-elliptic system

vt = ∆v − ξ∇ · (v∇w1) + χ∇ · (v∇w2), x ∈ Ω, t > 0,

w1t = ∆w1 − w1 + wκ1 , 0 = ∆w − w + vκ2 , x ∈ Ω, t > 0,

0 = ∆w2 − w2 + vκ3 , x ∈ Ω, t > 0,

(1.4)

where the parameters satisfy ξ, χ, κ1, κ2, κ3 > 0. The authors explored the global existence of classical
solutions in the sense that κ1κ2 < max{2n , κ3} and κ1κ2 = max{2n , κ3} therein. From the point of reality,
considering the proliferation and death of the cell population is natural. Moreover, the existing results
also imply that a chemotaxis model involving logistic damping may have more diverse dynamic
properties. Thus, in this paper, we continue to consider the system (1.4) with logistic term as follows:

vt = ∆v − ξ∇ · (v∇w1) + χ∇ · (v∇w2) + λv − µvκ, x ∈ Ω, t > 0,

w1t = ∆w1 − w1 + wκ1 , 0 = ∆w − w + vκ2 , x ∈ Ω, t > 0,

0 = ∆w2 − w2 + vκ3 , x ∈ Ω, t > 0,

(1.5)

with ∂v
∂ν
= ∂w1
∂ν
= ∂w
∂ν
= ∂w2
∂ν
= 0 on ∂Ω and initial data v(x, 0) = v0(x),w1(x, 0) = w10(x), where Ω is a

bounded smooth domain of Rn(n ≥ 1), ν is the normal vector of ∂Ω, and the parameters are λ, µ, ξ, χ, κ1,
κ2, κ3 > 0, and κ > 1. Our purpose is to obtain the effects of random diffusion, attraction, and repulsion
mechanisms as well as logistic damping on the dynamical behavior of solutions.

The first conclusion of the paper is given below.

Theorem 1.1. Assume that λ, µ, ξ, χ, κ1, κ2, κ3 > 0, and κ > 1. Let v0 ∈ Cϑ(Ω) with 0 < ϑ < 1 and
w10 ∈ W1,∞(Ω) be nonnegative.

(i) If κ1κ2 < max{ 2n , κ3, κ − 1}, then the system (1.5) admits a classical solution (v,w1,w,w2) ∈ (C0(Ω ×
[0,∞))∩C2,1(Ω× (0,∞)))2× (C2,0(Ω× (0,∞)))2 fulfilling ∥v(·, t)∥L∞(Ω)+∥w1(·, t)∥W1,∞(Ω)+∥w(·, t)∥W1,∞(Ω)+

∥w2(·, t)∥W1,∞(Ω) ≤ C, where C > 0 is a constant independent of t.

(ii) Let M0 = max{
∫
Ω

v0, (λµ)
1
κ−1 |Ω|}. When κ1κ2 = max{2n , κ3, κ − 1}, then there exist m1,m2,m3 > 0 such

that if one of the following assumptions is satisfied:

(a) κ1κ2 = 2
n = κ3 = κ − 1 with M0 or ξ small, or χ or µ large satisfying m1ξ < m2M−

2
n

0 + m3χ + µ;

(b) κ1κ2 = 2
n = κ − 1 > κ3 with ξ or M0 small, or µ large satisfying m1ξ ≤ m2M−

2
n

0 + µ;
(c) κ1κ2 = κ3 = κ − 1 > 2

n with χ or µ large, or ξ small satisfying m1ξ < m3χ + µ;

(d) κ1κ2 = 2
n = κ3 > κ − 1 with ξ or M0 small, or χ large satisfying m1ξ < m2M−

2
n

0 + m3χ;
(e) κ1κ2 = κ3 > max{ 2n , κ − 1} with ξ small, or χ large satisfying m1ξ < m3χ;
(f) κ1κ2 = κ − 1 > max{2n , κ3} with ξ small, or µ large satisfying m1ξ ≤ µ;

(g) κ1κ2 = 2
n > max{κ3, κ − 1} with ξ or M0 small satisfying m1ξ ≤ m2M−

2
n

0 ,

then the system (1.5) possesses a classical solution (v,w1,w,w2) ∈ (C0(Ω× [0,∞))∩C2,1(Ω× (0,∞)))2×

(C2,0(Ω× (0,∞)))2 satisfying ∥v(·, t)∥L∞(Ω)+ ∥w1(·, t)∥W1,∞(Ω)+ ∥w(·, t)∥W1,∞(Ω)+ ∥w2(·, t)∥W1,∞(Ω) ≤ C, where
C > 0 is a constant independent of t.
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The results in Theorem 1.1 (i) show that apart from attraction mechanism, the remaining terms
including random diffusion and repulsion mechanism as well as logistic source are beneficial to the
global boundedness. Theorem 1.1 (ii) tells us that under the balance case with κ1κ2 = max{ 2n , κ3, κ − 1},
the global boundedness can be controlled by the sizes of the initial data v0 and the coefficients ξ, χ, µ.
Compared to the boundedness results established in [12,31], since we consider the nonlinear and indirect
attraction-signal mechanism in this paper, the boundedness results here seem to be more generalized.
Compared to [30], due to considering the logistic source, the boundedness results achieved here are
more complicated. It should be pointed out that since nonlinear indirect mechanisms involve parabolic
equations in system (1.5), we cannot get the explicit coefficient relationships as in [12], but it also
indirectly reflects the importance of coefficients in system (1.5). Moreover, compared to the previous
studies in [2, 4], our boundedness results remove the restriction on spatial dimension.

In the following, we study the long-time behavior to a specific form of chemotaxis system (1.5)
(namely, κ = δ + 1, κ1 = 1, and κ2 = κ3 = δ with δ > 0)

vt = ∆v − ξ∇ · (v∇w1) + χ∇ · (v∇w2) + v(λ − µvδ), x ∈ Ω, t > 0,

w1t = ∆w1 − w1 + w, 0 = ∆w − w + vδ, x ∈ Ω, t > 0,

0 = ∆w2 − w2 + vδ, x ∈ Ω, t > 0.

(1.6)

It is not difficult to check that if δ ≥ 2
n and the coefficients and initial data v0 satisfy conditions as in

Theorem 1.1 (ii) (a) or (c), then the system (1.6) is globally well-posed. In order to better state the
convergence results to system (1.6), we make the following assumption:

0 < v(x, t) ≤ R, (x, t) ∈ Ω × [0,∞), (1.7)

where R > 0 is independent of parameters of (1.6).
Thus, the second result is stated as follows.

Theorem 1.2. Let Ω be a bounded smooth domain of Rn(n ≥ 1) and the parameters satisfy λ, µ, ξ, χ, δ >
0. Assume that v0 ∈ Cϑ(Ω) with 0 < ϑ < 1 and w10 ∈ W1,∞(Ω) are nonnegative. If δ ≥ 2

n and µ > 0 with
µ >

√(χ2

8 +
ξ2

2

)
λ, δ ∈ (0, 1],

µ >
(δ−1)Rδ

2 (ξ2+ χ
2
4 )+

√
(δ−1)2R2δ

4 (ξ2+ χ
2
4 )2+2λ(ξ2+ χ

2
4 )

2 , δ ∈ (1,∞),

such that

δ1 = min
{
µ −

(χ2

8
+
ξ2

2
)λ
µ
,

3N1

4

}
> 0

and

δ2 = min
{
µ − N2 −

(λχ2

8µ
+
χ2(δ − 1)Rδ

8
)
,

3N2

4

}
> 0,

with η = (λ
µ
)

1
δ ,N1 =

ηξ2

2 ,N2 =
ξ2

2

[
λ
µ
+ (δ − 1)Rδ

]
, and R > 0 defined in (1.7), then there exist C > 0

sufficiently large and T > 0 such that

∥v(·, t) − η∥L∞(Ω) +∥w1(·, t) − ηκ∥L∞(Ω) + ∥w(·, t) − ηκ∥L∞(Ω)

+∥w2(·, t) − ηκ∥L∞(Ω) ≤

 Ce−µ1t, δ ∈ (0, 1],

Ce−µ2t, δ ∈ (1,∞),

(1.8)

Communications in Analysis and Mechanics Volume 16, Issue 4, 813–835.



818

for all t ≥ T, where

µ1 =
δ1

(n + 2) max
{

1
δηδ
, N1

2

} (1.9)

and

µ2 =
δ2

(n + 2) max{ 1
ηδ
, N2

2 }
. (1.10)

In Theorem 1.2, we have extended the convergence results established in [32, Theorem 3.3] and [13,
Theorem 1.2]. In fact, compared to [32], our model is more generalized and we have to modify the
methods developed in [32] to overcome the difficulties generated by dealing with the nonlinear indirect
mechanism (please see the proof in Lemma 4.2). Compared to [13, Theorem 1.2], we have obtained a
relatively accurate convergence rate, which can be formally expressed by the parameters of the system.

The remaining parts of this paper are carried out as follows. In Sect. 2, we first establish a
result involving the local solvability and then give some basic properties. In Sect. 3, we first prove
Lp−boundedness for v and then obtain L∞−boundedness of v by the method of Moser iteration. In Sect.
4, we study a special case of the system (1.5) and analyze the convergence of the corresponding classical
solutions.

2. Preliminaries

This section is dedicated to a series of preparatory work. To this end, some basic properties on
solutions are necessary and the related proofs can be referred to corresponding references.

Lemma 2.1. Assume that the conditions in Theorem 1.1 hold. Then, for any nonnegative v0 ∈ Cϑ(Ω)
with 0 < ϑ < 1 and w10 ∈ W1,∞(Ω), there exist Tmax ∈ (0,∞] and nonnegative functions (v,w1,w,w2)
satisfying

(v,w1,w,w2) ∈ (C0(Ω × [0,Tmax)) ∩C2,1(Ω × (0,Tmax)))2 × (C2,0(Ω × (0,Tmax)))2,

which solve the system (1.5) classically in Ω × (0,Tmax). Furthermore, if Tmax < ∞, we have

lim sup
t↗Tmax

∥v(·, t)∥L∞(Ω) = ∞. (2.1)

Proof. The proof is quite standard in the framework of the fixed point argument. The reader can refer
to [33, 34] for more details.

Lemma 2.2. (cf. [12, Lemma 2.2]) For any ηi > 0, τi > 1 with i = 1, 2, the following properties of
solutions hold:∫

Ω

wτ12 ≤ η1

∫
Ω

vκ3τ1 + c0 and
∫
Ω

wτ2 ≤ η2

∫
Ω

vκ2τ2 + c1 for all t ∈ (0,Tmax), (2.2)

where κ2, κ3 > 0 is given in system (1.5), and c0, c1 > 0 depend only on κ3, η1, τ1 and κ2, η2, τ2,

respectively. Additionally, there holds∫
Ω

v ≤ max
{ ∫
Ω

v0,

(
λ

µ

) 1
κ−1

|Ω|

}
=: M0 t ∈ (0,Tmax). (2.3)
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Lemma 2.3. (cf. [35, Lemma 2.5]) For κ1 > 0, assume that w1 fulfills
w1t = ∆w1 + wκ1 − w1, x ∈ Ω, t > 0,
∂w1
∂ν
= 0, x ∈ ∂Ω, t > 0,

w1(x, 0) = w10(x), x ∈ Ω.

(2.4)

Then, for all w10 ∈ W2,r(Ω) with ∂w10
∂ν
|∂Ω = 0 and w ∈ Lr((0,T ); Lr(Ω)) with r ∈ (1,∞), the equation (2.4)

admits a unique solution satisfying

w1 ∈ W1,r((0,T ); Lr(Ω)) ∩ Lr((0,T ); W2,r(Ω)). (2.5)

Furthermore, we can find Cr > 0 and s0 ∈ [0,T ) with T ∈ (0,∞] such that if w1(·, s0) ∈ W2,r(Ω) with
∂w1(·,s0)
∂ν
|∂Ω = 0, there holds∫ T

s0

∫
Ω

ers|∆w1|
r ≤ Cr

∫ T

s0

∫
Ω

erswrκ1 +Crers0(∥w1(·, s0)∥rLr(Ω) + ∥∆w1(·, s0)∥rLr(Ω)). (2.6)

3. Global existence and uniform boundedness

In this section, we shall illustrate the L∞−boundedness of v by employing the maximum Sobolev
regularity argument and the Moser iteration. For this purpose, we give some local properties of solutions.
Let s0 ∈ (0,Tmax) with s0 < 1. Due to Lemma 2.1, we know that v(·, s0),w1(·, s0) ∈ C2(Ω) with
∂w1(·,s0)
∂ν

∣∣∣
∂Ω
=
∂v(·,s0)
∂ν

∣∣∣
∂Ω
= 0. Hence, we can find M1 > 0 such that sup0≤s≤s0

∥v(·, s)∥L∞(Ω) ≤ M1, sup0≤s≤s0
∥w1(·, s)∥L∞(Ω) ≤ M1,

∥∆w1(·, s0)∥L∞(Ω) ≤ M1.
(3.1)

Lemma 3.1. Let Ω be a bounded smooth domain of Rn(n ≥ 1) and the parameters fulfill
λ, µ, ξ, χ, κ1, κ2, κ3 > 0, κ > 1. Assume that the conditions in Theorem 1.1 hold. Then, for any
p > max{1, κ2 − κ1κ2}, there exists C > 0 such that∫

Ω

vp ≤ C, t ∈ (0,Tmax). (3.2)

Proof. Multiplying vp−1 on both sides of (1.5) for any p > 1, we infer that

1
p

d
dt

∫
Ω

vp = −
4(p − 1)

p2

∫
Ω

|∇v
p
2 |2 + ξ(p − 1)

