Research article Special Issues

Generalized Ricci solitons and Einstein metrics on weak $ K $-contact manifolds

  • Received: 09 January 2023 Revised: 03 April 2023 Accepted: 27 April 2023 Published: 06 May 2023
  • 53C15, 53C25, 53D15

  • We study so-called "weak" metric structures on a smooth manifold, which generalize the metric contact and $ K $-contact structures and allow a new look at the classical theory. We characterize weak $ K $-contact manifolds among all weak contact metric manifolds using the property well known for $ K $-contact manifolds, as well as find when a Riemannian manifold endowed with a unit Killing vector field is a weak $ K $-contact manifold. We also find sufficient conditions for a weak $ K $-contact manifold with a parallel Ricci tensor or with a generalized Ricci soliton structure to be an Einstein manifold.

    Citation: Vladimir Rovenski. Generalized Ricci solitons and Einstein metrics on weak $ K $-contact manifolds[J]. Communications in Analysis and Mechanics, 2023, 15(2): 177-188. doi: 10.3934/cam.2023010

    Related Papers:

  • We study so-called "weak" metric structures on a smooth manifold, which generalize the metric contact and $ K $-contact structures and allow a new look at the classical theory. We characterize weak $ K $-contact manifolds among all weak contact metric manifolds using the property well known for $ K $-contact manifolds, as well as find when a Riemannian manifold endowed with a unit Killing vector field is a weak $ K $-contact manifold. We also find sufficient conditions for a weak $ K $-contact manifold with a parallel Ricci tensor or with a generalized Ricci soliton structure to be an Einstein manifold.



    加载中


    [1] D. E. Blair, A survey of Riemannian contact geometry, Complex Manifolds, 6 (2019), 31–64. https://doi.org/10.1515/coma-2019-0002 doi: 10.1515/coma-2019-0002
    [2] G. Ghosh, U. C. De, Generalized Ricci soliton on $K$-contact manifolds, Math. Sci. Appl. E-Notes, 8 (2020), 165–169. https://doi.org/10.3390/math9030259 doi: 10.3390/math9030259
    [3] A. Mohammed Cherif, K. Zegga, G. Beldjilali, On the generalised Ricci solitons and Sasakian manifolds, arXiv: 2204.00063 (2022).
    [4] P. Nurowski, M. Randall, Generalised Ricci solitons, J. Geom. Anal., 26 (2016), 1280–1345. https://doi.org/10.3390/math9030259 doi: 10.3390/math9030259
    [5] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Springer-Verlag, New York, 2010. https://doi.org/10.1007/978-1-4612-0873-0
    [6] K. Yano, M. Kon, Structures on Manifolds, Series in Pure Mathematics World Scientific Publishing Co, 1984. https://doi.org/10.1007/978-1-4612-0873-0
    [7] V. N. Berestovskij, Yu. G. Nikonorov, Killing vector fields of constant length on Riemannian manifolds, Sib. Math. J., 49 (2008), 395–407. https://doi.org/10.1515/coma-2019-0002 doi: 10.1515/coma-2019-0002
    [8] S. Deshmukh, O. Belova, On Killing vector fields on Riemannian manifolds, Mathematics, 9 (2021), 259. https://doi.org/10.3390/math9030259 doi: 10.3390/math9030259
    [9] V. N. Berestovskij, Yu. G. Nikonorov, Killing vector fields of constant length on Riemannian manifolds. Sib. Math. J. 49 (2008), 395–407. https://doi.org/10.1007/s11202-008-0039-3 doi: 10.1007/s11202-008-0039-3
    [10] V. Rovenski, R. Wolak, New metric structures on $\mathfrak{g}$-foliations, Indagat Math, 33 (2022), 518–532. https://doi.org/10.1016/j.indag.2021.11.001 doi: 10.1016/j.indag.2021.11.001
    [11] D. S. Patra, V. Rovenski, On the rigidity of the Sasakian structure and characterization of cosymplectic manifolds, arXiv: 2203.04597 (2022).
    [12] S. Kobayashi, K. Nomizu, Foundations of differential geometry, New York, 1963.
    [13] M. C. Chaki, R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297–306. https://doi.org/10.1515/coma-2019-0002 doi: 10.1515/coma-2019-0002
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(906) PDF downloads(110) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog