The clamped plate problem describes the vibration of a clamped plate in the classical elastic mechanics, and the Xin-Laplacian is an important elliptic operator for understanding the geometric structure of translators of mean curvature flow(MCF for short). In this article, we investigate the clamped plate problem of the bi-Xin-Laplacian on Riemannian manifolds isometrically immersed in the Euclidean space. On one hand, we obtain some eigenvalue inequalities of the bi-Xin-Laplacian on some important Riemannian manifolds admitting some special functions. Let us emphasize that, this class of manifolds contains some interesting examples: Cartan-Hadamard manifolds, some types of warp product manifolds and homogenous spaces. On the other hand, we also consider the eigenvalue problem of the bi-Xin-Laplacian on the cylinders and obtain an eigenvalue inequality. In particular, we can give an estimate for the lower order eigenvalues on the cylinders.
Citation: Xiaotian Hao, Lingzhong Zeng. Eigenvalues of the bi-Xin-Laplacian on complete Riemannian manifolds[J]. Communications in Analysis and Mechanics, 2023, 15(2): 162-176. doi: 10.3934/cam.2023009
The clamped plate problem describes the vibration of a clamped plate in the classical elastic mechanics, and the Xin-Laplacian is an important elliptic operator for understanding the geometric structure of translators of mean curvature flow(MCF for short). In this article, we investigate the clamped plate problem of the bi-Xin-Laplacian on Riemannian manifolds isometrically immersed in the Euclidean space. On one hand, we obtain some eigenvalue inequalities of the bi-Xin-Laplacian on some important Riemannian manifolds admitting some special functions. Let us emphasize that, this class of manifolds contains some interesting examples: Cartan-Hadamard manifolds, some types of warp product manifolds and homogenous spaces. On the other hand, we also consider the eigenvalue problem of the bi-Xin-Laplacian on the cylinders and obtain an eigenvalue inequality. In particular, we can give an estimate for the lower order eigenvalues on the cylinders.
[1] | L. E. Payne, G. Pólya, H. F. Weinberger, On the ratio of consecutive eigenvalues, J. Math. Phy., 35 (1956), 289–298. https://doi.org/10.1002/sapm1956351289 doi: 10.1002/sapm1956351289 |
[2] | G. N. Hile, R. Z. Yeh, Inequalities for eigenvalues of the biharmonic operator, Pacific J. Math., 1984, 112(1): 115–133. https://doi.org/10.2140/pjm.1984.112.115 |
[3] | G. N. Hile, M. H. Protter, Inequalities for eigenvalues of the Laplacian, Indiana Uni. Math. J., 29 (1980), 523–538. https://doi.org/10.1512/iumj.1980.29.29040 doi: 10.1512/iumj.1980.29.29040 |
[4] | S. M. Hook, Domain-independent upper bounds for eigenvalues of elliptic operator, Trans. Ame. Math. Soc., 318 (1990), 615–642. https://doi.org/10.1090/S0002-9947-1990-0994167-2 doi: 10.1090/S0002-9947-1990-0994167-2 |
[5] | Z. C. Chen, C. L. Qian, Estimates for discrete spectrum of Laplacian operator with any order, J China Univ. Sci. Tech., 20 (1990), 259–266. |
[6] | Q. M. Cheng, H.C. Yang, Inequalities for eigenvalues of a clamped plate problem. Trans. Amer. Math. Soc., 358 (2006), 2625–2635. https://doi.org/10.1090/S0002-9947-05-04023-7 |
[7] | M. S. Ashbaugh, Isoperimetric and universal inequalities for eigenvalues. in Spectral theory and geometry (Edinburgh, 1998), E. B. Davies and Yu Safalov eds., London Math.Soc. Lecture Notes, 273 (1999), Cambridge Univ. Press, 95–139. http: www.arXiv.org/abs/math/0008087 |
[8] | Q. Wang, C. Xia, Universal bounds for eigenvalues of the biharmonic operator on Riemannian manifolds, J. Func. Ana., 245 (2007), 334–352. https://doi.org/10.1016/j.jfa.2006.11.007 doi: 10.1016/j.jfa.2006.11.007 |
[9] | Q. Wang, C. Xia, Inequalities for eigenvalues of a clamped plate problem, Cal. Var. & PDEs, 40 (2011), 273–289. https://doi.org/10.1007/s00526-010-0340-4 doi: 10.1007/s00526-010-0340-4 |
[10] | Q. Wang, C. Xia, Inequalities for the Steklov eigenvalues, Chaos Sol. & Frac., 48 (2013), 61–67. https://doi.org/10.1016/j.chaos.2013.01.008 doi: 10.1016/j.chaos.2013.01.008 |
