Communications in Analysis and Mechanics

Communications in Analysis and Mechanics, 16(1): 94-120. DOI: 10.3934/cam. 2024005
Received: 15 June 2023
Revised: 15 January 2024
Accepted: 16 January 2024
Published: 18 January 2024
http://aimspress.com/journal/cam

Research article

Nonlinear Pauli equation

Sergey A. Rashkovskiy*

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Vernadskogo Ave., 101/1, Moscow, 119526, Russia

* Correspondence: Email: rash@ipmnet.ru; Tel: +7-906-031-8854.

Appendix

Let us calculate the integral (143).
Let's move on to nondimensional coordinates, where the Bohr radius a_{B} is taken as the scale. In this case

$$
\begin{equation*}
b=b_{0} a_{B} \tag{A1}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{0}=\iint\left|\mathbf{r}-\mathbf{r}^{\prime}\right||\psi(\mathbf{r})|^{2}\left|\psi\left(\mathbf{r}^{\prime}\right)\right|^{2} d V^{\prime} d V \tag{A2}
\end{equation*}
$$

Is the nondimensional parameter, which is calculated using nondimensional coordinates.
In particular, for the ground state of the hydrogen atom

$$
\begin{equation*}
|\psi(\mathbf{r})|^{2}=\frac{1}{\pi} \exp (-2 r) \tag{A3}
\end{equation*}
$$

We introduce the function

$$
\begin{equation*}
F(\mathbf{r})=\int\left|\mathbf{r}-\mathbf{r}^{\prime}\right|\left|\psi\left(\mathbf{r}^{\prime}\right)\right|^{2} d V^{\prime} \tag{A4}
\end{equation*}
$$

Then we write (A2) in the form

$$
\begin{equation*}
b_{0}=\int F(\mathbf{r})|\psi(\mathbf{r})|^{2} d V \tag{A5}
\end{equation*}
$$

Obviously,

$$
\begin{equation*}
\Delta F=2 \Phi(\mathbf{r}) \tag{A6}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi(\mathbf{r})=\int \frac{\left|\psi\left(\mathbf{r}^{\prime}\right)\right|^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d V^{\prime} \tag{A7}
\end{equation*}
$$

The function $\Phi(\mathbf{r})$ satisfies the equation

$$
\begin{equation*}
\Delta \Phi=-4 \pi|\psi(\mathbf{r})|^{2} \tag{A8}
\end{equation*}
$$

$$
\begin{gather*}
\text { Obviously, as } r \rightarrow \infty \text {, the functions } F(\mathbf{r}) \text { and } \Phi(\mathbf{r}) \text { behave as } \\
 \tag{A9}\\
F(\mathbf{r}) \rightarrow r
\end{gather*}
$$

and

$$
\begin{equation*}
\Phi(\mathbf{r}) \rightarrow \frac{1}{r} \tag{A10}
\end{equation*}
$$

In addition, these functions have bounded limits as $r \rightarrow 0$, which can be easily calculated using (A3):

$$
\begin{align*}
& F(0)=4 \int_{0}^{\infty} r^{3} \exp (-2 r) d r=\frac{3}{2} \tag{A11}\\
& \Phi(0)=4 \int_{0}^{\infty} r \exp (-2 r) d r=1 \tag{A12}
\end{align*}
$$

Because $|\psi(\mathbf{r})|^{2}$ depends only on r, then the function $\Phi(\mathbf{r})$ also depends only on r. Therefore, equation (A8), taking into account (A3), takes the form

$$
\begin{equation*}
\frac{d^{2} r \Phi}{d r^{2}}=-4 r \exp (-2 r) \tag{A13}
\end{equation*}
$$

The solution of equation (A13) taking into account conditions (A10) and (A12) has the form

$$
\begin{equation*}
\Phi=-\frac{1}{r}(r+1) \exp (-2 r)+\frac{1}{r} \tag{A14}
\end{equation*}
$$

Then equation (A6) takes the form

$$
\begin{equation*}
\frac{d^{2} r F}{d r^{2}}=-2(r+1) \exp (-2 r)+2 \tag{A15}
\end{equation*}
$$

The solution of equation (A15) taking into account conditions (A9) and (A11) has the form

$$
\begin{equation*}
F=-\frac{1}{2 r}(r+2) \exp (-2 r)+r+\frac{1}{r} \tag{A16}
\end{equation*}
$$

Substituting (A3) and (A16) into (A5), one obtains

$$
\begin{equation*}
b_{0}=\frac{35}{16} \tag{A17}
\end{equation*}
$$

or, taking into account (A1),

$$
\begin{equation*}
b=\frac{35}{16} a_{B} \tag{A18}
\end{equation*}
$$

AIMS Press

