We study so-called "weak" metric structures on a smooth manifold, which generalize the metric contact and $ K $-contact structures and allow a new look at the classical theory. We characterize weak $ K $-contact manifolds among all weak contact metric manifolds using the property well known for $ K $-contact manifolds, as well as find when a Riemannian manifold endowed with a unit Killing vector field is a weak $ K $-contact manifold. We also find sufficient conditions for a weak $ K $-contact manifold with a parallel Ricci tensor or with a generalized Ricci soliton structure to be an Einstein manifold.
Citation: Vladimir Rovenski. Generalized Ricci solitons and Einstein metrics on weak $ K $-contact manifolds[J]. Communications in Analysis and Mechanics, 2023, 15(2): 177-188. doi: 10.3934/cam.2023010
We study so-called "weak" metric structures on a smooth manifold, which generalize the metric contact and $ K $-contact structures and allow a new look at the classical theory. We characterize weak $ K $-contact manifolds among all weak contact metric manifolds using the property well known for $ K $-contact manifolds, as well as find when a Riemannian manifold endowed with a unit Killing vector field is a weak $ K $-contact manifold. We also find sufficient conditions for a weak $ K $-contact manifold with a parallel Ricci tensor or with a generalized Ricci soliton structure to be an Einstein manifold.
[1] | D. E. Blair, A survey of Riemannian contact geometry, Complex Manifolds, 6 (2019), 31–64. https://doi.org/10.1515/coma-2019-0002 doi: 10.1515/coma-2019-0002 |
[2] | G. Ghosh, U. C. De, Generalized Ricci soliton on $K$-contact manifolds, Math. Sci. Appl. E-Notes, 8 (2020), 165–169. https://doi.org/10.3390/math9030259 doi: 10.3390/math9030259 |
[3] | A. Mohammed Cherif, K. Zegga, G. Beldjilali, On the generalised Ricci solitons and Sasakian manifolds, arXiv: 2204.00063 (2022). |
[4] | P. Nurowski, M. Randall, Generalised Ricci solitons, J. Geom. Anal., 26 (2016), 1280–1345. https://doi.org/10.3390/math9030259 doi: 10.3390/math9030259 |
[5] | D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Springer-Verlag, New York, 2010. https://doi.org/10.1007/978-1-4612-0873-0 |
[6] | K. Yano, M. Kon, Structures on Manifolds, Series in Pure Mathematics World Scientific Publishing Co, 1984. https://doi.org/10.1007/978-1-4612-0873-0 |
[7] | V. N. Berestovskij, Yu. G. Nikonorov, Killing vector fields of constant length on Riemannian manifolds, Sib. Math. J., 49 (2008), 395–407. https://doi.org/10.1515/coma-2019-0002 doi: 10.1515/coma-2019-0002 |
[8] | S. Deshmukh, O. Belova, On Killing vector fields on Riemannian manifolds, Mathematics, 9 (2021), 259. https://doi.org/10.3390/math9030259 doi: 10.3390/math9030259 |
[9] | V. N. Berestovskij, Yu. G. Nikonorov, Killing vector fields of constant length on Riemannian manifolds. Sib. Math. J. 49 (2008), 395–407. https://doi.org/10.1007/s11202-008-0039-3 doi: 10.1007/s11202-008-0039-3 |
[10] | V. Rovenski, R. Wolak, New metric structures on $\mathfrak{g}$-foliations, Indagat Math, 33 (2022), 518–532. https://doi.org/10.1016/j.indag.2021.11.001 doi: 10.1016/j.indag.2021.11.001 |
[11] | D. S. Patra, V. Rovenski, On the rigidity of the Sasakian structure and characterization of cosymplectic manifolds, arXiv: 2203.04597 (2022). |
[12] | S. Kobayashi, K. Nomizu, Foundations of differential geometry, New York, 1963. |
[13] | M. C. Chaki, R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297–306. https://doi.org/10.1515/coma-2019-0002 doi: 10.1515/coma-2019-0002 |