∫
Ω

vp−1∇v · ∇w1

− χ(p − 1)
∫
Ω

vp−1∇v · ∇w2 + λ

∫
Ω

vp − µ

∫
Ω

vp+κ−1 (3.3)

for all t ∈ (0,Tmax). For some c2 > 0, in light of the Gagliardo-Nirenberg inequality, we conclude∫
Ω

vp+ 2
n = ∥v

p
2 ∥

2(p+ 2
n )

p

L
2(p+ 2

n )
p (Ω)

≤ c2∥∇v
p
2 ∥

2(p+ 2
n )

p ·θ

L2(Ω) ∥v
p
2 ∥

2(p+ 2
n )

p ·(1−θ)

L
2
p (Ω)

+ c2∥v
p
2 ∥

2(p+ 2
n )

p

L
2
p (Ω)

(3.4)
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for all t ∈ (0,Tmax), where θ =
p
2−

p

2(p+ 2
n )

p
2+

1
n−

1
2
∈ (0, 1). Clearly, we see that p+ 2

n
p · θ = 1. Thus, we infer from

(2.3) that ∫
Ω

vp+ 2
n ≤ c2M

2
n
0 ∥∇v

p
2 ∥2L2(Ω) + c2Mp+ 2

n
0 , t ∈ (0,Tmax). (3.5)

A simple calculation can yield

ξ(p − 1)
∫
Ω

vp−1∇v · ∇w1 ≤
ξ(p − 1)

p

∫
Ω

vp|∆w1|, t ∈ (0,Tmax). (3.6)

Similarly, for the equation of w2 in system (1.5), we know

−χ(p − 1)
∫
Ω

vp−1∇v · ∇w2 =
χ(p − 1)

p

∫
Ω

vpw2 −
χ(p − 1)

p

∫
Ω

vp+κ3 , t ∈ (0,Tmax). (3.7)

For any ε1 > 0, it is not difficult to deduce from Young’s inequality that

ξ(p − 1)
p

∫
Ω

vp|∆w1| ≤ ε1

∫
Ω

vp+κ1κ2 + ε
−

p
κ1κ2

1 ·

(
ξ(p − 1)

p

) p+κ1κ2
κ1κ2

∫
Ω

|∆w1|
p+κ1κ2
κ1κ2 , t ∈ (0,Tmax). (3.8)

For any ε2 > 0, we conclude that by invoking Young’s inequality again,

χ(p − 1)
p

∫
Ω

vpw2 ≤
ε2

2

∫
Ω

vp+κ3 +

(
ε2

2

)− p
κ3

(
χ(p − 1)

p

) p+κ3
κ3

∫
Ω

w
p+κ3
κ3

2 , t ∈ (0,Tmax). (3.9)

Recalling Lemma 2.2, there holds

(
ε2

2

)− p
κ3

(
χ(p − 1)

p

) p+κ3
κ3

∫
Ω

w
p+κ3
κ3

2 ≤
ε2

2

∫
Ω

vp+κ3 + c0, t ∈ (0,Tmax), (3.10)

where η1 =
(
ε2
2

)1+ p
κ3

(
χ(p−1)

p

)− p+κ3
κ3 . Collecting (3.3) and (3.5)–(3.10), one may get

1
p

d
dt

∫
Ω

vp ≤ −
4(p − 1)

p2c2M
2
n
0

∫
Ω

vp+ 2
n + ε1

∫
Ω

vp+κ1κ2 + ε
−

p
κ1κ2

1 ·

(
ξ(p − 1)

p

) p+κ1κ2
κ1κ2

∫
Ω

|∆w1|
p+κ1κ2
κ1κ2

+

(
ε2 −

χ(p − 1)
p

) ∫
Ω

vp+κ3 + λ

∫
Ω

vp − µ

∫
Ω

vp+κ−1 + c3, t ∈ (0,Tmax), (3.11)

where c3 = c0

(
ε2
2

)− p
κ3

(
χ(p−1)

p

) p+κ3
κ3 +

4(p−1)
p2 Mp

0 .We first add p+κ1κ2
pκ1κ2

∫
Ω

vp and then multiply e
p+κ1κ2
κ1κ2

t on the
both sides of (3.11) to derive

d
dt

[
e

p+κ1κ2
κ1κ2

t 1
p

∫
Ω

vp
]
≤ −

4(p − 1)

p2c2M
2
n
0

· e
p+κ1κ2
κ1κ2

t
∫
Ω

vp+ 2
n + ε1 · e

p+κ1κ2
κ1κ2

t
∫
Ω

vp+κ1κ2

+ ε
−

p
κ1κ2

1 ·

(
ξ(p − 1)

p

) p+κ1κ2
κ1κ2
· e

p+κ1κ2
κ1κ2

t
∫
Ω

|∆w1|
p+κ1κ2
κ1κ2
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+

(
ε2 −

χ(p − 1)
p

)
· e

p+κ1κ2
κ1κ2

t
∫
Ω

vp+κ3 − µ · e
p+κ1κ2
κ1κ2

t
∫
Ω

vp+κ−1

+

(
λ +

p + κ1κ2
pκ1κ2

)
· e

p+κ1κ2
κ1κ2

t
∫
Ω

vp + c3 · e
p+κ1κ2
κ1κ2

t
, t ∈ (0,Tmax). (3.12)

Integrating (3.12) from s0 to t, we infer that

1
p

∫
Ω

vp ≤ −
4(p − 1)

p2c2M
2
n
0

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+ 2
n + ε1

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ1κ2

+ ε
−

p
κ1κ2

1 ·

(
ξ(p − 1)

p

) p+κ1κ2
κ1κ2

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

|∆w1|
p+κ1κ2
κ1κ2

+

(
ε2 −

χ(p − 1)
p

) ∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ3 − µ

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ−1

+

(
λ +

p + κ1κ2
pκ1κ2

) ∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp + c4, t ∈ (s0,Tmax), (3.13)

where c4 =
c3κ1κ2
p+κ1κ2

+ 1
p

∫
Ω

vp(·, s0). Setting r = p+κ1κ2
κ1κ2
> 1 in Lemma 2.3, one may get from (2.6) that∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

|∆w1|
p+κ1κ2
κ1κ2 ≤Cr

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

w
p+κ1κ2
κ2

+Cre
−

p+κ1κ2
κ1κ2

(t−s0)
∥w1(·, s0)∥

p+κ1κ2
κ1κ2

W
2,

p+κ1κ2
κ1κ2

, t ∈ (s0,Tmax). (3.14)

Based on Lemma 2.2 with τ2 =
p+κ1κ2
κ2
> 1, we derive that∫

Ω

w
p+κ1κ2
κ2 ≤ η2

∫
Ω

vp+κ1κ2 + c1, t ∈ (s0,Tmax). (3.15)

Substituting (3.14) and (3.15) into (3.13), we see

1
p

∫
Ω

vp ≤ −
4(p − 1)

p2c2M
2
n
0

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+ 2
n + f (ε1)

