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1. Introduction

The spaces BV of functions of bounded variation in Euclidean spaces have been a class of function
space which can be used in the geometric measure theory. For example, when working with minimization
problems, reflexivity or the weak compactness property involving the function space W'»(R?) for p > 1,
in such cases, the space BV usually plays a crucial role. However, for the case of the space W!!(R?), one
possible approach to address its lack of reflexivity is to consider the space BV(R?). The importance of
generalizing the classical notion of variation has been pointed out in several occasions by E. De. Giorgi
in [1]. Recently, Huang, Li and Liu in [2] investigate the capacity and perimeters derived from a-Hermite
bounded variation. In a general framework of strictly local Dirichlet spaces with doubling measure,
Alonso-Ruiz, Baudoin and Chen et al. in [3] introduce the class of bounded variation functions and
proved the Sobolev inequality under the Bakry-Emery curvature type condition. For further information
on this topic, we refer the reader to [4—6] and the references therein.

One of the aims of this paper is intended to explore and analyze a number of fundamental inquiries
in geometric measure theory that are associated with the Laguerre operator in Laguerre BV spaces. To
begin with, we will provide a brief introduction to the Laguerre operator.

Given a multiindex @ = (a1, - , @y), @ € (=1, )¢, the Laguerre differential operator is defined by:

2

d
L= —Z [x,»% +(a;+1- xi)%].

i=1
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Let the probabilistic gamma measure y, in R‘j = (0, 00)? be defined as

x Y™

d
du.(x) = 1:1[ r(;z‘—il)dx = w(x)dx.

As we know that £ is positive and symmetric in L*>(R¢, du,), and it has a closure which is selfadjoint
in L>(R%, du,) and will be denoted by £°. The i-th partial derivative associated with £ is defined as

0
6i = \/;159

see [7] or [8]. The operator L* has the following decomposition:

where |
a; + 5~ )C,')

5 =— \/)T,-(ﬁxi +

is the formal adjoint of §; in L?(R?, du,). Throughout this paper, suppose that Q C R be an open
set. Foru € C'(R?) and ¢ = (¢1,¢2,...,¢q4) € C'(RL,R?), define the L%-gradient and £?-divergence
operators that are associated with £*:

Xi

Vet := (01u,...,04u),
divpep 1= 611 + O30 + -+ + 004,

which also gives
d 2

Lo = div o (V pott) = — Z [

i=1

)c,-gi2 +(a;+1 - xi)ﬁix,-]'

Naturally, we denote by BV ,.(€2) the set of all functions possessing Laguerre bounded variation
(L*-BV in short) on Q. Based on the results of [2], we investigate some related topics for the Laguerre
setting, and the plan of the notes is given as follows. Section 2.1 collects some basic facts and notations
used later, the lower semicontinuity (Lemma 2.1), the completeness (Lemma 2.2), the structure theorem
(Theorem 2.3) and approximation via C;’-functions (Theorem 2.4). Unlike Theorem 2 in [9, Section
5.2.2], we must utilize the mean value theorem for multivariate functions and the intrinsic nature of the
Laguerre variation. Section 2.2 is focused on the perimeter P z.(-, Q) induced by BV (), as shown in
equation (2.6) below.

Remember that the classical perimeter of E C R? is defined as

P(E) = sup { f divgo(x)dx},
eeF (R \JE

here let 7 (R?) be the set that contains all functions
¢ = (g1, ,pa) € CLRE, R
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satisfying
1
¢l = sup {(l(pl(x)l2 +oot |¢d(x)|2)z} <1.

x€E
As we all know that
P(E) = P(E°), YE c R? (1.1)

is an inherent property of P(E) at the elementary level.

In Lemma 2.10, we proved that (1.1) is valid for the Laguerre perimeter P.(-). In Section 2.3, a
coarea formula for £*-BV functions is derived. In Theorem 2.12, we conclude that the isoperimetric
inequality

A, e S IV f1(Q1) (1.2)

LT (Qy.dpia)

shares equivalence with the Sobolev type inequality
Ho(E)T < Pp(E, Q)

as an application. We point out that, in the proof of (1.2), the inequality |V f(x)| < |V . f(x)| on Q; holds
true. With this in mind, we consider the subset

Q =Q\{xeR?:3iel,---,dsuchthat \x; < 1} (1.3)

of Q which is a reasonable substitute of 2 and whose figure is given as follows:

yll

»

A(1,1)
0 x

Figure 1. Set for the Sobolev inequality in the Laguerre setting on R2.

Our motivation comes not only from the fact that these objects are interesting on their own, but also
from the possibility of their potential applications in further research concerning the Laguerre operator.
Consequently, our aim in Section 3 is to examine the Laguerre mean curvature of a set that has a finite
Laguerre perimeter. It is interesting to note that the sets of finite perimeter introduced by E. De Giorgi
for the Laplace operator A have found applications in classical problems of the calculus of variations,
such as the Plateau problem and the isoperimetric problem, see [10-12]. Barozzi, Gonzalez, and
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Tamanini [13] demonstrated that for any finite classical perimeter set E within R, its mean curvature
is included in L'(RY). One might naturally wonder whether P .(E,Q), a € (-1, 0)? holds similarly
as [13]. Note that it is necessary to use identity (1.1) in the proof of the main theorem of [13]. In
Theorem 3.1, we generalize the result of [13] to P.(-, ;) and show that if a set E is a subset of €2;
such that P.(E,Q;) < oo, then the mean curvature of E is in L'(Q,, du,).

