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Abstract: In the framework of the self-consistent Maxwell-Pauli theory, the non-linear Pauli equation 

is obtained. Stationary and nonstationary solutions of the nonlinear Pauli equation for the hydrogen 

atom are studied. We show that spontaneous emission and the related rearrangement of the internal 

structure of an atom, which is traditionally called a spontaneous transition, have a simple and natural 

description in the framework of classical field theory without any quantization and additional 

hypotheses. The behavior of the intrinsic magnetic moment (spin) of an EW in an external magnetic 

field is considered. We show that, according to the self-consistent Maxwell-Pauli theory, in a weak 

magnetic field, the intrinsic magnetic moment of an EW is always oriented parallel to the magnetic 

field strength vector, while in a strong magnetic field, depending on the initial orientation of the 

intrinsic magnetic moment, two orientations are realized: either parallel or antiparallel to the magnetic 

field strength vector.  
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1. Introduction 

Quantum mechanics in its modern form arose as a result of attempts to explain the spectra of 

spontaneous emission of atoms. Unsuccessful attempts to explain these spectra within the framework 

of classical mechanics and classical electrodynamics (CED) have formed a firm conviction that 

classical physics is not able to explain the laws of the microcosm and this requires not only new 

mathematical methods, but also new physical concepts, such as quantization of matter, including 
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electromagnetic radiation, as well as new philosophical ideas, such as, for example, wave-particle 

duality, which has no analogues in classical physics. 

At the same time, along with the refined quantum approach, semiclassical theories have been 

actively developed and continue to develop, which consider the electromagnetic field (EF) (including 

electromagnetic radiation) as a classical field, fully described by Maxwell equations, while the electron 

is described by the wave equations of quantum mechanics: Schrödinger, Klein-Gordon, Pauli or Dirac 

equations, depending on the detail of the theory. Note that in most semiclassical theories, quantization 

of non-relativistic matter is not explicitly used, but solutions of the wave equation or its reduced forms 

- matrix equations are considered, i.e., in fact, non-relativistic matter is described as some continuous 

in space and time -field. At the same time, reasoning about the “quantization” of non-relativistic 

matter can arise only at the stage of interpreting solutions from the standpoint of corpuscular 

representations, although in most cases in semiclassical theories quantization is not considered at all, 

even in the form of interpretation. 

Semiclassical theories [1–25] have made significant progress in describing the basic quantum 

effects that make up the experimental foundation of modern quantum mechanics, such as the 

Compton effect [1–4,18], photoelectric effect [5,21], thermal radiation [22,25], spontaneous 

emission and spontaneous transitions [6–12,15–17,19,24], light-matter interactions [7,20], induced 

emission [6,7,20,22], Lamb shift [6,7,9], the Lamb-Retherford experiments [23], etc. It can be 

argued that at present there is not a single basic quantum effect that has not been described within 

the semiclassical theory. Thus, in fact, the myth is dispelled that the so-called quantum processes 

cannot be described within the framework of the concepts of classical physics, and this certainly  

requires quantization. 

At the same time, most semiclassical theories are characterized by incoherence: by refusing to 

quantize the EF, they retain (sometimes implicitly) quantum representations with respect to 

nonrelativistic matter (electrons). 

It was shown in [17–23] that it is possible to construct a completely classical theory that 

successively and consistently describes and explains all the basic quantum effects within the 

framework of classical field theory (CFT) without any quantization or other additional hypotheses. 

This theory is based on the original idea of Schrödinger [26,27] that the wave function 𝜓 describes the 

electric charge density. Taking this into account, at least from a formal mathematical point of view, we 

can talk about some real electrically charged material (for example, electron) field 𝜓, continuously 

distributed in space. In this case, the wave equation describing the wave function place the same role 

as Maxwell equations for the classical EF [18,19]. In this case, the atom can be considered (at least 

from a formal mathematical point of view) as an open cavity resonator that holds the wave field 𝜓 due 

to the electrostatic field of the nucleus [19]. According to CED, charges and currents continuously 

distributed in space create an EF, which, in turn, must act on them, changing the field 𝜓, and, hence, 

its charge density and current density. Thus, the potentials of the EF included in the wave equations of 

quantum mechanics are a superposition of the potentials of the external EF and the potentials of its 

own EF, created by an electrically charged material field 𝜓. 

As shown in [19], such a field 𝜓 must be described by the equation 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= [

1

2𝑚
(

ℏ

𝑖
∇ +

𝑒

𝑐
𝐀Σ)

2

− 𝑒(𝜑Σ − 𝜑0)] 𝜓 (1) 

where 
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𝜑0(𝐫) = −𝑒 ∫
|𝜓(𝐫′,𝑡)|

2

𝑅
𝑑𝑉′ (2) 

is the scalar potential of its own electrostatic field; 

𝜑Σ =
𝑒

𝑟
− 𝑒 ∫

|𝜓𝑡−𝑅 𝑐⁄ |
2

𝑅
𝑑𝑉′ (3) 

𝐀Σ =
1

𝑐
∫

𝐣𝑡−𝑅 𝑐⁄

𝑅
𝑑𝑉′ (4) 

are the scalar and vector potentials of the total (external, i.e., atomic nucleus and intrinsic, i.e., electron 

wave (EW)) EF; 𝐣 is the electric current density of the EW [28]; 𝑅 = |𝐫 − 𝐫′|. 

In the case when spontaneous emission can be described in the dipole approximation, equation 

(1), taking into account (2)–(4), is reduced to the form [19] 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= −

ℏ2

2𝑚
Δ𝜓 −

𝑒2

𝑟
𝜓 +

2𝑒

3𝑐3 𝐫𝐝 𝜓 (5) 

where 

𝐝 = −𝑒 ∫ 𝐫|𝜓|2𝑑𝑉 (6) 

is the dipole moment of the EW in the hydrogen atom. 

Nonlinear Schrödinger equation (5), (6) allows correctly describing the spontaneous emission 

spectrum of an atom, as well as all the basic quantum effects [18–23], which are traditionally described 

in the framework of QED using the second quantization apparatus [29]. For example, a change in the 

structure of a hydrogen atom during spontaneous emission, which in QED is called “spontaneous 

transition” and is explained by a zitterbewegung caused by fluctuations of the QED-vacuum, from the 

point of view of equation (5) turns out to be a completely trivial effect that has a simple explanation 

within the framework of CED [19]. Similarly, it was shown in [22] that all known laws of thermal 

radiation, from which, in fact, quantum physics began, follow directly from equation (5) without using 

any additional hypotheses, including the energy quantization hypothesis. 

A feature of equation (1) is that it excludes its own electrostatic field (2) from the total EF, but 

takes into account the non-stationary (radiative) component of its own EF. 

Despite the success of equation (1) (or, what is the same, equation (5)) in explaining a number of 

basic “quantum” regularities [18–23], from the point of view of CED, it remains inexplicable why the 

electrically charged electron field 𝜓 does not “feel” its own electrostatic field, but at the same time 

“feels” the electrostatic field of other charges and the non-stationary (radiation) component of its own 

EF, which occurs during spontaneous emission. 

To eliminate this paradox, a self-consistent Maxwell-Pauli theory was proposed in [30], which 

retains all the useful properties of equations (1) and (5). 