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ1κ2

+

(
λ +

p + κ1κ2
pκ1κ2

) ∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp +

(
ε2 −

χ(p − 1)
p

) ∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ3

− µ

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ−1 + c5, t ∈ (s0,Tmax), (3.16)

where

f (ε1) = ε1 +Crη2

(
ξ(p − 1)

p

) p+κ1κ2
κ1κ2
ε
−

p
κ1κ2

1

and

c5 = c1Cr

(
ξ(p − 1)

p

) p+κ1κ2
κ1κ2
· ε
−

p
κ1κ2

1 ·
κ1κ2

p + κ1κ2
+Cr

(
ξ(p − 1)

p

) p+κ1κ2
κ1κ2
· ε
−

p
κ1κ2

1 ∥w1(·, s0)∥
p+κ1κ2
κ1κ2

W
2,

p+κ1κ2
κ1κ2

+ c4.
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It is not hard to see that f (ε1) gets the minimum value at ε1 =

(
Crη2 p
κ1κ2

) κ1κ2
p+κ1κ2
·
ξ(p−1)

p , namely,

inf
ε1>0

f (ε1) =
(Crη2 p
κ1κ2

) κ1κ2
p+κ1κ2
·
ξ(p + κ1κ2)(p − 1)

p2 = m1ξ, (3.17)

where m1 =
(Crη2 p
κ1κ2

) κ1κ2
p+κ1κ2 ·

(p+κ1κ2)(p−1)
p2 . Hence, letting ε1 =

(Crη2 p
κ1κ2

) κ1κ2
p+κ1κ2 ·

ξ(p−1)
p in (3.16), one can arrive at

1
p

∫
Ω

vp ≤ −
4(p − 1)

p2c2M
2
n
0

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+ 2
n + m1ξ

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ1κ2

+

(
λ +

p + κ1κ2
pκ1κ2

) ∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp +

(
ε2 −

χ(p − 1)
p

) ∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ3

− µ

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ−1 + c5, t ∈ (s0,Tmax). (3.18)

In the following, the proof of inequality (3.2) is divided into two different cases.
Case (i) κ1κ2 < max{2n , κ3, κ − 1}.
Let κ1κ2 < κ3. From Young’s inequality, there holds

m1ξ

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ1κ2 ≤
χ(p − 1)

2p

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ3 + c6, t ∈ (s0,Tmax), (3.19)

where c6 > 0. Setting ε2 =
χ(p−1)

2p in (3.18), one may obtain

1
p

∫
Ω

vp ≤

(
λ +

p + κ1κ2
pκ1κ2

) ∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp − µ

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ−1 + c7 (3.20)

for all t ∈ (s0,Tmax) and c7 = c5 + c6 > 0. Combining Young’s inequality and (3.1), for κ > 1, (3.2) can
be inferred.

Let κ1κ2 < 2
n . Invoking Young’s inequality, we can find c8 > 0 such that

m1ξ

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ1κ2 ≤
4(p − 1)

p2c2M
2
n
0

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+ 2
n + c8, t ∈ (s0,Tmax). (3.21)

Combining (3.21) and (3.18), and setting ε2 =
χ(p−1)

p in (3.18), we see

1
p

∫
Ω

vp ≤

(
λ +

p + κ1κ2
pκ1κ2

) ∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp − µ

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ−1 + c9, (3.22)

where c9 = c5 + c8 > 0. Due to (3.1), we can infer (3.2) from Young’s inequality.
Let κ1κ2 < κ − 1. Invoking Young’s inequality, one may deduce

m1ξ

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ1κ2 ≤
µ

2

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ−1 + c10 (3.23)
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for all t ∈ (s0,Tmax) and c10 > 0. Collecting (3.18) and (3.23), and setting ε2 =
χ(p−1)

p in (3.18), we get

1
p

∫
Ω

vp ≤

(
λ +

p + κ1κ2
pκ1κ2

) ∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp −
b
2

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ−1 + c11 (3.24)

for all t ∈ (s0,Tmax), c11 = c5 + c10 > 0, κ > 1. Thus, by applying Young’s inequality and (3.1), it is not
hard to obtain (3.2).

Case (ii) κ1κ2 = max{ 2n , κ3, κ − 1}.
Set m2 =

4(p−1)
p2c2

and m3 =
p−1

p . Thus, we rewrite the inequality (3.18) as

1
p

∫
Ω

vp ≤ − m2M−
2
n

0

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+ 2
n + m1ξ

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ1κ2

+

(
λ +

p + κ1κ2
pκ1κ2

) ∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp + (ε2 − m3χ)
∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ3

− µ

∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ−1 + c5, t ∈ (s0,Tmax). (3.25)

(a) Let κ1κ2 = 2
n = κ3 = κ − 1. Then, the inequality (3.25) turns into

1
p

∫
Ω

vp ≤
(
− m2M−

2
n

0 − m3χ + m1ξ + ε2 − µ
) ∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ3

+

(
λ +

p + κ1κ2
pκ1κ2

) ∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp + c5, t ∈ (s0,Tmax). (3.26)

If m1ξ < m2M−
2
n

0 +m3χ+µ,we may take ε2 > 0 sufficiently small such that −m2M−
2
n

0 −m3χ+m1ξ+ε2−µ <

0. Thus, applying Young’s inequality to (3.26), one can obtain the desired result (3.2).
(b) Let κ1κ2 = 2

n = κ − 1 > κ3. Setting ε2 =
m3χ

2 in (3.25), we can get

1
p

∫
Ω

vp ≤ (−m2M−
2
n

0 + m1ξ − µ)
∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+ 2
n + c12, t ∈ (s0,Tmax), (3.27)

with c12 > 0. Thus, if m1ξ ≤ m2M−
2
n

0 + µ, we can obtain (3.2), directly.
(c) Let κ1κ2 = κ3 = κ − 1 > 2

n . Thanks to Young’s inequality, we conclude from (3.25) that

1
p

∫
Ω

vp ≤ (ε2 − m3χ + m1ξ − µ)
∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ3 + c13, t ∈ (s0,Tmax), (3.28)

with c13 > 0. If m1ξ < m3χ + µ, we may choose ε2 small enough such that ε2 − m3χ + m1ξ − µ < 0.
Thus, the result (3.2) is concluded.

(d) Let κ1κ2 = κ3 = 2
n > κ − 1. The Young inequality enables us to deduce from (3.25) that

1
p

∫
Ω

vp ≤ (−m2M−
2
n

0 + m1ξ + ε2 − m3χ)
∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ3 + c14, t ∈ (s0,Tmax), (3.29)
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with c14 > 0. If m1ξ < m2M−
2
n

0 +m3χ,we may take ε2 small enough such that −m2M−
2
n

0 +m1ξ+ε2−m3χ <

0. Hence, we can deduce the desired result (3.2).
(e) Let κ1κ2 = κ3 > max{ 2n , κ − 1}. Using the same method, it can be deduced from (3.25) that

1
p

∫
Ω

vp ≤ (m1ξ + ε2 − m3χ)
∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ3 + c15, t ∈ (s0,Tmax), (3.30)

where c15 > 0. If m1ξ < m3χ, we may choose ε2 small enough such that m1ξ + ε2 − m3χ < 0. Thus, it is
not difficult to obtain (3.2) from (3.30).

