Research article

Nonlinear Pauli equation

  • Received: 15 June 2023 Revised: 15 January 2024 Accepted: 16 January 2024 Published: 18 January 2024
  • 81Sxx, 81P10, 81Q80

  • In the framework of the self-consistent Maxwell-Pauli theory, the non-linear Pauli equation is obtained. Stationary and nonstationary solutions of the nonlinear Pauli equation for the hydrogen atom are studied. We show that spontaneous emission and the related rearrangement of the internal structure of an atom, which is traditionally called a spontaneous transition, have a simple and natural description in the framework of classical field theory without any quantization and additional hypotheses. The behavior of the intrinsic magnetic moment (spin) of an EW in an external magnetic field is considered. We show that, according to the self-consistent Maxwell-Pauli theory, in a weak magnetic field, the intrinsic magnetic moment of an EW is always oriented parallel to the magnetic field strength vector, while in a strong magnetic field, depending on the initial orientation of the intrinsic magnetic moment, two orientations are realized: either parallel or antiparallel to the magnetic field strength vector.

    Citation: Sergey A. Rashkovskiy. Nonlinear Pauli equation[J]. Communications in Analysis and Mechanics, 2024, 16(1): 94-120. doi: 10.3934/cam.2024005

    Related Papers:

  • In the framework of the self-consistent Maxwell-Pauli theory, the non-linear Pauli equation is obtained. Stationary and nonstationary solutions of the nonlinear Pauli equation for the hydrogen atom are studied. We show that spontaneous emission and the related rearrangement of the internal structure of an atom, which is traditionally called a spontaneous transition, have a simple and natural description in the framework of classical field theory without any quantization and additional hypotheses. The behavior of the intrinsic magnetic moment (spin) of an EW in an external magnetic field is considered. We show that, according to the self-consistent Maxwell-Pauli theory, in a weak magnetic field, the intrinsic magnetic moment of an EW is always oriented parallel to the magnetic field strength vector, while in a strong magnetic field, depending on the initial orientation of the intrinsic magnetic moment, two orientations are realized: either parallel or antiparallel to the magnetic field strength vector.