Throughout this paper by C we always denote a positive constant that may vary at each occurrence;
A ~ B means that éA < B < CA and the notation X < Y is used to indicate that X < CY with a positive
constant C independent of significant quantities. Similarly, one writes X > Y for X > CY.

2. L%-BV functions

2.1. Fundamentals of L*-BV Space

This section presents the L*-BV space, which is defined as the set of all functions that exhibit
Laguerre bounded variation and investigates its properties. The Laguerre variation (£“-variation in
short) of f € LY(Q, du,) is defined by

IV fI(€) = sup { fQ f (x)diVL"‘P(x)dﬂa(x)},

eeF ()
where ¥ (Q) denotes the class of all functions
¢ = (@1, 02.....00) € CHQRY)
satisfying

el = sup {(Igol(x)lz .o+ |<pd(x)|2)%} <1.

We say that an function f € L'(Q, du,) has the £%-bounded variation on Q if
1V 20 £1(€) < oo,
and denote by BV ,.(Q) the class of all such functions, and it is a Banach space with the norm

1S llsv @ = 111 @udu) + [V 2o FI(€2).

Definition 2.1. Suppose Q is an open setin R?. Let 1 < p < co. The Sobolev space WhP(Q) associated
with £ is defined as the set of all functions f € L?(Q, du,) such that

.05, f € LP(Qudue), 1< ji,...ijmsd, 1 <m<k.

The norm of f € W5’(Q) is given by

iz = D0 19565 Mgy + I -

1<j1...jm<d, 1<m<k

The upcoming results will gather certain properties of the space BV ,.(€2). We omit the details of
their proofs, since we can use the similar arguments as [2] to prove them.
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Lemma 2.1.
(i) Suppose f € WE (Q), then

Ve fIQ) = fg IV e FOONdbte (),

which implies W, (Q) € BV 1«(Q).
(ii) (Lower semicontinuity). Suppose fi € BV ;«(Q), k€ Nand f, — fin L' (Q,du,), then

loc

V2 fIQ) < liminf |V £ £il(©).

Lemma 2.2. The space (BYV 2(Q),|Ilgv . ) is @ Banach space.

The Hahn-Banach theorem and the Riesz representation theorem can be used to prove the structure
theorem for £%-BV functions, as presented in the following lemma.

Lemma 2.3. (Structure theorem for BYV re functions). Let f € BV po(L2). Then there exists a Radon
measure (. on Q such that

fg S(0div pep(0)dpa(x) = fg @(x) - du ge(x)

or every ¢ € , an
C=(Q, RY) and
IV 2o fI() = |ure| (),

where |y so| represents the total variation of the measure i yo.
We can obtain an approximation result for the £%-variation in the following theorem.
Theorem 2.4. Let Q) be an open set defined in (1.3). Assume that u € BV p«(€)), then there exists a
sequence {uptpen € BV ro(Qr) N C(Qy) such that
}}1_{2 [loes, — u”L‘(Ql,dya) =0
and

—00

lim f IV et (Dl () = |V 2ol Q).
Q

Proof. The approach we take differs from the proof presented in [9, Section 5.2.2, Theorem 2] as we
utilize the mean value theorem of multivariate functions and the intrinsic nature of the £%-variation. Via
the lower semicontinuity of £%-BV functions, it suffices to demonstrate that for £ > 0 there exists a
function u, € C* () such that
|ue(x) — u(x)ldpa(x) < &
Q

and

IV pou|(Qy) < [V au|(Q) + €.

Fix £ > 0. If m is a given positive integer, then construct a series of open sets,

Q= {x e Q : dist(x,00) > LN BO,m+j), jeN,

m+j
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where dist(x, 0Q;) = inf{|x—y| : y € 0Q,}. Note that Q; ; C Q; ;;; C Q,;, j € Nand _GOQLJ' = Q,. Since
j:

|V sou|(+) 1s @ measure, then choose a value m € N to be sufficiently large such that
IV eut](21\ Q1) < €. (2.1
Set Uy := Qipand U; := Ql,ﬂl\ﬁl,j_l for j > 1. Based on the standard outcomes from [9, Section
5.2.2, Theorem 2], our inference is that there exists a partition of unity connected to the covering {U ;} jew.
Namely, there exist functions {fj}jen € C°(Uj) such that 0 < f; <1, j>0and }} f; = 1 on Q;. Thus
j=0
we have the fact that

N 0 /v 9, PR
,Z;‘ Ve (‘/x_‘a_n(Zoﬁ)’ Vag (D hi) e N (2 1) 2.2)

=0

on Q;. Given € > 0 and u € L'(Q,,R), extended to zero out of Q,, the regularization can be defined as

1 —
Us(X) 1= — fB » n(x - y)u(y)dua(y),

&

where n € C2(R?) is a nonnegative radial function satisfying

1 X - .
—df 1Dy (x) = 1, ¥ j €N,
Ej ]Rti i

€j
and supp n € B(0, 1) N R, Then for each j, there exists 0 < &; < & so small such that
supp((f0), ) € U,

J. 100 = putond o < 2 @3)

j; UV g0 f7)e,(x) = UV go fi(0)|dpto(x) < €270,

Construct

V) 1= ) (ufy), ().