(f) Let κ1κ2 = κ − 1 > max{ 2n , κ3}. Taking ε2 = m3χ in (3.25), we see that

1
p

∫
Ω

vp ≤ (m1ξ − µ)
∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+κ−1 + c16, t ∈ (s0,Tmax), (3.31)

with some c16 > 0. If m1ξ ≤ µ, we can obtain (3.2).
(g) Let κ1κ2 = 2

n > max{κ3, κ − 1}. Setting ε2 = m3χ in (3.25), we can derive that

1
p

∫
Ω

vp ≤ (−m2M−
2
n

0 + m1ξ)
∫ t

s0

e−
p+κ1κ2
κ1κ2

(t−s)
∫
Ω

vp+ 2
n + c17, t ∈ (s0,Tmax), (3.32)

with some c17 > 0. If m1ξ ≤ m2M−
2
n

0 , we can conclude that 1
p

∫
Ω

vp ≤ c17. Thus, combining with (3.1),
we can get the desired result (3.2).

Now, we are in a position to prove Theorem 1.1.
The proof of Theorem 1.1 Let the parameters fulfill λ, µ, ξ, χ, κ1, κ2, κ3 > 0, and κ > 1. For any

p > max{1, nκ2, nκ3, κ2 − κ1κ2}, using Lemma 3.1 and the elliptic Lp−estimate, it can be concluded
form the equations of w and w2 in system (1.5) that ∥w(·, t)∥

W
2, p
κ2 (Ω)

≤ c18 and ∥w2(·, t)∥
W

2, p
κ3 (Ω)

≤ c19

for all t ∈ (0,Tmax), with some c18, c19 > 0. Invoking the Sobolev imbedding argument, it is sufficient
to find c20 > 0 such that ∥w(·, t)∥W1,∞(Ω), ∥w2(·, t)∥W1,∞(Ω) ≤ c20 for all t ∈ (0,Tmax).With an application
of the parabolic regularity, it is not difficult to deduce from the second equation in system (1.5) that
∥w1(·, t)∥W1,∞(Ω) ≤ c21 for all t ∈ (0,Tmax), with c21 > 0. By applying Moser iteration [22] and recalling
Lemma 3.1, we can find c22 > 0 such that

∥v(·, t)∥L∞ ≤ c22, t ∈ (0,Tmax).

Hence, we can obtain Tmax = ∞ from Lemma 2.1. Thus, the proof of the Theorem 1.1 is finished.

4. Global asymptotic stability for a special model of system (1.5)

For this part, we are going to study the global convergence of solutions to the following system:

vt = ∆v − ξ∇ · (v∇w1) + χ∇ · (v∇w2) + v(λ − µvδ), x ∈ Ω, t > 0,

w1t = ∆w1 − w1 + w, 0 = ∆w − w + vδ, x ∈ Ω, t > 0,

0 = ∆w2 − w2 + vδ, x ∈ Ω, t > 0,
∂v
∂ν
= ∂w1
∂ν
= ∂w
∂ν
= ∂w2
∂ν
= 0, x ∈ ∂Ω, t > 0,

v(x, 0) = v0(x),w1(x, 0) = w10(x), x ∈ Ω, t > 0.

(4.1)
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The system (4.1) can be seen as a special case of system (1.5) with κ = δ + 1, κ1 = 1, κ2 = κ3 = δ for
δ > 0. If δ ≥ 2

n and the coefficients and initial data v0 satisfy the conditions in Theorem 1.1 (ii) (a) or (c),
then the system (4.1) possesses a global classical solution. In addition, the solution is bounded, namely,
we can find a constant R > 0 satisfying

0 < v(x, t) ≤ R, (x, t) ∈ Ω × [0,∞), (4.2)

where R is independent of the parameters of the system (4.1).
We recall an important lemma established in [36].

Lemma 4.1. (cf. [36, Lemma 3.1]) Let f (t) ≥ 0 be a uniformly continuous function satisfying∫ ∞
t0

f (t)dt < ∞ with some t0 > 0. Thus, we infer that

f (t)→ 0 as t → ∞. (4.3)

To develop the long-time behavior of solutions, the following L2−convergence of solutions seems to
be necessary.

Lemma 4.2. Let λ, µ, ξ, χ, δ > 0. If δ ≥ 2
n and the coefficients and initial value v0 satisfy conditions as

in Theorem 1.1 (ii) (a) or (c), then there holds∫
Ω

(v − η)2 +

∫
Ω

(w1 − η
δ)2 +

∫
Ω

(w − cδ)2 +

∫
Ω

(w2 − η
δ)2 → 0 as t → ∞, with η = (

λ

µ
)

1
δ . (4.4)

Proof. Letting δ ∈ (0, 1], we establish the energy functional as below

A(t) =
∫
Ω

v − η − η ln(
v
η

) +
N1

2
(w1 − η

δ)2, η = (
λ

µ
)

1
δ , N1 =

ξ2η

2
, t ≥ 0. (4.5)

In fact, (v,w1) = (η, ηκ) is a global minimum value point of A(t). We thus infer that A(t) ≥ 0 for all
t ≥ 0.We take derivative to deduce

d
dt

A(t) =
∫
Ω

v − η
v

vt + N1

∫
Ω

(w1 − η
κ)w1t

=

∫
Ω

v − η
v

[
∆v − ξ∇ · (v∇w1) + χ∇ · (v∇w2) + v(λ − µvδ)

]
+ N1

∫
Ω

(w1 − η
δ)(∆w1 − w1 + w)

= − η

∫
Ω

|∇v|2

v2 + ηξ

∫
Ω

∇v · ∇w1

v
− ηχ

∫
Ω

∇v · ∇w2

v
− µ

∫
Ω

(v − η)(vδ − ηδ)

− N1

∫
Ω

|∇w1|
2 − N1

∫
Ω

(w1 − η
δ)2 + N1

∫
Ω

(w1 − η
δ)(w − ηδ)

≤
ηχ2

2

∫
Ω

|∇w2|
2 − µ

∫
Ω

(v − η)(vδ − ηδ) −
3N1

4

∫
Ω

(w1 − η
δ)2 + N1

∫
Ω

(w − ηδ)2. (4.6)

Testing the equation of w in (4.1) with w − ηδ, we get∫
Ω

|∇w|2 = −
∫
Ω

(w − ηδ)2 +

∫
Ω

(w − ηδ)(vδ − ηδ). (4.7)
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By direct calculation, it can be concluded that

2N1

∫
Ω

|∇w|2 ≤ −N1

∫
Ω

(w − ηδ)2 + N1

∫
Ω

(vδ − ηδ)2. (4.8)

Combining (4.8) and (4.6), there holds

d
dt

A(t) ≤
ηχ2

2

∫
Ω

|∇w2|
2 − µ

∫
Ω

(v − η)(vδ − ηδ) −
3N1

4

∫
Ω

(w1 − η
δ)2 + N1

∫
Ω

(vδ − ηδ)2. (4.9)