The theory [30] is described by the equations 

𝑖ℏ
𝜕Ψ

𝜕𝑡
= [

1

2𝑚𝑒
(

ℏ

𝑖
∇ +

𝑒

𝑐
𝐀Σ)

2

− 𝑒𝜑Σ − 𝑒𝛔𝐆Σ +
𝑒ℏ

2𝑚𝑒𝑐
𝛔𝐇Σ] Ψ (7) 

1

𝑐2

𝜕2𝐆Σ

𝜕𝑡2 − Δ𝐆Σ + 𝜘2𝐆Σ = 4𝜋𝑒(Ψ∗𝛔Ψ) (8) 

𝐇Σ = 𝐇 + 𝐇𝑒 , 𝐄Σ = 𝐄 + 𝐄𝑒 , 𝐆Σ = 𝐆 + 𝐆𝑒 (9) 

𝜑Σ = 𝜑 + 𝜑𝑒 , 𝐀Σ = 𝐀 + 𝐀𝑒 (10) 

rot𝐇Σ =
1

𝑐

𝜕𝐄Σ

𝜕𝑡
+

4𝜋

𝑐
𝐣 (11) 

div𝐄Σ = 4𝜋𝜌 (12) 



97 

Communications in Analysis and Mechanics  Volume 16, Issue 1, 94−120. 

where 

𝐇Σ = rot𝐀Σ, 𝐄Σ = −
1

𝑐

𝜕𝐀Σ

𝜕𝑡
− ∇𝜑Σ (13) 

𝜌 = −𝑒Ψ∗Ψ (14) 

𝐣 =
𝑒ℏ

2𝑚𝑒𝑖
 [(∇Ψ∗)Ψ − Ψ∗∇Ψ] −

𝑒2

𝑚𝑒𝑐
𝐀ΣΨ∗Ψ −

𝑒ℏ

2𝑚𝑒
rot(Ψ∗𝛔Ψ) (15) 

index Σ refers to total fields; the index 𝑒 refers to the its own fields created by the EW described by 

the spinor Ψ = (
𝜓1

𝜓2
) ; parameters without index refer to external fields created by external (with 

respect to the field Ψ) charges, currents and spins; 𝜘 is a constant with the dimension reciprocal of the 

length and satisfying the condition [30] 

𝜘𝑎𝐵 ≪ 1 (16) 

where 𝑎𝐵 =
ℏ2

𝑚𝑒𝑒2 is the Bohr radius. The constant 𝜘, which satisfies condition (10), makes the field 𝐆 

short-range, exponentially decaying at distances of the order of 𝑎𝐵 from the source. The constant 𝜘 is 

introduced into equation (8) in order to explain why the field 𝐆 has not been observed experimentally 

until now, and also why the electron field of an atom does not “feel” its own electrostatic field, but at the 

same time “feels” the electrostatic fields created by other atoms and ions. 

Further, we use synonyms: Pauli field, electron field, EW, denoting the same physical object: a 

classical electrically charged field described by equation (7). In what follows, for brevity, the 

components of the spinor Ψ will be called polarizations of the EW. Thus, in the Pauli approximation, 

the EW has two polarizations. 

The system of equations (7)–(15) is closed and self-consistent. It differs from a simple formal 

union of the Maxwell and Pauli equations in that the Pauli equation (7) includes an additional term 

– 𝑒𝛔𝐆Σ, where a new field 𝐆Σ satisfies equation (8). In this paper, we will show that this fundamentally 

changes the solutions of the combined system of Maxwell-Pauli equations and allows correctly 

describing the experimentally observed effects. 

It is easy to see that the system of equations (7)-(15) is gauge invariant: 

𝐀Σ → 𝐀Σ + ∇𝑓, 𝜑Σ → 𝜑Σ −
1

𝑐

𝜕𝑓

𝜕𝑡
 , Ψ → Ψ exp (−

𝑖𝑒

ℏ𝑐
𝑓) (17) 

where 𝑓 is an arbitrary function; in this case, the strength of the electric and magnetic fields, the field 

𝐆Σ , the density of the electric charge, the current density and other physical characteristics of the 

electron field do not change. 

The Maxwell-Pauli theory (7)-(15) is not relativistically invariant. The relativistically invariant 

Maxwell-Dirac theory, from which Eqs. (7)–(15) follow, was constructed in [31]. 

Note that in the theory [30] described by equations (7)–(15), there is one indefinite parameter 𝜘 

that satisfies condition (16). This parameter is external to this theory. It can be found, for example, by 

comparing the theoretical results with the corresponding experimental data. 

In this paper, for definiteness, we consider the case  

𝜘 = 0 (18) 

which corresponds to the long-range field 𝐆. The case 𝜘 ≠ 0 will be investigated in the next papers of 

this series. 

Equation (7), taking into account (14) and (15), implies the continuity equation 

𝜕𝜌

𝜕𝑡
+ div𝐣 = 0 (19) 
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expressing the charge conservation law, which is consistent with Maxwell equations (11) and (12). 

The electric charge of the Pauli field contained in some region of space Ω is equal to 𝑞 = ∫ 𝜌𝑑𝑉, 

where the integral is taken over the region Ω. In particular, the electric charge of the electron field of 

an electrically neutral atom whose nucleus has the charge 𝑍𝑒 is equal to ∫ 𝜌𝑑𝑉 = −𝑍𝑒, where 𝑍 =

1,2, … , and the integral is taken over the entire space. Taking into account (14), we come to the 

conclusion that the wave function in an electrically neutral atom satisfies the normalization condition 

∫ Ψ∗Ψ𝑑𝑉 = 𝑍 (20) 

For the hydrogen atom 𝑍 = 1. 

As shown in [30], the classical electron field Ψ  has an angular momentum and a magnetic 

moment, which have two components: 

𝐋 = 𝐋𝑜𝑟 + 𝐒 (21) 

𝐌 = 𝐌𝑜𝑟 + 𝛍 (22) 

where 𝐋𝑜𝑟  and 𝐌𝑜𝑟  are the convective (orbital) components of the angular momentum and the 

magnetic moment of the electron field associated with currents, while 𝐒 and 𝛍 are the intrinsic angular 

momentum (spin) and the associated intrinsic magnetic moment of the electron field. The intrinsic 

angular momentum (spin) of the electron field is continuously distributed in space with a density  

𝐬 =
ℏ

2
Ψ∗𝛔Ψ (23) 

while the intrinsic magnetic moment of the electron field is continuously distributed in space with a 

density  

𝖒 = −
𝑒ℏ

2𝑚𝑒𝑐
Ψ∗𝛔Ψ (24) 

From (23) and (24) follows the relation 

𝖒 = −
𝑒

𝑚𝑒𝑐
𝐬 (25) 

showing that the internal (spin) gyromagnetic ratio of the electron field at all points in space is the 

same and equal to  

𝛾𝑒 = −
𝑒

𝑚𝑒𝑐
 (26) 

In theory [30,31], the internal angular momentum (spin) and the associated internal magnetic 

moment are properties of the classical electron field itself and cannot be reduced to motions and, 

moreover, to rotations of any particles. 

The convective (orbital) components of the angular momentum and magnetic moment of the 

electron field are related by the relationship [30] 

𝐌𝑜𝑟 = −
𝑒

2𝑚𝑒𝑐
𝐋𝑜𝑟 (27) 

coinciding with the corresponding relation for classical charged matter (for example, classical 

particles) [32]. Hence it follows that the convective (orbital) gyromagnetic ratio for the electron field 

is determined by the classical formula 

𝛾𝑜𝑟 = −
𝑒

2𝑚𝑒𝑐
 (28) 

Thus, the spin (intrinsic) gyromagnetic ratio of the electron field (26) is twice the convective 

(orbital) gyromagnetic ratio (28). In the classical Maxwell-Pauli field theory [30], this fact is a natural 

property of the electron field, which is an electrically charged magnetic matter continuously distributed 
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in space, and does not lead to paradoxes. 

Further, we will show that the self-consistent system of equations (7)-(15) allows describing all 

basic quantum effects within the framework of CFT. 

2. Nonlinear Pauli equation 

2.1. Formal solution of the Maxwell equations 

According to (9) and (10), the EF and the G-field can be decomposed into an external field 

(created by external sources) and an intrinsic field created by the electrically charged EW itself. 