=0
In some neighborhood of each point x € Q,, there are only finitely many nonzero terms in this sum,

hence v, € C*(Q) and u = ) uf;. Therefore, by a simple computation, we obtain
Jj=0

Ve = sy < fg (F10), () = FHuColdpa(x) < e.
j=0 Y

Consequently,
ve = u in L'(Qy,du,) as € — 0.
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Now, assume ¢ € C £1 (Q;,R?) and |¢| < 1. We decompose the integral as follows:
[ voiveredu, o
Q

- fQ (Z(ufj)aj(X))diV£a¢(X)dﬂa(X)

Z (@), (B0 + 052(2) -+ D))o ()
=1+11,

where

Jj=0

0 0
(@, (Va5 e e+ Vi a(X) )dpta),
Xd

5

8

1 - g + % — X4
f (e, (= \/x_l )+ T 0.

Jj=0

For the sake of research, let

CFII{’L(YQD = 51(,01 + (52g02 + -0+ 5d¢d~ (24)

As for I, we obtain

fg @), (O 0@ (e ()

fg WOV 2o (e, * ())dpta(y)
u()AiV 2+ (£i(01e, * ©)V)dpa(y)
UV o fj - Me; * @)¥)da(y)

), * UV 20 [)O) = uV 2o f13))dpta(y)

Jo
fg WY 22 (10, * ) )dtay)
I,

= I] + 12,

where in the last equality we have used the fact (2.2). In fact, when [l¢|z~ < 1, then |fj(77s; * ¢)(X)| <

1, j € N, and each point in Q is contained in at most three of the sets {U j}‘;.‘;o. Furthemore, (2.3) implies
that |L] < e.
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On the other hand, we modify the integration order to obtain

(9]

m=->"| wf, (x)(

1
ad+2 X,

TI_XI%(X) +ooot T‘Pd(x)] dpio(x)

1 d (077 + % Yk
==, fg fg gﬂ( Y H0( D 5 ———L () )dpta ()t ()
J=0 VAR k=1

S G T
—0 1 1

- dpto(y)dtq
2\ % > sok(x)] Ha(¥)dpta(X)

j=0 Y&

d o 41
£ ak—zkyksok) 7, () )dta )
k=1

)u(y)fj(y)

d 1
X(Z(Qk+§—xk ak+§_yk

du, (V) du, (x).
k=1 VX NG )on(x)] o (y)dpte (x)

Therefore, the estimation presented for term I, above indicates that

fg o ()Y oo ()t ()| =

[L+L+1<Ji+J,+¢,

where
Ji = ‘ —Z fg u(y)cﬁ;(ﬁ(ns, * ) ()dHa(y)
j=0 Y
00 1 — Ve )
- f u()f; (y)[ M ———— (¢ * 71,(»)) dﬂa(y)'
5, o525
and
= 1
I :'-ZL 5 dn( )u(y)f,(Y)
j=0 <
4 a’k"‘%_xk Gk"‘%—)’k
— du,(y)du,(x)|.
x(k:l( = N )‘Pk(x)] 1o (V) dpta(X)
Furthermore,

Jy :‘—Z fg ULV o (fi(0e; * @IONdtaly)

J=0

Communications in Analysis and Mechanics
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[

—qu()f-()(im . ()]d <>‘
. 0 iy £ \/y_k Pk 778_,-)’ Haly

< ()AL o (foe, * 9V dita(y)

%1

Q

- u(y)fo(y)(z = k*nm(y)]dua(y)‘

- Z fg u(IAV o (£, * ©))0)pta(y)
=1 e

if ()f()(i“”%_y" ())d ()‘
< Qluy JAS) £ \/y_k Pk na_/y Moy

< IV pul@0) + ) IV ped(U))
j=1

< IV otd( Q1) + [V o (Q1\ 1 9)

< |V£au|(Q1) + 3¢,

ak+2 — X

where we applied the fact (2.1) in the final inequality. Note that ¥(x;) =

s llell < 1 and

suppn € B(O,1) N Rﬁf. Assuming |x; — yx| < €; < [yl/2, the mean value theorem of multivariate
functions guarantees the existence of 6 € (0, 1) such that

Vil

ay + % 3 1 1
W) = YO0l = [ =52 0n+ 005 =00 + 5 0 + 0w =y

| + 31 IR 1
S( 7 e + 000 =yl 7 + 5 i+ 0Cx = Yl 2)ka—ykl.

Consequently, we obtain

n
N

X dito(y)dita(x)

fo'—d’?