Testing the equation of w2 in (4.1) with w2 − η
δ, one may deduce∫

Ω

|∇w2|
2 = −

∫
Ω

(w2 − η
δ)2 +

∫
Ω

(w2 − η
δ)(vδ − ηδ). (4.10)

Substituting (4.10) into (4.9), we can infer that

d
dt

A(t) ≤ −
ηχ2

2

∫
Ω

(w2 − η
δ)2 +

ηχ2

2

∫
Ω

(w2 − η
δ)(vδ − ηδ) − µ

∫
Ω

(v − η)(vδ − ηδ)

−
3N1

4

∫
Ω

(w1 − η
δ)2 + N1

∫
Ω

(vδ − ηδ)2

≤
(ηχ2

8
+ N1

) ∫
Ω

(vδ − ηδ)2 − µ

∫
Ω

(v − η)(vδ − ηδ) −
3N1

4

∫
Ω

(w1 − η
δ)2. (4.11)

Since δ ∈ (0, 1], we thus deduce that

(vδ − ηδ)2 ≤ ηδ−1(v − η)(vδ − ηδ). (4.12)

Thus, from (4.12), we can rewrite (4.11) as

d
dt

A(t) ≤ −
[
µ −

(ηχ2

8
+ N1

)
ηδ−1

] ∫
Ω

(v − η)(vδ − ηδ) −
3N1

4

∫
Ω

(w1 − η
δ)2

= −

[
µ −

(χ2

8
+
ξ2

2
)λ
µ

] ∫
Ω

(v − η)(vδ − ηδ) −
3N1

4

∫
Ω

(w1 − η
δ)2

= −δ1

[ ∫
Ω

(v − η)(vδ − ηδ) +
∫
Ω

(w1 − η
δ)2

]
, (4.13)

where δ1 = min
{
µ −

(χ2

8 +
ξ2

2

)λ
µ
, 3N1

4

}
and N1 =

ηξ2

2 is defined in (4.5). For any t0 ≥ 0, we can get by
integrating (4.13) from t0 to t that

A(t) − A(t0) ≤ −δ1

[ ∫ t

t0

∫
Ω

(v − η)(vδ − ηδ) +
∫ t

t0

∫
Ω

(w1 − η
δ)2

]
. (4.14)

The nonnegativity of δ1 can be guaranteed by µ >
√(χ2

8 +
ξ2

2

)
λ. Since A(t) ≥ 0, we thus have∫ t

t0

∫
Ω

(v − η)(vδ − ηδ) +
∫ t

t0

∫
Ω

(w1 − η
δ)2 ≤

A(t0)
δ1
< ∞. (4.15)
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Owing to Theorem 1.1, it is not difficult to obtain the boundedness of the solution (v,w1,w,w2). Due to
the parabolic regularity argument [34], we can find ϵ ∈ (0, 1) and C > 0 such that

∥(v,w1,w,w2)∥C2+ϵ,1+ ϵ2 (Ω×[t,t+1]) ≤ C, t ≥ 0. (4.16)

Thanks to (4.16), the uniform continuity and global boundedness of
∫
Ω

(v − η)(vδ − ηδ) +
∫
Ω

(w1 − η
δ)2

are obvious. Recalling Lemma 4.1, thus there holds∫
Ω

(v − η)(vδ − ηδ) +
∫
Ω

(w1 − η
δ)2 → 0 as t → ∞. (4.17)

Using (4.12) again, we have

1
ηδ−1

∫
Ω

(vδ − ηδ)2 ≤

∫
Ω

(v − η)(vδ − ηδ)→ 0 as t → ∞. (4.18)

From (4.7) and (4.10), we invoke Young’s inequality to deduce that∫
Ω

|∇w|2 ≤ −
1
2

∫
Ω

(w − ηδ)2 +
1
2

∫
Ω

(vδ − ηδ)2 (4.19)

and ∫
Ω

|∇w2|
2 ≤ −

1
2

∫
Ω

(w2 − η
δ)2 +

1
2

∫
Ω

(vδ − ηδ)2. (4.20)

So, in light of (4.18), we conclude from (4.19) and (4.20) that∫
Ω

(w − ηδ)2 ≤

∫
Ω

(vδ − ηδ)2 → 0 as t → ∞ (4.21)

and ∫
Ω

(w2 − η
δ)2 ≤

∫
Ω

(vδ − ηδ)2 → 0 as t → ∞. (4.22)

Define h(s) = s
1
δ . By means of the mean value theorem and (4.2), we find

v − η = h(vδ) − h(ηδ) =
1
δ
ζ

1−δ
δ (vδ − ηδ), (4.23)

with ζ between Rδ and ηδ. Therefore,∫
Ω

(v − η)2 ≤
1
δ2 R2(1−δ)

∫
Ω

(vδ − ηδ)2 → 0 as t → ∞. (4.24)

Thus, we can get (4.4) for δ ∈ (0, 1] by collecting (4.17), (4.21), (4.22), and (4.24).
For the case δ ∈ (1,∞), we redefine the energy functional W(t) as follows:

W(t) =
1
δ

∫
Ω

[
vδ −
λ

µ
−
λ

µ
ln(
µvδ

λ
)
]
+

N2

2

∫
Ω

(w1 −
λ

µ
)2, t ≥ 0, (4.25)
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where N2 =
ξ2

2

[
λ
µ
+ (δ − 1)Rδ

]
. From the integrand of W(t), it is not difficult to see that W(t) ≥ 0 for all

t ≥ 0. In light of (4.2), we conclude from Young’s inequality that

d
dt

W(t) =
∫
Ω

vδ − λ
µ

v
vt + N2

∫
Ω

(w1 −
λ

µ
)w1t

= − (δ − 1)
∫
Ω

vδ−2|∇v|2 −
λ

µ

∫
Ω

|∇v|2

v2 + ξ(δ − 1)
∫
Ω

vδ−1∇v · ∇w1

+
λ

µ
ξ

∫
Ω

∇v · ∇w1

v
− χ(δ − 1)

∫
Ω

vδ−1∇v · ∇w2 −
λ

µ
χ

∫
Ω

∇v · ∇w2

v

− µ

∫
Ω

(vδ −
λ

µ
)2 − N2

∫
Ω

|∇w1|
2 − N2

∫
Ω

(w1 −
λ

µ
)2 + N2

∫
Ω

(w1 −
λ

µ
)(w −

λ

µ
)

≤
λξ2

2µ

∫
Ω

|∇w1|
2 +
λχ2

2µ

∫
Ω

|∇w2|
2 − (δ − 1)

∫
Ω

vδ−2|∇v|2 + ξ(δ − 1)
∫
Ω

vδ−1∇v · ∇w1

− χ(δ − 1)
∫
Ω

vδ−1∇v · ∇w2 − µ

∫
Ω

(vκ −
λ

µ
)2 − N2

∫
Ω

|∇w1|
2 −

3N2

4

∫
Ω

(w1 −
λ

µ
)2

+ N2

∫
Ω

(w −
λ

µ
)2, t ≥ 0, (4.26)

where N2 =
ξ2

2

[
λ
µ
+ (δ − 1)Rδ

]
. Thus, there holds

d
dt

W(t) ≤
λχ2

2µ

∫
Ω

|∇w2|
2 −
δ − 1

2

∫
Ω

[
v
δ
2−1∇v − ξv

δ
2∇w1

]2
−
δ − 1

2

∫
Ω

[
v
δ
2−1∇v + χv

δ
2∇w2

]2

+
χ2(δ − 1)Rδ

2

∫
Ω

|∇w2|
2 − µ

∫
Ω

(vδ −
λ

µ
)2 −

3N2

4

∫
Ω

(w1 −
λ

µ
)2 + N2

∫
Ω

(w −
λ

µ
)2

≤

(
λχ2

2µ
+
χ2(δ − 1)Rδ

2

) ∫
Ω

|∇w2|
2 − µ

∫
Ω

(vδ −
λ

µ
)2 −

3N2

4

∫
Ω

(w1 −
λ

µ
)2

+ N2

∫
Ω

(w −
λ

µ
)2, t ≥ 0, (4.27)

where N2 =
ξ2

2

[
λ
µ
+ (δ − 1)Rδ

]
. Testing the equation of w in (4.1) with w − λ

µ
, one may obtain∫

Ω

|∇w|2 = −
∫
Ω

(w −
λ

µ
)2 +

∫
Ω

(w −
λ

µ
)(vδ −

λ

δ
). (4.28)

Hence, we have

2N2

∫
Ω

|∇w|2 ≤ −N2

∫
Ω

(w −
λ

µ
)2 + N2

∫
Ω

(vδ −
λ

µ
)2. (4.29)

Combining (4.29) and (4.27), there holds

d
dt

W(t) ≤
(
λχ2

2µ
+
χ2(δ − 1)Rδ

2

) ∫
Ω

|∇w2|
2 − µ

∫
Ω

(vδ −
λ

µ
)2

−
3N2

4

∫
Ω

(w1 −
λ

µ
)2 + N2

∫
Ω

(vδ −
λ

µ
)2
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=

(
λχ2

2µ
+
χ2(δ − 1)Rδ

2

) ∫
Ω

|∇w2|
2 − (µ − N2)

∫
Ω

(vδ −
λ

µ
)2 −

3N2

4

∫
Ω

(w2 −
λ

µ
)2. (4.30)

Similarly, one may deduce∫
Ω

|∇w2|
2 = −

∫
Ω

(w2 −
λ

µ
)2 +

∫
Ω

(w2 −
λ

µ
)(vδ −

λ

µ
). (4.31)

Substituting (4.31) into (4.30), we can obtain from Young’s inequality

d
dt

W(t) ≤ −
(
λχ2

2µ
+
χ2(δ − 1)Rδ

2

) ∫
Ω

(w2 −
λ

µ
)2 +

(
λχ2

2µ
+
χ2(δ − 1)Rδ

2

) ∫
Ω

(w2 −
λ

µ
)(vδ −

λ

µ
)

− (µ − N2)
∫
Ω

(vδ −
λ

µ
)2 −

3N2

4

∫
Ω

(w1 −
λ

µ
)2

≤

(
λχ2

8µ
+
χ2(δ − 1)Rδ

8

) ∫
Ω

(vδ −
λ

µ
)2 − (µ − N2)

∫
Ω

(vδ −
λ

µ
)2 −

3N2

4

∫
Ω

(w1 −
λ

µ
)2

= −

[
µ − N2 −

(
λχ2

8µ
+
χ2(δ − 1)Rδ

8

)] ∫
Ω

(vδ −
λ

µ
)2 −

3N2

4

∫
Ω

(w1 −
λ

µ
)2

= − δ2

[ ∫
Ω

(vδ −
λ

µ
)2 −

∫
Ω

(w1 −
λ

µ
)2
]
, (4.32)

where δ2 = min{µ − N2 −
(λχ2

8µ +
χ2(δ−1)Rδ

8

)
, 3N2

4 }. Since

µ >

(δ−1)Rδ

2 (ξ2 +
χ2

4 ) +
√

(δ−1)2R2δ

4 (ξ2 +
χ2

4 )2 + 2λ(ξ2 +
χ2

4 )

2
,

we have δ2 > 0.We integrate (4.32) to get

W(t) −W(t0) ≤ −δ2

[∫ t

t0

∫
Ω

(vδ −
λ

µ
)2 +

∫ t

t0

∫
Ω

(w1 −
λ

µ
)2
]
. (4.33)

Due to W(t) ≥ 0 and δ2 > 0, we thus deduce from (4.33) that∫ ∞

t0

∫
Ω

(vδ −
λ

µ
)2 +

∫ ∞

t0

∫
Ω

(w1 −
λ

µ
)2 ≤

W(t0)
δ2
< ∞. (4.34)

Using (4.16), we gain the uniform continuity and global boundedness of
∫
Ω

(vδ − λ
µ
)2 +

∫
Ω

(w1 −
λ
µ
)2 with

respect to t. Thus, it may be concluded from Lemma 4.1 that∫
Ω

(vδ −
λ

µ
)2 +

∫
Ω

(w1 −
λ

µ
)2 → 0 as t → ∞. (4.35)

Invoking Young’s inequality, we gain from (4.28) and (4.31) that∫
Ω

|∇w|2 ≤ −
1
2

∫
Ω

(w −
λ

µ
)2 +

1
2

(vδ −
λ

µ
)2 (4.36)
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and ∫
Ω

|∇w2|
2 ≤ −

1
2

∫
Ω

(w2 −
λ

µ
)2 +

1
2

(vδ −
λ

µ
)2. (4.37)

Thus, we get from (4.35) that∫
Ω

(w −
λ

µ
)2 ≤

∫
Ω

(w1 −
λ

µ
)2 + (vδ −

λ

µ
)2 → 0 as t → ∞ (4.38)

and ∫
Ω

(w2 −
λ

µ
)2 ≤

∫
Ω

(w1 −
λ

µ
)2 + (vδ −

λ

µ
)2 → 0 as t → ∞. (4.39)

Due to δ > 1, we can find N3 > 0 such that

N3 = sup
s∈(0,∞)

(
s − (λ

µ
)

1
δ
)2(

sδ − λ
µ

)2 < ∞. (4.40)

Hence, we can derive from (4.35) and (4.40) that∫
Ω

(
v − (
λ

µ
)

1
δ
)2
≤ N3

∫
Ω

(
vδ −
λ

µ
)2 ≤ N3

∫
Ω

(vδ −
λ

µ
)2 +

∫
Ω

(w1 −
λ

µ
)2 → 0 (4.41)

as t → ∞. This clearly gets the desired result of Lemma 4.2.

Proof of Theorem 1.2 The Gagliardo-Nirenberg inequality [37] enables us to infer from (4.4),
(4.16), (4.24), and (4.41) that

∥v(·, t) − (
λ

µ
)

1
δ ∥L∞(Ω) ≤ CGN∥v(·, t) − (

λ

µ
)

1
δ ∥

n
n+2

W1,∞(Ω)∥v(·, t) − (
λ

µ
)

1
δ ∥

2
n+2

L2(Ω)

≤ C1∥v(·, t) − (
λ

µ
)

1
δ ∥

2
n+2

L2(Ω)

≤ C1∥vδ(·, t) −
λ

µ
∥

2
n+2

L2(Ω) → 0 as t → ∞, (4.42)

where C1 > 0. For δ ∈ (0, 1], with an aid of the L’Hospital rule, there holds

lim
v→η

v − η − η ln( v
η
)

(v − η)(vδ − ηδ)
=

1
2δηδ
, η = (

λ

µ
)

1
δ . (4.43)

We thus can find t1 > 0 such that

1
4δηδ

(v − η)(vδ − ηδ) ≤ a(v) ≤
1
δηδ

(v − η)(vδ − ηδ), t ≥ t1, (4.44)

where a(v) = v − η − η ln( v
η
).We get from the definition of A(t) that

min
{

1
4δηδ
,

N1

2

} [∫
Ω

(v − η)(vδ − ηδ) +
∫
Ω

(w1 − η
δ)2

]
≤ A(t), t ≥ t1, (4.45)
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and

A(t) ≤ max
{

1
δηδ
,

N1

2

} [∫
Ω

(v − η)(vδ − ηδ) +
∫
Ω

(w1 − η
δ)2

]
, t ≥ t1. (4.46)

According to (4.13) and (4.46), there holds

d
dt

A(t) ≤ −
δ1

max
{

1
δηδ
, N1

2

}A(t), t ≥ t1, (4.47)

thus

A(t) ≤ A(t1)e
−

δ1

max
{

1
δηδ
,
N1
2

} (t−t1)

, t ≥ t1, (4.48)

where δ1 = min
{
µ −

(χ2

8 +
ξ2

2

)λ
µ
, 3N1

4

}
. Due to (4.12), (4.42), (4.45), and (4.48), we get

∥v(·, t) − η∥L∞(Ω) ≤ C1

[∫
Ω

(vδ − ηδ)2
] 1

n+2

≤ C1

[∫
Ω

ηδ−1(v − η)(vδ − ηδ)
] 1

n+2

≤ C1

 ηδ−1

min
{

1
4δηδ ,

N1
2

}A(t)


1

n+2

≤ C1

 ηδ−1

min
{

1
4δηδ ,

N1
2

}A(t1)


1

n+2

e
−

δ1

(n+2) max
{

1
δηδ
,
N1
2

} (t−t1)

, t ≥ t1. (4.49)

Similarly, for v, we can choose C2 > 0 such that

∥w1(·, t) − ηδ∥L∞(Ω) ≤ C2

 ηδ−1

min
{

1
4δηδ ,

N1
2

}A(t1)


1

n+2

e
−

δ1

(n+2) max
{

1
δηδ
,
N1
2

} (t−t1)

, t ≥ t1. (4.50)

According to (4.38), (4.42), and (4.49), there exists C3 > 0 such that

∥w(·, t) − ηδ∥L∞(Ω) ≤ C3

 ηδ−1

min
{

1
4δηδ ,

N1
2

}A(t1)


1

n+2

e
−

δ1

(n+2) max
{

1
δηδ
,
N1
2

} (t−t1)

, t ≥ t1. (4.51)

Similarly to the discussion of w, for w2, it can be deduced from (4.39), (4.42), and (4.49) that

∥w2(·, t) − ηδ∥L∞(Ω) ≤ C4

 ηδ−1

min
{

1
4δηδ ,

N1
2

}A(t1)


1

n+2

e
−

δ1

(n+2) max
{

1
δηδ
,
N1
2

} (t−t1)

, t ≥ t1, (4.52)
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where C4 > 0. If δ ∈ (1,∞), it can be seen from the L’Hospital rule that

lim
w2→ηδ

w2 − η
δ − ηδ ln(w2

ηδ
)

(w2 − ηδ)2 =
1

2ηδ
. (4.53)

We can find t2 > 0 such that

min{
1

4ηδ
,

N2

2
}

[∫
Ω

(vδ − ηδ)2 +

∫
Ω

(w1 − η
δ)2

]
≤ W(t), t ≥ t2, (4.54)

and

W(t) ≤ max{
1
ηδ
,

N2

2
}

[∫
Ω

(vδ − ηδ)2 +

∫
Ω

(w1 − η
δ)2

]
, t ≥ t2. (4.55)

Combining (4.32) and (4.55), there holds

d
dt

W(t) ≤ −
δ2

max{ 1
ηδ
, N2

2 }
W(t), t ≥ t2, (4.56)

thus

W(t) ≤ W(t2)e
−

δ2

max{ 1
ηδ
,
N2
2 }

(t−t2)

, t ≥ t2, (4.57)

where δ2 = min{µ − N2 −
(λχ2

8µ +
χ2(δ−1)Rδ

8

)
, 3N2

4 }.We can infer from (4.40), (4.54), and (4.57) that

∥v(·, t) − η∥L∞(Ω) ≤ C5

[∫
Ω

(vδ − ηδ)2
] 1

n+2

≤ C5

 1
min{ 1

4ηδ ,
N2
2 }

W(t2)


1

n+2

e
−

δ2

(n+2) max{ 1
ηδ
,
N2
2 }

(t−t2)

, t ≥ t2, (4.58)

where C5 > 0.We can also get the same result for v :

∥w1(·, t) − ηδ∥L∞(Ω) ≤ C6

 1
min{ 1

4ηδ ,
N2
2 }

W(t2)


1

n+2

e
−

δ2

(n+2) max{ 1
ηδ
,
N2
2 }

(t−t2)

, t ≥ t2, (4.59)

where C6 > 0. Furthermore, for w and w2, we can deduce from (4.38), (4.39), (4.42), and (4.58) that

∥w(·, t) − ηδ∥L∞(Ω) ≤ C7

 1
min{ 1

4ηδ ,
N2
2 }

W(t2)


1

n+2

e
−

δ2

(n+2) max{ 1
ηδ
,
N2
2 }

(t−t2)

, t ≥ t2 (4.60)

and

∥w2(·, t) − ηδ∥L∞(Ω) ≤ C8

 1
min{ 1

4ηδ ,
N2
2 }

W(t2)


1

n+2

e
−

δ2

(n+2) max{ 1
ηδ
,
N2
2 }

(t−t2)

, t ≥ t2, (4.61)

where C7,C8 > 0. Finally, plugging δ1 and δ2 into (4.49)–(4.52) and (4.58)–(4.61), respectively, then
we can conclude the desired results in Theorem 1.2 by choosing C > 0 sufficiently large.
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