The solution of Eq. (8) for case (18) for a localized electron field has the form [32] 

𝐆𝑒 = 𝑒 ∫
(Ψ∗𝛔Ψ)𝑡−𝑅 𝑐⁄

𝑅
𝑑𝑉′ (29) 

Using the formal solutions (3) and (4) of Maxwell equations, we write the relations for the 

intrinsic EF of the EW  

𝐀𝑒 =
1

𝑐
∫

𝐣𝑡−𝑅 𝑐⁄

𝑅
𝑑𝑉′ (30) 

𝜑𝑒 = −𝑒 ∫
(Ψ∗Ψ)𝑡−𝑅 𝑐⁄

𝑅
𝑑𝑉′ (31) 

Taking into account (29) and (31), one obtains 

(𝑒𝜑𝑒 + 𝑒𝛔𝐆𝑒)Ψ = (
−2𝑒2𝜓1 ∫

|𝜓2|𝑡−𝑅 𝑐⁄
2

𝑅
𝑑𝑉′ + 2𝑒2𝜓2 ∫

(𝜓1𝜓2
∗ )𝑡−𝑅 𝑐⁄

𝑅
𝑑𝑉′

−2𝑒2𝜓2 ∫
|𝜓1|𝑡−𝑅 𝑐⁄

2

𝑅
𝑑𝑉′ + 2𝑒2𝜓1 ∫

(𝜓1
∗ 𝜓2)𝑡−𝑅 𝑐⁄

𝑅
𝑑𝑉′

) (32) 

Let us expand the integrand in (30) into a series in powers of the parameter 𝑅 𝑐⁄ : 

𝐀𝑒 = 𝐀0 −
1

𝑐2

𝜕

𝜕𝑡
∫ 𝐣𝑑𝑉 +

1

2𝑐3

𝜕2

𝜕𝑡2 ∫ 𝑅𝐣𝑑𝑉′ −
1

6𝑐4

𝜕3

𝜕𝑡3 ∫ 𝑅2𝐣𝑑𝑉′ + ⋯ (33) 

where  

𝐀0 =
1

𝑐
∫

𝐣

𝑅
𝑑𝑉′ (34) 

is the quasi-static field; the remaining terms in expansion (33) describe non-stationary (radiative) 

effects. 

From the continuity equation (19), taking into account (6), it follows that for an electron field 

localized in space  

∫  𝐣𝑑𝑉 = 𝐝̇ (35) 

Taking into account (35), we write relation (33) in the form 

𝐀𝑒 = 𝐀0 −
1

𝑐2 𝐝̈ +
1

2𝑐3

𝜕2

𝜕𝑡2 ∫ 𝑅𝐣𝑑𝑉′ −
1

6𝑐4

𝜕3

𝜕𝑡3 ∫ 𝑅2𝐣𝑑𝑉′ + ⋯ (36) 

Let us perform the gauge transformation (17) with the function 

𝑓 =
1

𝑐2
𝐫𝐝̈ (37) 

Then, taking into account relation (36), the scalar and vector potentials of the EF take the form  

𝜑Σ = 𝜑 + 𝜑𝑒 −
1

𝑐3 𝐫𝐝 (38) 
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𝐀Σ = 𝐀 + 𝐀0 +
1

2𝑐3

𝜕2

𝜕𝑡2 ∫ 𝑅𝐣𝑑𝑉′ −
1

6𝑐4

𝜕3

𝜕𝑡3 ∫ 𝑅2𝐣𝑑𝑉′ + ⋯ (39) 

Let us calculate 𝐀0. To do this, we represent the current density (15) taking into account (39) in 

the form 

𝐣 = 𝐣𝑐 −
𝑒2

𝑚𝑒𝑐
𝐀Ψ∗Ψ −

𝑒2

𝑚𝑒𝑐
𝐀𝑒Ψ∗Ψ + 𝑐rot𝖒 (40) 

where we introduced the vector of convective electric current [30] 

𝐣𝑐 =
𝑒ℏ

2𝑚𝑒𝑖
 [(∇Ψ∗)Ψ − Ψ∗∇Ψ] (41) 

If the external magnetic field varies only slightly at distances of the order of the size of an atom, 

we can write  

𝐀 =
1

2
𝐇 × 𝐫 (42) 

Substituting (40) and (42) into (34), one obtains 

𝐀0 =
1

𝑐
∫

𝐣𝑐

𝑅
𝑑𝑉′ −

𝑒2

2𝑚𝑒𝑐2 𝐇 × ∫ 𝐫
Ψ∗Ψ

𝑅
𝑑𝑉′ −

𝑒2

𝑚𝑒𝑐2 ∫ 𝐀𝒆
Ψ∗Ψ

𝑅
𝑑𝑉′ + ∫

rot𝖒

𝑅
𝑑𝑉′ (43) 

For a localized electron field, we take into account that ∫
rot′𝖒

𝑅
𝑑𝑉′ = rot ∫

𝖒

𝑅
𝑑𝑉′ , where the 

prime refers to the integration variables. 

Then relation (43) takes the form  

𝐀0 =
1

𝑐
∫

𝐣𝑐

𝑅
𝑑𝑉′ +

𝑒2

2𝑚𝑒𝑐2 𝐇 × ∫
𝐑

𝑅
Ψ∗Ψ𝑑𝑉′ −

𝑒2

2𝑚𝑒𝑐2 𝐇 × 𝐫 ∫
Ψ∗Ψ

𝑅
𝑑𝑉′ −

𝑒2

𝑚𝑒𝑐2 ∫ 𝐀𝑒
Ψ∗Ψ

𝑅
𝑑𝑉′ −

𝜇𝐵

𝑒
rot𝐆0 (44) 

where 𝜇𝐵 =
𝑒ℏ

2𝑚𝑒𝑐
 is the Bohr magneton; 

𝐆0 = 𝑒 ∫
Ψ∗𝛔Ψ

𝑅
𝑑𝑉′ (45) 

A simple estimate shows that the term on the right-hand side of (43), which contains 𝐀𝑒 under 

the integral, has the order 𝛼2𝐀0, and can be discarded. 

As a result, taking into account (2), one obtains  

𝐀0 =
1

𝑐
∫

𝐣𝑐

𝑅
𝑑𝑉′ +

𝑒

2𝑚𝑒𝑐2 𝐇 × (𝑒∇ ∫ 𝑅Ψ∗Ψ𝑑𝑉′ + 𝐫𝜑0) −
𝜇𝐵

𝑒
rot𝐆0 (46) 

Using (36), we calculate the intrinsic magnetic field of the EW 𝐇𝑒 = rot𝐀𝑒. 

Taking into account that 𝐑 = 𝐫 − 𝐫′ and using (35), one writes  

∫ 𝐣 × 𝐑𝑑𝑉′ = ∫ 𝐣𝑑𝑉′ × 𝐫 − ∫ 𝐣 × 𝐫′𝑑𝑉′ = 𝐝̇ × 𝐫 + 2𝑐𝐌 

where 

𝐌 =
1

2𝑐
∫ 𝐫 × 𝐣𝑑𝑉 (47) 

is the magnetic moment of the electron field (22). 

As a result, one obtains 

𝐇𝑒 = 𝐇0 −
1

2𝑐3

𝜕2

𝜕𝑡2 ∫
𝐣×𝐑

𝑅
𝑑𝑉′ +

1

3𝑐4

𝑑4𝐝

𝑑𝑡4
× 𝐫 +

2

3𝑐3
𝐌⃛ (48) 
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where 

𝐇0 =
1

𝑐
∫

𝐣×𝐑

𝑅3 𝑑𝑉′ (49) 

The terms on the right-hand side of equation (48), starting from the second, are the radiative 

components of the intrinsic magnetic field. 

Equation (7) with parameters (9), (10), (32), (38), (39), (46) and (48) is a closed non-linear Pauli 

equation. 

Consider the nonlinear Pauli equation as applied to atoms. 

2.2. Nonlinear Pauli equation for atoms 

Taking into account (38), (39), and (42), we rewrite the Pauli equation (7) for the atom with the 

atomic number 𝑍 in the form  

𝑖ℏ
𝜕Ψ

𝜕𝑡
= [

1

2𝑚𝑒
(

ℏ

𝑖
∇ +

𝑒

2𝑐
𝐇 × 𝐫 +

𝑒

𝑐
𝐀𝑒)

2

+
𝑒

𝑐3 𝐫𝐝 −
𝑍𝑒2

𝑟
− 𝑒𝜑 − 𝑒𝛔𝐆 − (𝑒𝜑𝑒 + 𝑒𝛔𝐆𝑒) +

𝑒ℏ

2𝑚𝑒𝑐
𝛔𝐇 +

𝑒ℏ

2𝑚𝑒𝑐
𝛔𝐇𝑒] Ψ (50) 

where (𝑒𝜑𝑒 + 𝑒𝛔𝐆𝑒)Ψ is determined by relation (32), while the vectors 𝐀𝑒 and 𝐇𝑒 are determined by 

relations (39) and (48). The scalar potential 𝜑 describes the EF external to the atom, while the scalar 

potential of the electrostatic field of the atomic nucleus 
𝑍𝑒

𝑟
  is separated into a separate term. In 

particular, if the electric field changes only slightly at distances of the order of the Bohr radius, one 

can write 

𝜑 = −𝐫𝐄 (51) 

As is known [29], the Pauli equation is the first approximation in the expansion of the Dirac 

equation in terms of a small parameter, the fine structure constant 𝛼 . For this reason, all terms in 

equation (50) having order 𝛼2 and higher must be discarded. They can be taken into account only 

within the framework of the Dirac equation or in approximations of the Dirac equation following the 

Pauli equation [31]. 

Let us estimate the order of terms in equation (50). 

The main terms of Eq. (50) (which determine the solution already in the Schrödinger 

approximation) have orders of magnitude 

ℏ∇~
ℏ

𝑎𝐵
=

𝑚𝑒𝑒2

ℏ
 (52) 

𝑒2

𝑟
~

𝑒2

𝑎𝐵
=

𝑚𝑒𝑒4

ℏ2  (53) 

Obviously, the term (32) (if it is not equal to zero) has the order (53). 

The rest of the terms are of order 

𝑒

𝑐
𝐀𝑒~

𝑒

𝑐
𝐀0~

𝑒

𝑐2 ∫
𝐣𝑐

𝑅
𝑑𝑉′ ~

𝑒𝜇𝐵

𝑐2 rot𝐆0~
𝑒2ℏ

𝑚𝑒𝑐2𝑎𝐵
2 = 𝛼2 𝑚𝑒𝑒2

ℏ
~𝛼2ℏ∇(54) 

𝑒ℏ

2𝑚𝑒𝑐
𝐇𝑒 =

𝑒ℏ

2𝑚𝑒𝑐

1

𝑐
∫

𝐑×𝐣

𝑅3 𝑑𝑉′ ~
𝑒ℏ

2𝑚𝑒𝑐
∫

𝖒

𝑅3 𝑑𝑉′ ~
𝑒ℏ

2𝑚𝑒𝑐
∫

𝐑(𝖒𝐑)

𝑅5 𝑑𝑉′ ~
𝑒ℏ

2𝑚𝑒𝑐
𝖒~

𝑒2ℏ2

𝑚𝑒
2𝑐2𝑎𝐵

3 =

𝛼2 𝑚𝑒𝑒4

ℏ2
~𝛼2 𝑒2

𝑟
 (55) 
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Thus, the terms in the Pauli equation (50) associated with the intrinsic magnetic field of the EW 

can be discarded as small in the approximation under consideration. 

As a result, in the considered dipole approximation, equation (50) takes the form 

𝑖ℏ
𝜕Ψ

𝜕𝑡
= [−

ℏ2

2𝑚𝑒
∆ +

𝑒ℏ

𝑖2𝑚𝑒𝑐
𝐇(𝐫 × ∇) +

𝑒2

8𝑚𝑒𝑐2
|𝐇 × 𝐫|2 −

𝑍𝑒2

𝑟
+

𝑒

𝑐3 𝐫𝐝 − (𝑒𝜑𝑒 + 𝑒𝛔𝐆𝑒) + 𝑒𝐫𝐄 −

𝑒𝛔𝐆 +
𝑒ℏ

2𝑚𝑒𝑐
𝛔𝐇] Ψ (56) 

where (𝑒𝜑𝑒 + 𝑒𝛔𝐆𝑒) is determined by relation (32). 

In addition, taking into account (54), in the approximation under consideration 

𝐣 =
𝑒ℏ

2𝑚𝑒𝑖
 [(∇Ψ∗)Ψ − Ψ∗∇Ψ] −

𝑒2

2𝑚𝑒𝑐
𝐇 × 𝐫Ψ∗Ψ −

𝑒ℏ

2𝑚𝑒
rot(Ψ∗𝛔Ψ) (57) 

In equations (56) and (57), the terms containing the external EF are retained, even if the 

corresponding terms are small compared to (52) and (53). This allows taking into account the influence 

of an external EF on the processes occurring in the atom. 

Equation (56) is a direct analog of equation (5) obtained in [19], however, in contrast to equation 

(5), in which the intrinsic electrostatic field (2) of an EW is artificially excluded from consideration, 

in equation (56) it is naturally compensated by the field 𝐆𝑒. 

3. Hydrogen atom 

3.1. Stationary states of the hydrogen atom 

Consider a hydrogen atom (𝑍 = 1) in free space, i.e. when 

𝐀 = 0;  𝜑 = 0; 𝐆 = 0 (58) 

We will consider the stationary states of the hydrogen atom. In this case, all derivatives with 

respect to time on right-hand side of equation (56) are equal to zero. As a result, the nonlinear Pauli 

equation (56) takes the form  

𝑖ℏ
𝜕Ψ

𝜕𝑡
= [−

ℏ2

2𝑚𝑒
∆ −

𝑒2

𝑟
− (𝑒𝜑0 + 𝑒𝛔𝐆0)] Ψ (59) 

Consider the solution of Eq. (59) which has the form 

Ψ = (
𝑎1

𝑎2
) 𝜓 (60) 

where 𝑎1 and 𝑎2 are arbitrary constants; 𝜓(𝐫, 𝑡) is some function. 

Taking into account the normalization condition (20), we conclude that the constants 𝑎1 and 𝑎2 

characterize the distribution of the electric charge of the EW between its polarizations 𝜓1 and 𝜓2. In 

particular, for the hydrogen atom, the function 𝜓 is normalized to unity, i.e., ∫|𝜓|2𝑑𝑉 = 1, and the 

constants 𝑎1 and 𝑎2 satisfy the condition 

|𝑎1|2 + |𝑎2|2 = 1 (61) 

which has a simple physical meaning [19−23]: the total electric charge of an EW in a hydrogen atom, 

regardless of how it is distributed over polarizations, is equal to – 𝑒. 

For solution (60), expression (32) is identically equal to zero, and equation (59) turns into the 

usual linear Schrödinger equation for the hydrogen atom with respect to the function ψ. 

Its general solution is 

𝜓(𝐫, 𝑡) = ∑ 𝑐𝑛𝜓𝑛(𝐫) exp(−𝑖𝜔𝑛
(0)

𝑡)𝑛  (62) 
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where 𝑐𝑛 are the constants characterizing the excitation amplitude of the eigenmode 𝑛; 𝜓𝑛(𝐫) and 𝜔𝑛
(0)

 

are eigenfunctions and eigenvalues of the stationary linear Schrödinger equation 

ℏ𝜔𝑛
(0)

𝜓𝑛 = − (
ℏ2

2𝑚𝑒
∆ +

𝑒2

𝑟
) 𝜓𝑛 (63) 

The functions 𝜓𝑛(𝐫) form an orthonormal basis: 

∫ 𝜓𝑛
∗𝜓𝑘𝑑𝑉 = 𝛿𝑛𝑘 (64) 

Thus, the hydrogen atom has a discrete set of eigenmodes that have eigenfrequencies 𝜔𝑛
(0)

 and 

are described in space by eigenfunctions 𝜓𝑛(𝐫). This means that, at least formally, the hydrogen atom 

can be considered as a classical open cavity resonator which holds the wave field 𝜓 and having a 

discrete set of eigenmodes and their corresponding eigenfrequencies [19]. 

Taking into account the normalization condition for the wave function 𝜓, which reflects the fact 

that the total charge of the EW in the hydrogen atom is – 𝑒, one obtains 

∑ |𝑐𝑛|2
𝑛 = 1 (65) 

That is, the parameters 𝑐𝑛  describe the distribution of the electric charge of the EW over the 

eigenmodes of the hydrogen atom. In particular, the value −𝑒|𝑐𝑛|2 is equal to the electric charge of 

the EW contained in the mode 𝑛 [19]. 

If only one eigenmode 𝑛 is excited in the hydrogen atom, i.e. 

𝜓(𝐫, 𝑡) = 𝜓𝑛(𝐫) exp(−𝑖𝜔𝑛
(0)

𝑡) (66) 

we will say that it is in a pure state [19]. Thus, for a pure state of the atom, 𝑐𝑛 = 1 while 𝑐𝑘 = 0 for all 

𝑘 ≠ 𝑛  in solution (62). On the contrary, if several eigenmodes in the same polarization are 

simultaneously excited in the hydrogen atom, i.e. two or more parameters 𝑐𝑛 are nonzero in solution 

(62), then we will say that the atom is in a mixed state [19]. 

According to [30], the energy of the Maxwell-Pauli field in the hydrogen atom in the absence of 

an external magnetic field (i.e., at 𝐀Σ = 0) in the approximation under consideration for case (18) is 

equal to 

ℰ = ∫ (
1

8𝜋
𝐄Σ

𝟐 +
ℏ2

2𝑚𝑒
∇Ψ∗∇Ψ − 𝑒Ψ∗𝛔Ψ𝐆0 +

1

8𝜋
(

1

𝑐2

𝜕𝐆0

𝜕𝑡

𝜕𝐆0

𝜕𝑡
+

𝜕𝐆0

𝜕𝑥𝑘

𝜕𝐆0

𝜕𝑥𝑘
)) 𝑑𝑉 (67) 

Let us take into account that in this case 𝐄Σ = −∇𝜑Σ, where, according to equation (12), the scalar 

potential 𝜑Σ satisfies the equation  

∆𝜑Σ = 4𝜋𝑒Ψ∗Ψ − 4𝜋𝑒𝛿(𝐫) (68) 

Then, integrating in (67) by parts, one obtains 

ℰ = ∫ (
1

8𝜋
∇(𝜑Σ∇𝜑Σ) −

1

8𝜋
𝜑Σ∆𝜑Σ +

ℏ2

2𝑚𝑒
∇(Ψ∗∇Ψ) −

ℏ2

2𝑚𝑒
Ψ∗∆Ψ − 𝑒Ψ∗𝛔Ψ𝐆0 +

1

8𝜋𝑐2

𝜕𝐆0

𝜕𝑡

𝜕𝐆0

𝜕𝑡
+

1

8𝜋

𝜕

𝜕𝑥𝑘
(𝐆0

𝜕𝐆0

𝜕𝑥𝑘
) −

1

8𝜋
𝐆0∆𝐆0) 𝑑𝑉 = ∫ (−

1

8𝜋
𝜑Σ∆𝜑Σ −

ℏ2

2𝑚𝑒
Ψ∗∆Ψ − 𝑒Ψ∗𝛔Ψ𝐆0 +

1

8𝜋𝑐2

𝜕𝐆0

𝜕𝑡

𝜕𝐆0

𝜕𝑡
−

1

8𝜋
𝐆0∆𝐆0) 𝑑𝑉 (69) 

Taking into account equations (8), (59) and (68), as well as the solution of equation (68) 𝜑Σ =

𝑒

𝑟
+ 𝜑0, one obtains 
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ℰ = ∫ (𝑖ℏΨ∗ 𝜕Ψ

𝜕𝑡
+

1

2

𝑒2

𝑟
𝛿(𝐫) +

1

2

𝑒2

𝑟
Ψ∗Ψ +

1

2
𝑒𝜑0𝛿(𝐫) +

1

2
Ψ∗(𝑒𝜑0 + 𝑒𝛔𝐆0)Ψ +

+
1

8𝜋𝑐2 (
𝜕𝐆0

𝜕𝑡

𝜕𝐆0

𝜕𝑡
− 𝐆0

𝜕2𝐆0

𝜕𝑡2 )) 𝑑𝑉 (70) 

When calculating (70), we take into account that for solution (60) relation (32) is identically equal 

to zero, and for the stationary Maxwell-Pauli field 
𝜕𝐆0

𝜕𝑡
= 0 and 

𝜑0(𝐫 = 0) = −𝑒 ∫
1

𝑟
Ψ∗Ψ𝑑𝑉 = ∫ 𝜑0𝛿(𝐫)𝑑𝑉 

Then one obtains 

ℰ = 𝑖ℏ ∫ Ψ∗ 𝜕Ψ

𝜕𝑡
𝑑𝑉 + ∫

1

2

𝑒2

𝑟
𝛿(𝐫)𝑑𝑉 (71) 

The second term in (71) describes the energy of the electrostatic field of the hydrogen atom 

nucleus and diverges. This is due to the fact that the nucleus of the hydrogen atom, in contrast to the 

Pauli field, is considered as a point electric charge. If we take into acount that the nucleus (proton) has 

a finite (though small) size and the electric charge of the proton is distributed continuously in the region 

of small size, then the second integral in (71) will have a finite value. If we assume that the distribution 

of the electric charge in the atomic nucleus, and, hence, the self-electrostatic energy of the nucleus do 

not depend on the state of the Pauli field, then the second integral has a constant value, which can be 

ignored in processes in which the structure of the atomic nucleus does not change (which takes place 

in ordinary atomic processes and in chemical reactions). In this case, the energy of the Maxwell-Pauli 

field for the hydrogen atom is 

ℰ = 𝑖ℏ ∫ Ψ∗ 𝜕Ψ

𝜕𝑡
𝑑𝑉 (72) 

Relation (72) exactly coincides with the well-known expression for energy in quantum 

mechanics [28]. At the same time, in quantum mechanics, expression (72) for the energy of a 

“quantum object” is actually postulated: it is not strictly derived, but justified based on the 

correspondence principle, which cannot be considered as a physical law. In the theory under 

consideration [30], the Maxwell-Pauli field energy (72) was derived strictly within the framework 

of the CFT without any additional assumptions and hypotheses. 

Note that relation (72) determines the energy of not only the Pauli field (“electron”), but the total 

energy of the Maxwell-Pauli field, which includes the energy of the EF, the energy of the electron field 

(Pauli field), the energy of the G-field and the energy interaction of the electron field with the EF and 

the G-field. Remarkable is the fact that the total energy of the Maxwell-Pauli field for the hydrogen 

atom is expressed in its entirety only through the spinor Ψ. 

Using (72), we can calculate the energy of the Maxwell-Pauli field for a hydrogen atom in a pure 

state (66). Taking into account (60), (61), (64) and (66), one obtains 

ℰ𝑛 = ℏ𝜔𝑛
(0)

 (73) 

If the hydrogen atom is in a mixed state (62), then the energy (72) of the Maxwell-Pauli field 

ℰ = ∑ ℏ𝜔𝑛
(0)|𝑐𝑛|2

𝑛  (74) 



105 

Communications in Analysis and Mechanics  Volume 16, Issue 1, 94−120. 

Taking into account that the parameters 𝑐𝑛 can vary continuously, we conclude that the energy of 

an atom also takes continuous values, depending on the redistribution of the EW between the excited 

eigenmodes (see Section 3.3). 

3.2. Angular momentum and magnetic moment of the Pauli field in the hydrogen atom 

Let us consider the intrinsic angular momentum (spin) 𝐒 of the electron field in the hydrogen 

atom described by solution (60). 

In this case, direct calculation gives  

Ψ∗𝛔Ψ = 𝛎|𝜓|2 (75) 

where 

𝛎 = (𝑎1
∗𝑎2 + 𝑎1𝑎2

∗ , 𝑖(𝑎1𝑎2
∗ − 𝑎1

∗𝑎2), |𝑎1|2 − |𝑎2|2) (76) 

moreover, according to (61), |𝛎| = 1. 

Taking into account relations (23), (75) and the normalization condition ∫|𝜓|2𝑑𝑉 = 1, we write 

the intrinsic angular momentum (spin) of the electron field in the form  

𝐒 =
ℏ

2
𝛎 (77) 

Thus, in a natural way, within the framework of CFT, we obtained a well-known result: the 

intrinsic angular momentum (spin) of the electron field in the hydrogen atom has a constant value 

equal to ℏ/2. In this case, the unit vector 𝛎 indicates the direction of the intrinsic angular momentum 

of the electron field. 

Consider a unit spinor 

𝑎 = (
𝑎1

𝑎2
) (78) 

satisfying condition (61), which can be rewritten as 

𝑎∗𝑎 = 1 (79) 

As is known [33,34], a unit spinor can always be represented as  

𝑎 = (
cos(𝜃/2) exp(𝑖𝜒/2)

𝑖 sin(𝜃/2) exp(−𝑖𝜒/2)
) (80) 

where 𝜃 and 𝜒 are some parameters. 

Using (76) and (80), one obtains 

𝛎 = 𝑎∗𝛔𝑎 = (sin 𝜃 sin 𝜒 , sin 𝜃 cos 𝜒 , cos 𝜃 ) (81) 

Thus, the parameters 𝜃 and 𝜒 in the spinor (80) are the angles of the unit vector 𝛎 in the spherical 

coordinate system. 

Taking into account (25), one obtains the vector of the intrinsic magnetic moment of the Pauli 

field in the hydrogen atom 

𝛍 = −𝜇𝐵𝛎 (82) 

Thus, the intrinsic magnetic moment of the Pauli field in the hydrogen atom has a constant 

modulus equal to the Bohr magneton 𝜇𝐵 and is directed antiparallel to the unit vector 𝛎. 

In general, the parameters 𝑎1 and 𝑎2 can change over time, satisfying the condition (61). This is 

equivalent to the rotation of the unit vector 𝛎 in space. This case takes place for an atom in an external 

magnetic field and will be considered in Section 4. 

If the parameters 𝑎1 and 𝑎2 do not depend on time, then the direction of the vector 𝐒 remains 

unchanged. 



106 

Communications in Analysis and Mechanics  Volume 16, Issue 1, 94−120. 

In this case, by rotating the coordinate system, spinor (60) can always be reduced to one of the 

following special cases. 

(i) The 𝑧 axis of the coordinate system is chosen parallel to the vector 𝐒. Then 𝑎 = (
1
0

). 

(ii) The 𝑧 axis of the coordinate system is chosen antiparallel to the vector 𝐒. Then 𝑎 = (
0
1

). 

(iii) The 𝑥 axis of the coordinate system is chosen parallel to the vector 𝐒. Then 𝑎 =
1

√2
(

1
1

). 

(iv) The 𝑥 axis of the coordinate system is chosen antiparallel to the vector 𝐒. Then 𝑎 =
1

√2
(

1
−1

). 

(v) The 𝑦 axis of the coordinate system is chosen parallel to the vector 𝐒. Then 𝑎 =
1

√2
(

1
𝑖

). 

(vi) The 𝑦 axis of the coordinate system is chosen antiparallel to the vector 𝐒. Then 𝑎 =
1

√2
(

1
−𝑖

). 

Thus, in the absence of an external magnetic field, for a single-electron Pauli field (i.e., an electron 

field whose charge is −𝑒) described by spinor (60), one can always introduce such a direction of the 𝑧 

axis that the intrinsic angular momentum of the electron field is equal to ± ℏ/2. 

This result is in complete agreement with the concepts of CFT and classical vector algebra. 

3.3. Spontaneous emission and spontaneous transitions 

The traditional explanation of spontaneous emission, for example, of a hydrogen atom is based 

on the notion that an electron (as a particle) can only exist in an atom at discrete energy levels that are 

stationary. Being on one of the stationary energy levels, the electron does not emit electromagnetic 

waves, however, it can make spontaneous abrupt transitions from one energy level to another, while 

emitting an energy quantum equal to the energy difference of those levels between which the transition 

takes place. The reason for the spontaneous transition, and therefore spontaneous emission, is 

considered to be a phenomenon called zitterbewegung: the interaction of an electron with fluctuations 

of hypothetic QED-vacuum, which cause the electron to leave a stationary energy level and move to a 

new level. 

In the theory [18–23], spontaneous emission and the related rearrangement of the atom structure, 

which is traditionally called spontaneous transition, are a natural consequence of CED: spontaneous 

emission is caused by oscillations of the electric dipole moment of the electric charge of an EW 

distributed in space, and the rearrangement of the atom structure is a consequence of interaction of an 

EW with its own radiation EF [19–23]. 

Let us consider how spontaneous emission and spontaneous transitions are described within the 

framework of the classical Maxwell-Pauli field theory [30] under condition (18). 

In the general case, any state of an EW (Pauli field) in a hydrogen atom can be expanded according 

to (62) in terms of eigenfunctions of equation (63). 

Let us show that the mixed states of the hydrogen atom (i.e., solutions (62) with several non-zero 

parameters 𝑐𝑛) are nonstationary; only pure states of the hydrogen atom (66) are stationary. Moreover, 

we will show that only the pure state with the lowest eigenfrequency (ground mode) is stable, while 

the rest of the pure states are unstable. 

Consider the spontaneous emission of a hydrogen atom. According to CED [32], the intensity of 
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electric dipole emission 

𝐼𝐄𝐇 =
2

3𝑐3 𝐝̈2 (83) 

where 𝐝 is the electric dipole moment of an atom (6). 

Using solution (62), one obtains 

𝐝(𝑡) = ∑ ∑ 𝑐𝑘
∗𝑐𝑛𝐝𝑛𝑘 exp(−𝑖𝜔𝑛𝑘𝑡)𝑛𝑘  (84) 

𝐝̈(𝑡) = − ∑ ∑ 𝜔𝑛𝑘
2 𝑐𝑘

∗𝑐𝑛𝐝𝑛𝑘 exp(−𝑖𝜔𝑛𝑘𝑡)𝑛𝑘  (85) 

where 

𝜔𝑛𝑘 = 𝜔𝑛
(0)

− 𝜔𝑘
(0)

 (86) 

𝐝𝑛𝑘 = 𝐝𝑘𝑛
∗ = −𝑒 ∫ 𝐫𝜓𝑘

∗ (𝐫)𝜓𝑛(𝐫)𝑑𝑉 (87) 

Substituting (85) into (83) and averaging over time, one obtains 

𝐼𝐄𝐇 =
4

3𝑐3
∑ ∑ 𝜔𝑛𝑘

4 |𝑐𝑘|2|𝑐𝑛|2|𝐝𝑛𝑘|2
𝑛>𝑘𝑘  (88) 

According to CED [32], the vector 𝐝̈ determines the electric and magnetic fields of the dipole 

radiation. Then it follows from relations (85) and (88) that only discrete frequencies 𝜔𝑛𝑘 are present 

in the spectrum of spontaneous (dipole) emission of the hydrogen atom, while the intensity of 

spontaneous emission of the atom at the frequency 𝜔𝑛𝑘 

(𝐼𝐄𝐇)𝑛𝑘 =
4

3𝑐3 𝜔𝑛𝑘
4 |𝑐𝑘|2|𝑐𝑛|2|𝐝𝑛𝑘|2 (89) 

Relations (88) and (89) coincide with the corresponding relations obtained in quantum 

electrodynamics [29] for the intensity of spontaneous emission of a hydrogen atom, however, when 

deriving relation (88), the hypotheses about jump transitions of an electron from one energy level to 

another and about the quantum character of emission have not been used. Thus, in order to explain the 

discrete spectrum of spontaneous emission of a hydrogen atom and obtain the correct expression for 

the intensity of spontaneous emission on different lines of the spectrum, the hypothesis of the quantum 

nature of spontaneous emission is redundant. 

Let us calculate the energy carried away by the G-field during dipole emission of an atom. As 

shown in [30], the component of the energy flux density associated with the G-field is equal to 

𝐉𝐆 = −
1

4𝜋

𝜕𝐺𝑒𝑘

𝜕𝑡
∇𝐺𝑒𝑘 (90) 

where 𝑘 = 1,2,3 is the vector index. 

At large distances 𝑟 from the emitting atom, we write 

𝑅 = |𝐫 − 𝐫′| = 𝑟 − 𝐫′𝐧 (91) 

where 𝐧 =
𝐫

𝑟
 is the unit vector in the direction of 𝐫; 𝑟 ≫ 𝑟′. 

Using (91), we write relation (29) in the considered approximation in the form 

𝐆𝑒 =
𝑒

𝑟
∫ ((Ψ∗𝛔Ψ)𝑡−𝑟 𝑐⁄ +

(𝐫′𝐧)

𝑐

𝜕

𝜕𝑡
(Ψ∗𝛔Ψ)𝑡−𝑟 𝑐⁄ +

1

2
(

𝐫′𝐧

𝑐
)

2
𝜕2

𝜕𝑡2
(Ψ∗𝛔Ψ)𝑡−𝑟 𝑐⁄ + ⋯ ) 𝑑𝑉′ (92) 

Substituting (75) into (92), and taking into account the normalization condition∫|𝜓|2𝑑𝑉 = 1, one 

obtains 

𝐆𝑒 =
𝑒𝛎

𝑟
−

1

𝑟𝑐
𝛎̇(𝐧𝐝) −

1

𝑟𝑐
𝛎(𝐧𝐝̇) (93) 

where the vectors 𝛎 and 𝐝 are taken at the moment 𝑡′ = 𝑡 − 𝑟/𝑐. The remaining discarded terms are 
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small in the considered dipole approximation. 

We will consider distances 𝑟 from the atom that satisfy the conditions |𝛎̇|𝑟/𝑐 ≫ 1 and |𝐝̇|𝑟/𝑐 ≫

|𝐝|. Then 

𝜕𝐆𝑒

𝜕𝑡
=

𝑒𝛎̇

𝑟
−

1

𝑟𝑐
𝛎̈(𝐧𝐝) −

2

𝑟𝑐
𝛎̇(𝐧𝐝̇) −

1

𝑟𝑐
𝛎(𝐧𝐝̈) (94) 

∇𝐺𝑒𝑘 = −
𝑒𝜈̇𝑘

𝑟𝑐
𝐧 +

1

𝑟𝑐2 𝜈̈𝑘𝐧(𝐧𝐝) +
2

𝑟𝑐2 𝜈̇𝑘𝐧(𝐧𝐝̇) +
1

𝑟𝑐2 𝜈𝑘𝐧(𝐧𝐝̈) (95) 

Substituting (94) and (95) into (90), one obtains 

𝐉𝐆 =
1

4𝜋𝑟2𝑐
𝐧 (𝑒𝛎̇ −

1

𝑐
𝛎̈(𝐧𝐝) −

2

𝑐
𝛎̇(𝐧𝐝̇) −

1

𝑐
𝛎(𝐧𝐝̈))

2

 (96) 

The energy carried away by the G-field through a spherical surface of radius 𝑟 → ∞ centered on 

the nucleus of an atom 

𝐼𝐆 = 𝑟2 ∮(𝐧𝐉𝐆)𝑑Ω (97) 

where Ω is the solid angle. 

Taking into account (96), we obtain 

𝐼𝐆 =
1

4𝜋𝑐
∮ (𝑒𝛎̇ −

1

𝑐
𝛎̈(𝐧𝐝) −

2

𝑐
𝛎̇(𝐧𝐝̇) −

1

𝑐
𝛎(𝐧𝐝̈))

2

𝑑Ω (98) 

Let us first consider the case when the direction of the spin does not change, i.e. 𝛎̇ = 0. 

For 𝛎̇ = 0 and |𝛎| = 1, relation (98) takes the form  

𝐼𝐆 =
1

4𝜋𝑐3 ∮(𝐧𝐝̈)
2

𝑑Ω (99) 

A change in the direction of the dipole moment vector can occur in an external EF. If there is no 

external EF, then the direction of the vector 𝐝  does not change. In this case (𝐧𝐝) = |𝐝| cos 𝜃  and 

(𝐧𝐝̈) = |𝐝̈| cos 𝜃. Substituting 𝑑Ω = 2𝜋 sin 𝜃 𝑑𝜃 into (99), one obtains 

𝐼𝐆 =
1

3𝑐3 𝐝̈2 (100) 

As follows from (100), the intensity of the electric dipole emission of the G-field is commensurate 

with the intensity of electromagnetic radiation (83). This means that if the G-field really exists, it can 

be fixed experimentally, moreover, it can be used to transfer energy and information, like 

electromagnetic radiation, which opens up new technological possibilities. At the same time, we do 

not have any experimental data on the existence of the G-field so far. Assuming that the G-field still 

exists (otherwise we cannot explain why the EW does not feel its own electrostatic field), this may be 

due to several reasons [30]. First, condition (18) may not be satisfied, and then we are dealing with a 

short-range G-field, which manifests itself only within the atom. This case will be considered in the 

next papers of this series. Another possible reason may be the peculiarity of the interaction of the G-

field with matter (electron field). As shown in [30], the G-field interacts very weakly with matter and 

practically does not interact with electric charges and currents. For this reason, it cannot be registered 

by conventional physical devices, the principle of operation of which is based on the force interaction 

of fields with electric charges and currents. At the same time, according to the theory under 

consideration, the G-field interacts with the intrinsic (spin) magnetic moment of the EW, but does not 

interact with the convective magnetic moments [30]. This fact can be used as a basis for creating 

devices for recording and emitting a wave G-field. 
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As follows from the results of [30], the energy loss during dipole radiation of an atom is associated 

with only two components of the energy flux density: electromagnetic radiation and G-field radiation. 

The remaining terms in the energy flux density of the Maxwell-Pauli field [30] contain the field Ψ, 

which decreases at infinity faster than 𝑟−2 during dipole radiation, and therefore do not contribute to 

the energy loss. 

Thus, the total intensity of radiation of an atom (the energy lost by an atom per unit time) during 

dipole radiation 𝐼 = 𝐼𝐄𝐇 + 𝐼𝐆. Taking into account (83) and (100), one obtains 

𝐼 =
1

𝑐3
𝐝̈2 (101) 

It follows from (101) that, under condition (18), the total intensity of energy emission by an atom 

in the dipole approximation consists of 2/3 of electromagnetic emission and 1/3 of G-field emission. 

It follows from relations (85) and (93) that the spectrum of spontaneous (dipole) emission of a 

hydrogen atom carried by the G-field also contains only discrete frequencies 𝜔𝑛𝑘. Using (88) and (89) 

it is easy to calculate the intensity components (𝐼𝐆)𝑛𝑘 and 𝐼𝑛𝑘 at frequencies 𝜔𝑛𝑘. In particular, 

𝐼𝑛𝑘 =
2

𝑐3 𝜔𝑛𝑘
4 |𝑐𝑘|2|𝑐𝑛|2|𝐝𝑛𝑘|2 (102) 

Then 

𝐼 = ∑ ∑ 𝐼𝑛𝑘𝑛>𝑘𝑘  (103) 

The results obtained allow drawing some conclusions, which at first glance may seem trivial, 

however, it should be borne in mind that they were obtained in the framework of CFT without any 

quantization. 

As follows from (85), (88) and (93), spontaneous emission of the hydrogen atom (electromagnetic 

radiation and radiation associated with the G-field) is observed only at discrete frequencies (86) and 

only in those cases when the conditions|𝑐𝑘|2 ≠ 0, |𝑐𝑛|2 ≠ 0 and |𝐝𝑛𝑘|2 ≠ 0. The first two conditions 

mean that a hydrogen atom can spontaneously radiate only if at least two eigenmodes are 

simultaneously excited in it, i.e. when the atom is in a mixed state. The condition |𝐝𝑛𝑘|2 ≠ 0 means 

that the spontaneous emission spectrum does not contain those frequencies (86) for which |𝐝𝑛𝑘|2 = 0, 

even if |𝑐𝑘|2 ≠ 0 and |𝑐𝑛|2 ≠ 0, that is even if the atom is in a mixed (excited) state, in which the 𝑛 

and 𝑘 modes are simultaneously excited. In the traditional interpretation of quantum mechanics, in 

which spontaneous emission is interpreted as jump-like transitions of electrons (charged particles) 

between discrete energy levels, the condition |𝐝𝑛𝑘|2 = 0 defines the so-called “forbidden transitions”. 

The well-established term “forbidden transitions” is based on a certain subjective interpretation of 

experimental data, which goes back to Bohr's naive theory. In an objective analysis of experimental data, 

it is more correct to state the observed effect or phenomenon without using any interpretation. For this 

reason, it is more correct to speak not about “forbidden transitions”, but about “forbidden frequencies” 

𝜔𝑛𝑘, at which spontaneous emission is not observed (i.e., the intensity of spontaneous emission at these 

frequencies is equal to zero). Thus, the frequencies  𝜔𝑛𝑘, for which the condition |𝐝𝑛𝑘|2 = 0 is satisfied, 

are forbidden and are absent in the spectrum of spontaneous emission. We see that the “forbidden” 

frequencies in the spectrum of spontaneous emission have a simple and clear explanation in the framework 

of CED without any quantization. 