X |pr(Oldpa(y)dpe (x)

fogl\—d"

X | (X)|dpa(y)dpa (x)

<c8]Z I J \—dn u(y)f,(y)‘Z‘ak+ el dita e )

Communications in Analysis and Mechanics Volume 15, Issue 2, 189-213.
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ree I J \— <y>f,<y>\2|yk| L 3t ()
=0

< C8j f f ‘l

=0 8

S f J. \—dn (=) \dua<x>2|u<y>|m(y>||yk| ()
Jj=0

%’|u(y)|' ij(}’)'l)’kl_%dﬂa(y)
=0

o + 3OOy di )

SCSJ'

+C8jf
R{

d d
1 1
= cey [ WY o+ 3ol o+ € [ o Y bl )
Q k=1 Q k=1

d )
ld”(x;y)‘dﬂa(x)Zf Iu(y)l‘ij(y)‘lykl‘%dﬂa(y)
J k=1 Y =0

€.
J

<é&

~ b

where we have used the facts that

d
[ Y bl ) <
& k=1

J | (2.5)
[ Y o+ 3 ) <
& k=1

and in the third inequality we have used the fact that

0
e+ 6 = 0l 2 vl = 6l = yid = (1= ).
Through taking the supremum over ¢ and considering the arbitrariness of € > 0, we prove the theorem.

Remark 2.5. By computation, we conclude that the function u € BV ,.(Q) satisfies (2.5) in Theorem
2.4 when d > 3, at this time, Theorem 2.4 is valid for any open set Q2 C R4,

Additionally, the max-min property of the L%-variation can be observed from Lemma 2.1 and
Theorem 2.4.

Theorem 2.6. Let Q, be an open set defined in (1.3). Suppose u,v € L'(Qy, du,), then
IV o max{ue, vIQ1) + IV 2o minfu, vI(Qy) < |V (@) + [V 2ovl(Q0).
Proof. One may assume, without any loss of generality,

[V pett|(Q1) + |V £av| () < 0.
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By Theorem 2.4, we take two functions

Up, vip € BV () NCI(Q), h=1,2,..,

such that
u, — u,v, — v in L'(Qy, du,),
fQI IV et (Oldpta(x) = |V poul(€21),
fQ1 IV evi(Oldpta(x) = |V £av|(L1).
Since

max{uy, v,} — max{u, v} & minf{uy,v,} — min{u,v} in L (Qq,duy).
Via Lemma 2.1, it follows that
|V g« max{u, v}|(€2;) + |V g« min{u, v}|(Q;)

< liminf |V go max{uy, v,}ldu,(x) + liin inff |V o min{uy, v, }ldu,(x)
—00 o

h—o0 Q

< lim inf( |V pe max{uy, vi}ldue(x) + f |V o min{uy,, vh}ld,ua(x))
Ql Ql

h—o0

< lim inf( f IV vl (x) + f IV ety ()
h—co {xeQq:up<vy} {x€Qq:up>vy}

. f IV otildiaa () + f 9 oo vl ()
{xeQ:up<vy} {xeQq:up>vy}

:liminff |V£wuh(x)|dya(x)+li}rlninff |V govi(X)|dpa(x)
Q] —00 1

h—oo Q

< lim f IV gon(0)ldpt(x) + Jim f IV o vi(X)ldpe (x)
—00 Q —00 Q

= |V 2oul(Q1) + [V 2oVI(Q)).

2.2. Basic properties of Laguerre perimeter

This subsection presents a new type of perimeter: the Laguerre perimeter (L*-perimeter in short).
Moreover, we establish the related results for it.
We define the L£%-perimeter of E C Q as follows:

Pr(E.Q) = [V 16(Q) = sup f div £ (V) djt (), (2.6)
eeF(Q)  JE

where F (Q) is defined in Section 2.1. Specifically, we will also use the notation
Ps(E,R?) = P (E).
We immediately deduce Lemma 2.1 by replacing f with 1g.
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Corollary 2.7. (Lower semicontinuity of Pre). Assume 1g, — 1g in L, (Q,du,), where E and E,
k € N, are subsets of Q, then
P (E,Q) < likm inf P go(E;, Q).

Additionally, utilizing Theorem 2.6 and selecting u = 1z and v = 1 for every compact subsets
E, F in Q;, we can promptly acquire the subsequent corollary. According to Xiao and Zhang’s result
in [14, Section 1.1 (iii)], the equality condition of (2.7) is also provided by us.

Corollary 2.8. For all compact subsets E, F within Q, we get
Pr(ENF,Q)+ Pr(EUF, Q) < Pre(E, Q)+ Ppo(F,Q), 2.7

where Q) is an open set defined in (1.3). Especially, if Pyo(E\ (ENF),Q1)- Pp(F\(FNE), Q) =0,
the equality of (2.7) holds true.

Proof. Given that (2.7) is true, we only need to demonstrate that its opposite inequality is also valid,
provided that the above condition is satisfied. It is evident that the condition P.(E \ (E N F), Q) -
Ppr(F\(ENF), Q) =01leads to Ppe(E\ (ENF),Q1) =0o0r Pp(F\(ENF),Qp) =0. Suppose
Ppr(E\(ENF),Qp) =0.By(2.7), we have

Pre(E, Q) = Pr(EN(ENF)U(ENF), Q) (2.8)
< PLQ(E \ (E N F),Ql) + PL(Y(E N F,Ql)
= PLG(E N F,Q]).