    加载中


    [1] P. A. M. Dirac, Relativity Quantum Mechanics with an Application to Compton Scattering, Proc. Roy. Soc, London. A, 111 (1926), 405–423. https://doi.org/10.1098/rspa.1926.0074 doi: 10.1098/rspa.1926.0074
    [2] P. A. M. Dirac, The Compton Effect in Wave Mechanics. Proc. Cambr. Phil. Soc., 23 (1927), 500–507. https://doi.org/10.1017/S0305004100011634 doi: 10.1017/S0305004100011634
    [3] W. Gordon, Der Comptoneffekt nach der Schrödingerschen Theorie, Zeit. f. Phys., 40 (1926), 117–133. https://doi.org/10.1007/BF01390840 doi: 10.1007/BF01390840
    [4] O. Klein, Y. Nishina, Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac, Z. Phys. 52 (1929), 853–869. https://doi.org/10.1007/BF01366453 doi: 10.1007/BF01366453
    [5] W. E. Lamb, M. O. Scully, The photoelectric effect without photons, in Polarization, Matter and Radiation. Jubilee volume in honour of Alfred Kasiler, (1969), 363–369, Press of University de France, Paris.
    [6] M. D. Crisp, E. T. Jaynes, Radiative Effects in Semiclassical Theory, Phys Rev, 179 (1969), 1253–1261. https://doi.org/10.1103/PhysRev.179.1253 doi: 10.1103/PhysRev.179.1253
    [7] C. R. Stroud Jr, E. T. Jaynes, Long-Term Solutions in Semiclassical Radiation Theory, Phys Rev A, 1 (1970), 106–121. https://doi.org/10.1103/PhysRevA.1.106 doi: 10.1103/PhysRevA.1.106
    [8] R. K. Nesbet, Spontaneous Emission in Semiclassical Radiation Theory, Phys Rev A, 4 (1971), 259–264. https://doi.org/10.1103/PhysRevA.4.259 doi: 10.1103/PhysRevA.4.259
    [9] A. O. Barut, J. F. Van Huele, Quantum electrodynamics based on self-energy: Lamb shift and spontaneous emission without field quantization, Phys Rev A, 32 (1985), 3187–3195. https://doi.org/10.1103/PhysRevA.32.3187 doi: 10.1103/PhysRevA.32.3187
    [10] A. O. Barut, Y. I. Salamin, Relativistic theory of spontaneous emission, Phys Rev A, 37 (1988), 2284. https://doi.org/10.1103/PhysRevA.37.2284 doi: 10.1103/PhysRevA.37.2284
    [11] A. O. Barut, Quantum-electrodynamics based on self-energy, Phys Scripta, 1988 (1988), 18. https://doi.org/10.1088/0031-8949/1988/T21/003 doi: 10.1088/0031-8949/1988/T21/003
    [12] A. O. Barut, J. P. Dowling, J. F. Van Huele, Quantum electrodynamics based on self-fields, without second quantization: A nonrelativistic calculation of g-2, Phys Rev A, 38 (1988), 4405. https://doi.org/10.1103/PhysRevA.38.4405 doi: 10.1103/PhysRevA.38.4405
    [13] A. O. Barut, J. P. Dowling, QED based on self-fields: a relativistic calculation of g-2, Zeitschrift für Naturforschung A, 44 (1989), 1051–1056. https://doi.org/10.1515/zna-1989-1104 doi: 10.1515/zna-1989-1104
    [14] A. O. Barut, J. P. Dowling, Quantum electrodynamics based on self-fields, without second quantization: Apparatus dependent contributions to g-2. Phys Rev A, 39 (1989), 2796. https://doi.org/10.1103/PhysRevA.39.2796 doi: 10.1103/PhysRevA.39.2796
    [15] A. O. Barut, J. P. Dowling Self-field quantum electrodynamics: The two-level atom, Phys Rev A, 41 (1990), 2284–2294. https://doi.org/10.1103/PhysRevA.41.2284 doi: 10.1103/PhysRevA.41.2284
    [16] M. D. Crisp, Self-fields in semiclassical radiation theory, Phys Rev A, 42 (1990), 3703. https://doi.org/10.1103/PhysRevA.42.3703 doi: 10.1103/PhysRevA.42.3703
    [17] M. D. Crisp, Relativistic neoclassical radiation theory, Phys Rev A, 54 (1996), 87. https://doi.org/10.1103/PhysRevA.54.87 doi: 10.1103/PhysRevA.54.87
    [18] S. A. Rashkovskiy, Quantum mechanics without quanta: 2. The nature of the electron, Quantum Studies: Mathematics and Foundations, 4 (2017), 29–58. https://doi.org/10.1007/s40509-016-0085-7 doi: 10.1007/s40509-016-0085-7
    [19] S. A. Rashkovskiy, Classical-field model of the hydrogen atom, Indian J Phys, 91 (2017), 607–621. https://doi.org/10.1007/s12648-017-0972-8 doi: 10.1007/s12648-017-0972-8
    [20] S. A. Rashkovskiy, Nonlinear Schrödinger equation and semiclassical description of the light-atom interaction, Prog Theor Exp Phys, 2017 (2017), 013A03. https://doi.org/10.1093/ptep/ptw177 doi: 10.1093/ptep/ptw177
    [21] S. A. Rashkovskiy, Classical field theory of the photoelectric effect, in Quantum Foundations, Probability and Information, A. Khrennikov, B. Toni (eds.), STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, Springer International Publishing AG, (2018), 197–214. https://doi.org/10.1007/978-3-319-74971-6_15
    [22] S. A. Rashkovskiy, Nonlinear Schrodinger equation and classical-field description of thermal radiation, Indian J Phys, 92 (2018), 289–302. https://doi.org/10.1007/s12648-017-1112-1 doi: 10.1007/s12648-017-1112-1
    [23] S. A. Rashkovskiy, Nonlinear Schrödinger equation and semiclassical description of the microwave-to-optical frequency conversion based on the Lamb–Retherford experiment, Indian J Phys, 94 (2020), 161–174. https://doi.org/10.1007/s12648-019-01476-w doi: 10.1007/s12648-019-01476-w
    [24] C. M. Bustamante, E. D. Gadea, A. Horsfield, T. N. Todorov, M. C. G. Lebrero, D. A. Scherlis, Dissipative equation of motion f or electromagnetic radiation in quantum dynamics, Phys Rev Lett, 126 (2021), 087401. https://doi.org/10.1103/PhysRevLett.126.087401 doi: 10.1103/PhysRevLett.126.087401
    [25] E. D. Gadea, C. M. Bustamante, T. N. Todorov, D. A. Scherlis, Radiative thermalization in semiclassical simulations of light-matter interaction, Phys Rev A, 105 (2022), 042201. https://doi.org/10.1103/PhysRevA.105.042201 doi: 10.1103/PhysRevA.105.042201
    [26] E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules, Phys Rev, 28 (1926), 1049. https://doi.org/10.1103/PhysRev.28.1049 doi: 10.1103/PhysRev.28.1049
    [27] A. O. Barut, Schrödinger's interpretation of $\psi $ as a continuous charge distribution, Annalen der Physik, 500 (1988), 31–36. https://doi.org/10.1002/andp.19885000109 doi: 10.1002/andp.19885000109
    [28] L. D. Landau, E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory Vol 3, Pergamon Press 3rd ed., 1977.
    [29] V. B. Berestetskii, E. M. Lifshitz, L. P. Pitaevskii, Quantum Electrodynamics Vol. 4, Butterworth-Heinemann, 1982.
    [30] S. A. Rashkovskiy, Self-consistent Maxwell-Pauli theory, Indian J Phys, 97 (2023), 4285–4301. https://doi.org/10.1007/s12648-023-02760-6 doi: 10.1007/s12648-023-02760-6
    [31] S. A. Rashkovskiy, Self-consistent Maxwell-Dirac theory, preprints, 2022, 2022040168. https://doi.org/10.20944/preprints202204.0168.v1
    [32] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields Vol.2, Butterworth-Heinemann, 1975.
    [33] H. Goldstein, Classical Mechanics, Addison-Wesley Press, Inc., Reading, Massachusetts, 1959.
    [34] R. Schiller Quasi-Classical Theory of the Spinning Electron. Phys Rev, 125 (1962), 1116–1123.
    [35] L. Landau, E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjetunion, 8 (1935), 153–169. https://doi.org/10.1016/B978-0-08-036364-6.50008-9 doi: 10.1016/B978-0-08-036364-6.50008-9
    [36] T. L. Gilbert, A phenomenological theory of damping in ferromagnetic materials, IEEE Trans. Magn., 40 (2004), 3443. https://doi.org/10.1109/TMAG.2004.836740 doi: 10.1109/TMAG.2004.836740
    [37] A. Einstein, L. Infeld, Evolution of physics, Simon and Schuster, 1938.
  • cam-16-01-005-s001.pdf
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(844) PDF downloads(127) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog