In this paper, we introduce the Laguerre bounded variation space and the Laguerre perimeter, thereby investigating their properties. Moreover, we prove the isoperimetric inequality and the Sobolev inequality in the Laguerre setting. As applications, we derive the mean curvature for the Laguerre perimeter.
Citation: He Wang, Yu Liu. Laguerre BV spaces, Laguerre perimeter and their applications[J]. Communications in Analysis and Mechanics, 2023, 15(2): 189-213. doi: 10.3934/cam.2023011
In this paper, we introduce the Laguerre bounded variation space and the Laguerre perimeter, thereby investigating their properties. Moreover, we prove the isoperimetric inequality and the Sobolev inequality in the Laguerre setting. As applications, we derive the mean curvature for the Laguerre perimeter.
[1] | E. De Giorgi, Su alcune generalizzazioni della nozione di perimetro, in Equazioni differenziali e calcolo delle variazioni, Quaderni UMI (1992), 237–250. |
[2] | J. Huang, P. Li, Y. Liu, Capacity & perimeter from $ \alpha$-Hermite bounded variation, Calc. Var. Partial Differential Equations, 59 (2020), 186. https://doi.org/10.1007/s00526-020-01851-0 doi: 10.1007/s00526-020-01851-0 |
[3] | P. Alonso-Ruiz, F. Baudoin, L. Chen, L. G. Rogers, N. Shanmugalingam, A. Teplyaev, Besov class via heat semigroup on Dirichlet spaces Ⅱ: BV functions and Gaussian heat kernel estimates, Calc. Var. Partial Differential Equations, 59 (2020), 1–32. https://doi.org/10.1007/s00526-020-01750-4 doi: 10.1007/s00526-020-01750-4 |
[4] | G. Da Prato, A. Lunardi, BV functions in Hilbert spaces, Math. Ann., 381 (2021), 1653–1722. https://doi.org/10.1007/s00208-020-02037-x doi: 10.1007/s00208-020-02037-x |
[5] | J. Huang, P. Li, Y. Liu, Gaussian BV functions and gaussian BV capacity on stratified groups, Anal. Theory Appl., 37 (2021), 311–329. https://doi.org/10.4208/ata.2021.lu80.03 doi: 10.4208/ata.2021.lu80.03 |
[6] | P. Lahti, The variational 1-capacity and BV functions with zero boundary values on doubling metric spaces, Adv. Calc. Var., 14 (2021), 171–192. https://doi.org/10.1515/acv-2018-0024 doi: 10.1515/acv-2018-0024 |
[7] | C. E. Gutiérrez, A. Incognito, J. L. Torrea, Riesz transforms, $g$-functions, and multipliers for the Laguerre semigroup, Houston J. Math., 27 (2001), 579–592. https://doi.org/10.1007/s003730170016 doi: 10.1007/s003730170016 |
[8] | P. Graczyk, J. J. Loeb, I.A. López, A. Nowak, W. Urbina, Higher order Riesz transforms, fractional derivatives, and Sobolev spaces for Laguerre expansions, J. Math. Pures Appl., 84 (2005), 375–405. https://doi.org/10.1016/j.matpur.2004.09.003 doi: 10.1016/j.matpur.2004.09.003 |
[9] | L. C. Evans, R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 1992. https://doi.org/10.1201/9780203747940 |
[10] | E. De Giorgi, F. Colombini, L. C. Piccinini, Frontiere orientate di misura minima e questioni collegate, Scuola Normale Superiore, Pisa, 1972. |
[11] | E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Basel, 1984. https://doi.org/10.1007/978-1-4684-9486-0 |
[12] | U. Massari, M. Miranda, Minimal surfaces of codimension one, North-Holland Publishing Co., Amsterdam, 1984. https://doi.org/10.1016/s0304-0208(08)x7038-0 |
[13] | E, Barozzi, E. Gonzalez, I.Tamanini, The mean curvature of a set of finite perimeter, Proc. Amer. Math.Soc., 99 (1987), 313–316. https://doi.org/10.2307/2046631 doi: 10.2307/2046631 |
[14] | J. Xiao, N. Zhang, Flux & radii within the subconformal capacity, Calc. Var. Partial Differential Equations, 60 (2021), 120. https://doi.org/10.1007/s00526-021-01989-5 doi: 10.1007/s00526-021-01989-5 |
[15] | M. Miranda Jr, Functions of bounded variation on "good" metric spaces, J. Math. Pures Appl., 82 (2003), 975–1004. https://doi.org/10.1016/s0021-7824(03)00036-9 doi: 10.1016/s0021-7824(03)00036-9 |