Via(26)and EUF = FU(E\ (ENF)), we have

Pr(F,Q;) = sup { f diVLaéP(x)dﬂa(x)}
peF(Q)  JF

sup | f div 2o @()dpta () - f div 2o p(0)dpta ()|
YeF (1) EUF E\(ENF)

< sup | f div o () ()] (2.9)
¢eF(Q)) ~ JEUF

+ sup { f div Lngo(x)dpa(x)}
PeF () E\(ENF)

= P_Ea(EUF,Q]) +P£n(E\(EﬂF),Ql)
= PL(Y(E U F,Q]).

Combining (2.8) with (2.9) deduces that
PL(Y(E,Q]) + Pﬂr(F,Q]) < PLQ(E UF Q)+ P_CU(E NF,Q),

the desired result can be obtained from it. Another similar case can be proven as well, but the details are
omitted.

We will now demonstrate that sets with finite L*-perimeter satisfy the Gauss-Green formula.
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Theorem 2.9. (Gauss-Green formula). Let E C Q be subset with finite L*-perimeter. Then we have

f div o (x) dptg (%)

E

(VX1 (x), -+, VXaa(x) - w()dH " (x)

OE*

fi‘“%_x" (Dw(x)d
- — pi(X)w(x)dx,
E Vi Y

1

where the outward normal to E is represented by the unit vector i(x) and div ro() is defined in (2.4).

Proof. By calculating, we have

f div £op (x) dpt (%)

E

d 0
_ f (Z \/Z-—go,-(x))a)(x)dx
E\im x;

d
9
= f div(VEei (D)), -+, Vraga(w(x)dx — f D, V()7 —w(x)dx
E E " i

1 &1
- _ — d
> fE Z‘ P

- f (VX@1(x), -+, VXapa(x)) - Rw(x)dH" (x)

f Z Vapi(x) 5 - w(x)dx—— f Z \/_sol(xm(x)dx

_ _f (\/x_1<,01(X),~-- , \/X_dﬂpd(x))'ﬁw(x)dﬂd_](x)

d 1

- f ZL (X)w(x)dx,
RN

where we have used the classical Gauss-Green formula and the following facts regarding the derivatives
of w(x):

LY/e
dx; [n T(a;+ 1)

‘ xjaje_xj 1 —Xi @i —Xi . ;=1
n T 0T I (—e ™M ix " + e " x )
=1 (@j+ DI(a; +1)

= (- 1+ Do)
Xi
for 1 <i < d. This completes the proof.

Lemma 2.10. If a set E is in Q and has finite L*-perimeter, then

Pr(E, Q) = Pr(Q\E, Q).
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Proof. For any ¢ € T(Rf), since Ps.(E, ) < oo, then
sup f div pep(x)dp,(x) < oo.
peF (RY)

Via the extended Gauss-Green formula (Theorem 2.9) and taking into consideration the fact that ¢ has a
compact support, we obtain

fE div pe(x)dpta(x)
— Loai+i-x
- fE div 2o (01 (), - . » @a(0))dpte(x) - f ; 5 P
| (NE@@ e agao)- Rw(x)dH" (x)
.

d l+l_ d l+l_
+ f D () - f ;“ Ao

k=1
) (Vxr91(x), -+, Vxa@a(x)) - Rw(x)dH (x)
E
- _ d'a()d(,()—f 2 () dpta(x)
fECwL(pxux kzz; \/_cpx/xx

Xi
_ f div o ()t (1),

where the unit exterior normal vector to E at x is denoted by 7i(x). The arbitrary nature of ¢ results in
the attainment of
Pre(E,Q) = Pr(Q\E, Q)

through the use of supremum.

2.3. Coarea formula of L*-BV functions and the Sobolev inequality
Below we prove the coarea formula and the Sobolev inequality for £*-perimeter.

Theorem 2.11. Let QO be an open set defined in (1.3). If f € BV pa(Q)), then

+00

[V £o fI(Q) = f P (E,, Q)dt, (2.10)

where E, = {x € Q, : f(x) >t} fort € R.

Proof. At first, assume
@ = (@1, 92, .., @a) € CL(Q1,RY).
It is straightforward to prove that fori = 1,2,...,d,

0 oo 0
0 ) = [ (o)
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and

CL’,"F%—XZ' +oo CL’,"l'%—Xi
fg F)=— = ey () = f ( fE T%(x)dm(x))dr,

where the proof of [9, Section 5.5, Theorem 1] displays the latter. Therefore,

FV o) (x) = f ( fE div £ p(x)dpa(x))dr.

Q) t

Therefore, we conclude that for all ¢ € F(Q,),

+00

J()div go@(x)dpta(x) < f P re(Er, y)dt.

(o)} —00

Furthermore,

—+00

|V_£af|(Q]) < f PLa(E,, Ql)dt.

—00

Secondly, it can be assumed without any loss of generality that we simply need to confirm that

+00

V2 flQ) f P(E,, Q)

—00

holds for f € BV ;.() () C*(Q;). The idea of [15, Proposition 4.2] can be referenced in this proof.