[11] | Y. L. Xin, Translating soliton of the mean curvature flow, Cal. Var. & PDEs, 54 (2015), 1995–2016. https://doi.org/10.1007/s00526-015-0853-y doi: 10.1007/s00526-015-0853-y |
[12] | Y. L. Xin, Singularities of mean curvature flow, Science China: Math., 2021, 64(7): 1349–1356. https://doi.org/10.1007/s11425-020-1840-1 |
[13] | F. Du, J. Mao, Q. Wang, C. Wu, Eigenvalue inequalities for the buckling problem of the drifting Laplacian on Ricci solitons, J. Diff. Equ., 260 (2016), 5533–5564. https://doi.org/10.1016/j.jde.2015.12.006 doi: 10.1016/j.jde.2015.12.006 |
[14] | F. Du, J. Mao, Q. Wang, C. Wu, Universal inequalities of the poly-drifting Laplacian on the Gaussian and cylinder shrinking solitons, Ann. Glo. Ana. & Geo., 48 (2015), 255–268. https://doi.org/10.1007/s10455-015-9469-x doi: 10.1007/s10455-015-9469-x |
[15] | A. Lichnerowicz, Variétés riemanniennes à tenseur C non négatif, Com. R. l'Académie des Sci. Série I. Math., 271 (1970), 650–653. |
[16] | A. Lichnerowicz, Variétés kählériennes à première classe de Chern non negative et variétés riemanniennes à courbure de Ricci gènèralisèe non negative. J. Diff. Geom., 6 (1971), 47–94. https://doi.org/10.4310/jdg/1214430218 |
[17] | C. Xia, H. Xu, Inequalities for eigenvalues of the drifting Laplacian on Riemannian manifolds, Ann. Glo. Ana. & Geom., 45 (2014), 155–166. https://doi.org/10.1007/s10455-013-9392-y doi: 10.1007/s10455-013-9392-y |
[18] | G. Wei, W. Wylie, Comparison geometry for the Bakry-Émery Ricci tensor, J. Diff. Geom., 83 (2009), 377–405. https://doi.org/10.4310/jdg/1261495336 doi: 10.4310/jdg/1261495336 |
[19] | T. H. Colding, W. P. Minicozzi II, Generic mean curvature flow I; Generic Singularities, Ann. of Math., 175 (2012), 755–833. https://doi.org/10.4007/annals.2012.175.2.7 doi: 10.4007/annals.2012.175.2.7 |
[20] | Q. M. Cheng, Y. Peng, Estimates for eigenvalues of $\mathfrak{L}$ operator on self-Shrinkers. Commu. Contem. Math., 15 (2013), 1350011. https://doi.org/10.1142/S0219199713500119 |
[21] | Q. Chen, H. Qiu, Rigidity of self-shrinkers and translating solitons of mean curvature flows, Adv Math., 294 (2016), 517–531. https://doi.org/10.1016/j.aim.2016.03.004 doi: 10.1016/j.aim.2016.03.004 |
[22] | G. Huisken, Asymptotic behavior for singularities of the mean curvature flow, J. Diff. Geom., 31 (1990), 285–299. https://doi.org/10.4310/jdg/1214444099 doi: 10.4310/jdg/1214444099 |
[23] | L. Zeng, Eigenvalues for the clamped plate problem of $\mathfrak{L}^{2}_{\nu}$ operator on complete Riemannian manifolds. to appear in Acta Math. Sin., English Series. Available from: https://arXiv.org/abs/2102.04611. |
[24] | L. Zeng, Eigenvalues with lower order for the clamped plate problem of $\mathfrak{L}^{2}_{\nu}$ operator on the Riemannian manifolds, Science China: Math., 65 (2022), 793–812. https://doi.org/10.1007/s11425-020-1832-5 doi: 10.1007/s11425-020-1832-5 |
[25] | Q. M. Cheng, H. C. Yang, Estimates on eigenvalues of Laplacian, Math. Ann., 331 (2005), 445–460. https://doi.org/10.1007/s00208-004-0589-z doi: 10.1007/s00208-004-0589-z |
[26] | Q. M. Cheng, X. Qi, Eigenvalues of the Laplacian on Riemannian manifolds. Int. J. Math., 23 (2012), 1250067. https://doi.org/10.1142/S0129167X1250067X |
[27] | T. Sakai, On Riemannian manifolds admitting a function whose gradient is of constant norm, Kodai Math. J., 19 (1996), 39–51. https://doi.org/10.2996/kmj/1138043545 doi: 10.2996/kmj/1138043545 |
[28] | E. Heinzte, H. C. Im Hof, Geometry of horospheres, J. Diff. Geom., 12 (1977), 481–489. https://doi.org/10.4310/jdg/1214434219 doi: 10.4310/jdg/1214434219 |
[29] | W. Ballmann, M. Gromov, V. Schroeder, Manifolds of Nonpositive Curvature, Birkhäuser, 1985. |
[30] | K. Sakamoto, Planar geodesic immersions, Tohôku Math. J., 29 (1977), 25–56. https://doi.org/10.2748/tmj/1178240693 |
[31] | P. Li, Eigenvalue estimates on homogeneous manifolds, Comm. Math. Helv., 55 (1980), 347–363. https://doi.org/10.1007/BF02566692 doi: 10.1007/BF02566692 |