Denote by
m(t) = f
{xeQy: f(0)<r}

+00 ) d 5
LO m’(1)dt = fgl ‘; \/)Tia_xif(X)'dﬂa(x),

Define the following function g, as

d

0
V(0] ().
1 Xi

i=

Obviously,

0, if s<t,
gn(s):=3h(s—1), ift<s<t+1/h,
1, ifs>t+1/h,

where 1 € R. Set the sequence v,(x) := g,(f(x)). At this time, v, — 1g, in LY(Q,du,). In fact,

Va(x) = 1 duo(x) = f lgn(f (%) = ldpa(x)

{xeQ:t< f(x)<t+1/h}

< f du,(x) — 0.
{xeQ:t<f(x)<t+1/h}

Ash — oo, {xeQ:t< f(x) <t+1/h} — 0, we then obtain

Q)

f IV avi(20)ldpta(x)
Q)
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_ f IV 2o (R C0) — D)ldpta(0)
{xeQq:t<f(x)<t+1/h}

+ f IV 2o ldpa ()
{xeQq:f(x)>t+1/h}

d

= h f{ > «/Z%ﬂx)iduw(x).

€Quu<f(x)<r+1/h} " 34

By utilizing Theorem 2.4 and taking the limit as 4 — oo we can derive

IV2elg () < limsup ||V gavi(X)lduq(x)

h—oo Q
d
. 0 2.11
= hlim supf ‘ Z \/;ia—f(X)‘d/la(x) (2.11)
h—oo  J(xeQuu<fo<t+1/h) ' 425 Xi
=m'(1).

Integrating (2.11) reaches

+00 +00
f Pro(E,, Q))dt < f m'(1)dt

o0 —00

d
0
- [ | 121] Vi ()

< IV ge f(Oldpta(x).

Q

Ultimately, through approximation and using the lower semicontinuity of the L*-perimeter, we can
deduce that (2.10) is valid for every f € BV ;. (Qy).

We can eventually establish the Sobolev inequality and the isoperimetric inequality for L*-BV
functions. Since the domain Q; is a reasonable substitute of , we can obtain the isoperimetric
inequality and the Sobolev inequality for f € BV ;.(£);), where €, is given in (1.3).

Theorem 2.12.
(1) (Sobolev inequality). Let Q be an open set defined in (1.3). Then for all f € BV r.(Q1), we have

Al o S IV f1(Q0). (2.12)

Ld-T(Qy,duq)
(1) (Isoperimetric inequality). Suppose that E is a bounded set having finite L*-perimeter in Q. Then
Ho(E)T S Pro(E, Q). (2.13)

(iii) The two statements mentioned above are equivalent.
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Proof. (i) Let
fk S C?(Ql) N B(V_LQ(QI), k=1,2,...,
such that
fe = fin LNQy, du,),
fgl IV e frOldpa(x) = Vo f | (Q1).
Since Q; = Q\{x € Ri :diel,--- ,dsuchthat 4/x; < 1}, thenforanyi = 1,--- ,d, we obtain /x; > 1.
It is easy to see that

1
2

d d
V@) < IV e f(x)] = (Z ( \/Eaf(x))z) (2.14)
1 l

i=

After applying Fatou’s lemma and the weighted Gagliardo-Nirenberg-Sobolev inequality, we get

< liminf
A1l gy < HEIE LA

LT (@ dp)
< gl_)n; IV Al @ dun)
< /}1_{2, IV 2o fllv@duey = IV 2o f1(€21),
where the relation between the gradient V and the Laguerre gradient V s has been applied in (2.14).
(i1) By setting f = 1g in (2.12), it can be demonstrated that (2.13) is true.
(iii) Apparently, the implication from (i) to (ii) has been proved. The statement below demonstrates

that (ii) implies (i). Let 0 < f € C°(€). Applying the coarea formula from Theorem 2.11 and (ii), we
obtain

+00 —+00
f|VLﬂf(X)|d,ua(x)=f |VLa1E,|(Ql)dth E,|'T dt,
Q) 0 0

where E; = {x € Q; : f(x) > t}. Let

£, = minft, f} & x(1) = ( f fﬂdl(X)dua(x)) VieR.
Q

d-1
d

One can easily observe that

tim e = ([ Ul duao)

Q
Moreover, we can verify that y(7) increases monotonically on (0, co) and for any positive 4,

d—-1
d _
0 <x(t+m)—x0 < ( | 1)~ fOF ) < HEST.
Q)
Then y(#) can be considered a Lipschitz function locally and y’(¢) < |Et|d%,1 fora.e. t € (0, ). Thus,
d_ T = IS
([ 1rerrdum) = f X (0di < f ) dt
Q 0 0

< f ¥ 1o (Ol
Q)
Finally, Theorem 2.4 establishes the validity of (2.12) for all f € BV £.(Qy).
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As a direct result of the proof of (i) in Theorem 2.12, we can get the following corollary.

Corollary 2.13. Let | < p < d and let Q, be an open set defined in (1.3). For any f € W' (Q,) one has

Al ar S Ve fllr@dyo)- (2.15)
Ldip (Ql ’d/-la)

Proof. For some y > 1 to be fixed later, via the Lemma 2.1 (1) and Holder inequality we obtain

( If(X)Ifldua(X))
Q
< fg IV o e (0)

1
P

-1
s( fg |f<x>|"?—?)dua<x>) (Q IVLaf(X)Ipdﬂa(X))

Choosing
M Cy
d-p
and noting
)
d-p’

then we conclude that (2.15) holds true.

3. Laguerre mean curvature

The main concern of this section is to determine if the mean curvature of every set with finite
L%perimeter in ©; C R? belongs to L'(€, du,). To obtain comprehensive information on the classical
case, kindly consult [13]. In order to prove Theorem 3.1, it is necessary to use the important result for
the Laguerre perimeter in Corollary 2.8. Therefore, we assume that the dimension d > 3 via Remark
2.5.

For a given u € L'(Q, du,), the functional corresponding to the £%-perimeter, known as Massari
type, is given by

Fur(E) i= Pro(E, Q) + f u(X)dpta(x),
E
where an arbitrary set of finite £*-perimeter in R? is denoted by E.

Theorem 3.1. For every set E C R? that has finite L% -perimeter; a function u belonging to L'(R%, du,)
exists such that

yu,'go(E) < QM,L(Y(F)

is satisfied for every set F C Q, with finite L*-perimeter.
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Proof. Initially, we must identify a function u € L'(Q;, du,) for a specified set E such that
9M’L11(E) S gu,Ltt(F) (3.1)

is true for every F with either F C E or E C F, then Theorem 3.1 is demonstrated, indicating that (3.1)
applies to every F' C Q;. By including the inequality (3.1) that pertains to the test sets EN F and E U F,
we have

P(E, Q) + [, u(x)dpa(x) < Pre(ENF, Q) + [ u(x)due(x),
Po(E, Q) + [, u(0)dpa(x) < Pro(E U F, Q) + [, u(x)dpia(%).

After taking that
Pro(ENF,Q)+ Ppr(EUF, Q) < Pre(E, Q)+ Ppo(F,Q), (3.2)

we can get

2P re(E, Q) + 2 f u(x)du,(x)
E

< PLQ(EﬂF,Q1)+PLQ(EUF,QI)+f
EnF

u(x)dpie(x) + f u(x)dpta(x)

EUF

S Pro(E, Q) + Ppo(F, Q) + f u(x)dpta(x) + f u(x)dpo(x),

E F

that is, (3.1) holds for arbitrary F'. Moreover, if (3.1) is vaild for a set F' C E, then it is also applicable to
the set F such that E C F,i.e. Q;\F C Q|\E,

P(E Q) + f (X))

E

= Pr(Q)\E, Q) +f

Q\E

() (1) — f WX () + f u(x)djta ()
1\F O\E E

u(X)dpio(x) = f

O\E

u(X)dpio(x) + fE u(x)dpte(x)

< Pro(O\F, Q) + f

Q

u(xX)djta(x) - f U)o () + f u(xX)dpta (%)

Q\E E

= P.C"(F’Ql)+f

Q\F

= Fure(F) - f u(xX)dpta(x) + f u(x)dpq(x) — f u(x)dpiq(x)
F Q\F

Q\E

+ f u(x)dto(x)
E
= Fur(F) + f

F\E

u(x)dug(x) — f u(x)dpe(x)

(Q\E)/(Q1\F)
= ﬂu,LQ(F)a

where we have utilized lemma 2.10 along with the property that u equals zero outside of the set E.

Therefore, it is sufficient to prove that the integrability of u on E is established and that (3.1) is valid for
every FF C E.
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Step 1. Let h(-) be a measurable function on E such that 2 > 0 and fE h(x)du,(x) < oo, and let A be a
measure that is both positive and totally finite:

A(F) = f h(x)du,(x), F C E.
F

Since A(F) = 0 if and only if u,(F) = 0 is clearly true. For 4 > 0 and F C E, we will examine the
following functional
ng/l(F) = PLH(F, Ql) + AAN(E \ F).

A commonly recognized fact is that any minimizing sequence is compact within Lll()c(Ql ,duy,), and this

functional is lower semi-continuous in regards to the same convergence. Thus, we can deduce that, for
any positive value of A, there is a solution E, to the problem:

ZF2(F) — min, F C E.

Select a strictly increasing sequence of positive numbers {4;} that tend to co and use E; = E, to refer to
the associated solutions, so that Vi > 1,

Fu(E) < F,(F),YVFCE. (3.3)
Giveni < j. Let F = E; N E;. It follows from (3.3) that
FE) < F(ENE),
that is,
Pro(E, Q1)+ UAE\E) < Ppe(E;NE;, Q)+ LAE N\ (E;NE))),
this suggests

P.L‘Y(Ei,Ql)"'/lif

E\E;

h(x)dpa(x) < Pro(E; O E; Q) + A; f h(x)dpte (%).

E\(EiﬁEj)
A direct computation gives

P_UY(E,',Ql) < /l,f h(X)d,Lla(X) + PLU(Ei N Ej,Q]).

ENE;

Conversely, by choosing F' = E; U E; C E from (3.3), we can obtain .7, (E;) < .7, (E; U E}). Hence,

PLIJ(EJ',QI) +/ljf

E\E,

B0, () < Po(EVER Q)+ [ bW

E\(E,‘UE]')
equivalently,

PL”(Ej’ Q)+ /l]f l’l(X)d,Lla,(X) < PLQ(EI' U Ej,Ql)

E\E;

which implies that

PLQ(Ei,Ql)'FPLa(Ej,Q])'F/ljf h(X)d/.la(X)

E\E;
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< P_La(E,' U Ej, Ql) + /L' f ]’Z(X)d/la()(f) + P_LW(E,' N Ej, Ql)
E\E;

Remember that / is a positive number. The previous estimate, along with (3.2) and the condition 4; < A4;,
suggests that

(/1j — L)A(E; \ Ej) = (/lj - /li)f h(x)dp.(x) = 0,
E\E;

i.e., E; C E; and the sequence of minimizers {E;} is monotonically increasing. Conversely, by letting
F=FE, we get

PLQ(E,',QI) + /llA(E \ Ez) < PLQ(E,QI) + /LA(E \ E) = PLQ(E,Ql) Yi>1,

which infers that E; converges to E in a monotonic manner and within L}OC(R‘L du,). Using Lemma 2.1
(i1), we have

PL(Y(E,QI) < hm il'lfPLa(El',Ql) < PL(W(E,QI),
Pro(E,Q)) < liminf P o (E;, Q) < limsup P po(E;, Q1) < P ro(E),

i—o0

which means
P_CQ(E,Ql) = llIIl PLQ(E,',QI). (34)

Step II. Define 1o = 0 and E, = 0, and let

—Aih(x), x € E\E;_, i > 1,
u(x) = .
0, otherwise.

It is evident that u is negative almost everywhere on E, and

f |u(0)ldpo(x) = f |u(0)ldpo(x)
R¢ o Eir1\E;

[ee)

= f At () ()
i=0 Y Ein\E;

= > A AE\E).
i=0

In (3.3), taking F = E;;;, we have
Proa(E;, Q1) + LAE\ E}) < Pra(Eis1, Q1) + LAE N Eiyy),

that is, for every i > 0,
ANE\E) < Pro(Epy1, Q) — Pro(E;, Q).
For values of N that are large enough, we have

N

N
D AAERNE) < ) [Pro(Eit, Q) = Pro(Ei Q)]
i=0

i=0
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= Pro(En,€) — Po(Ep, Q1)
= PL"(EN,-Q-I)-

Letting N — o0, (3.4) indicates that
ANE\E;) < Pra(E, ).
i=0

Let’s assume an additional condition that O < A;,; — A; < ¢, i > 0, where ¢ is a constant that doesn’t
depend on i, we can say that for any N > 0,

N N
D (i = WAEN\E) < ¢ D AEipr\E)
i=0 i=0

N

= h(x)du,
C;LH—]\EI' (a0

e f h()dpa (),
U (Eis1\E)

which gives

D (it = WAE\E)) < cA(E),
i=0
Then

fR Ol (x) = D At AEwi \ED
+ i=0
= > (it = WAE\E) + > LA(E\E))
i=0 i=0
S CA(E) + PL(Y(E, Q]) < 0,

In conclusion, u € L'(R?, du,).
Step I11. We contend that the inequality

P (B, Q) < Pro(F, Q1) + D LAENE; )\F) (3.5)
j=1

is vaild for all F C E and every i > 1.
Ifi = 1, then E;_; = Ey, = (. Substituting this into (3.5) yields

Pro(E, Q) < Ppe(F, Q) + LAE\F),

which coincides with (3.3) fori = 1.
Now we assume that (3.5) holds for a fixed i > 1 and every F C E. Take F N E; as a test set. Observe
that {E;} is increasing. It is evidently clear to show that

(EN\E;-)\(FNE;) = (E\E;-)\F.
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Then

Pr(Ei Q) < Pp(F N E Q) + ) LA(ENE; D\F 0 Ey)
j=1

= P(F N E, Q)+ )L LA(ENE; D\F).
=1
Conversely, .#,,,, is minimized by E;,,. Hence,
T (Eir1) £ Fp (FUE)),

and noticing that
E\E; = (E\Ei11) U (Ein1\E)),

it is possible for us to obtain
E\(F U E;) = (E\Eix)\F) U ((Ein \ED\F).
This deduces

Pro(Eis1,Q21) + i A(E\Ei11) < Ppe(F U E;, Q) + i A(E\(F U E)))
S Pp(FUE;, Q)+ i A(E\Ei1)\F)
+ Aint A((Ei \ED\F).

Therefore, we obtain that

Pre(Ei, Q1) + Pro(Eiv1,81) + At A(E\E 1)

< Pp(F N E, Q)+ ) LAENE; )\F)

=
+ Ppo(FUE;, Q) + Lt A(E\E )\F) + 4 A((Ei \ED\F)
i+1
< Pra(E;, Q) + Ppo(F, ) + Z AA(ENE-)\F) + i A(E\Ei . )\F)
=
i+1
< Pro(Ei Q) + Pro(F, Q1) + ) LAENE )O\F) + 4t ACE\Ei),
=

i.e., (3.5) is true for i + 1. Last but not least,

Pﬂy(E,QO = hm P_C(Y(E,',Ql)
< Ppo(F,Q) +1im > LAWENE - )\F)
j=1
= Pra(F, Q) - f u(X)dptq (x)
VR GENE-D\F

= Pre(F, L)) - f u(x)dpio (%),
E\F

which gives (3.3).
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