As follows from (83) and (100), spontaneous emission occurs not in the form of discrete energy 

quanta, but continuously in the form of classical electromagnetic waves and classical G-field waves: 

during dipole emission, an atom continuously loses energy at a rate (101), which has two components: 

electromagnetic (83) and associated with the G-field (100). The loss of energy should lead to a 
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rearrangement of the structure of the atom (Pauli fields), which in the traditional interpretation of 

quantum mechanics is considered as jump-like quantum transitions of an electron from one energy 

level to another. 

Taking into account that in the CFT under consideration, emission occurs continuously in the 

form of classical waves (electromagnetic waves and G-field waves), we conclude that the 

rearrangement of the atom structure (more precisely, the rearrangement of its Maxwell-Pauli field) 

occurs continuously. 

Thus, if an atom is in a mixed state, it loses energy, and this is accompanied by a rearrangement 

of its internal structure, which, as follows from (74), consists in a change in the parameters 𝑐𝑛 

characterizing the excitation amplitude of the atom’s eigenmodes. This process continues until the 

atom passes into the pure state (66), in which only one eigenmode is excited. In this pure state, the 

atom can be indefinitely long, because its electric dipole moment remains constant and, consequently, 

there is no energy loss due to dipole emission. We note that the spontaneous dipole emission will also 

cease when the atom is in a mixed state with two excited eigenmodes 𝑛 and 𝑘, for which |𝐝𝑛𝑘|2 = 0. 

We do not consider this case here. 

Let us assume that the atom is in the pure state (66) corresponding to the eigenmode 𝑛. The energy 

ℰ𝑛 of the Maxwell-Pauli field of an atom in this mode is equal to (73). Suppose, due to some external 

influence, the eigenmode 𝑘 was also excited, for which ℰ𝑘 < ℰ𝑛, i.e. 𝜔𝑘
(0)

< 𝜔𝑛
(0)

. As a result, the atom 

ended up in a mixed state with two excited modes 𝑛 and 𝑘. According to (83) and (100), the atom will 

spontaneously emit electromagnetic waves and G-field waves, losing energy at the rate (102), even if 

the 𝑘 mode is weakly excited, i.e. even if |𝑐𝑘|2 ≪ |𝑐𝑛|2 ≈ 1. In this case, the structure of the atom (the 

Maxwell-Pauli field) will be rearranged, which will consist in the fact that the amplitude |𝑐𝑘|2 will 

increase, while the amplitude |𝑐𝑛|2 will decrease, at the same time, according to (65) |𝑐𝑘|2 + |𝑐𝑛|2 =

1 . As shown above, the parameter |𝑐𝑘|2  is equal to the fraction of the electric charge of the EW 

contained in the 𝑘 mode. Thus, the change in the structure of the hydrogen atom during spontaneous 

emission is reduced to the flow of the electric charge of the EW from the n mode to the k mode, and 

continues until the entire electric charge flows into the 𝑘 mode, i.e. until it becomes |𝑐𝑛|2 = 0. Thus, 

we see that the pure states of the atom (66), although they are stationary, turn out to be unstable: even 

a weak excitation of an eigenmode with a lower eigenfrequency is sufficient to initiate spontaneous 

emission and spontaneous overflow of an EW into an eigenmode with a lower eigenfrequency. An 

exception to this rule is the eigenmode with the lowest eigenfrequency (lowest energy), i.e. ground 

mode: any mixed state in which the ground mode is excited will eventually, due to spontaneous 

emission, go into the ground state in which only the ground mode is excited. If the atom is in the 

ground state and some other eigenmodes are excited, then over time, due to spontaneous emission, the 

atom will return to the ground state. Thus, the ground state of the atom is absolutely stable. 

Let us consider how the rearrangement of the structure of an atom (electron field) in the process 

of spontaneous emission is described from the point of view of the nonlinear Pauli equation. 

In the absence of an external EF and an external G-field, equation (56) has the form 

𝑖ℏ
𝜕Ψ

𝜕𝑡
= [−

ℏ2

2𝑚𝑒
∆ −

𝑒2

𝑟
+

𝑒

𝑐3 𝐫𝐝 − (𝑒𝜑𝑒 + 𝑒𝛔𝐆𝑒)] Ψ (104) 

Consider solutions (60) of equation (104) at constant values of the parameters 𝑎1 and 𝑎2. In this 

case, the unit vector 𝛎  has a constant direction, expression (32) is identically equal to zero, and 

equation (104) turns into a nonlinear Schrödinger equation for the hydrogen atom: 
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𝑖ℏ
𝜕𝜓

𝜕𝑡
= (−

ℏ2

2𝑚𝑒
∆ −

𝑒2

𝑟
+

𝑒

𝑐3 𝐫𝐝) 𝜓 (105) 

Note that here the term containing the electric dipole moment has the factor 
𝑒

𝑐3
 instead of 

2𝑒

3𝑐3
 as 

in equation (5). This is due to the presence of a G-field satisfying condition (18), which was not taken 

into account when deriving Eq. (5). 

We seek the solution of equation (105) in the form of expansion (62) in terms of eigenfunctions 

of the linear Schrödinger equation (63), but with time-dependent coefficients 𝑐𝑛: 

𝜓(𝐫, 𝑡) = ∑ 𝑐𝑛(𝑡)𝜓𝑛(𝐫) exp(−𝑖𝜔𝑛
(0)

𝑡)𝑛  (106) 

Substituting (106) into (105), taking into account (63), one obtains 

𝑖ℏ ∑ 𝑐̇𝑛(𝑡)𝜓𝑛(𝐫) exp(−𝑖𝜔𝑛
(0)

𝑡)𝑛 =
𝑒

𝑐3
𝐫𝐝 ∑ 𝑐𝑛(𝑡)𝜓𝑛(𝐫) exp(−𝑖𝜔𝑛

(0)
𝑡)𝑛  (107) 

We multiply equation (107) by 𝜓𝑘
∗ (𝐫) and integrate over the entire space, taking into account (64) 

and (87). As a result, one obtains  

𝑖ℏ𝑐̇𝑘(𝑡) = −
1

𝑐3
∑ 𝑐𝑛(𝑡)(𝐝𝐝𝑛𝑘) exp(−𝑖𝜔𝑛𝑘𝑡)𝑛  (108) 

Taking into account (84), one obtains 

𝐝(𝑡) = 𝑖 ∑ ∑ 𝜔𝑛𝑘
3 𝑐𝑘

∗𝑐𝑛𝐝𝑛𝑘 exp(−𝑖𝜔𝑛𝑘𝑡)𝑛𝑘  (109) 

We assume that the characteristic time of changing the parameters 𝑐𝑛(𝑡) is significantly less than 

the period 𝑇𝑛𝑘 =
2𝜋

𝜔𝑛𝑘
 , i.e. that the condition  

𝑇𝑛𝑘|𝑐̇𝑘(𝑡)| ≪ 𝑐𝑘(𝑡) (110) 

In this case, we can average equation (108) over fast oscillations with frequencies 𝜔𝑛𝑘, assuming 

that the parameters 𝑐𝑛(𝑡) are constant. Taking into account (109), one obtains  

𝑐̇𝑘 = 𝑐𝑘 ∑ 𝛾𝑛𝑘|𝑐𝑛|2
𝑛  (111) 

where 

𝛾𝑛𝑘 =
𝜔𝑛𝑘

3

ℏ𝑐3
|𝐝𝑛𝑘|2 (112) 

is the damping rate of the spontaneous emission, associated with the excited eigenmodes 𝑛  and 𝑘 . 

Obviously, 𝛾𝑛𝑘 > 0, if 𝜔𝑛𝑘 > 0 while 𝛾𝑛𝑘 < 0, if 𝜔𝑛𝑘 < 0. 

Equation (111) can be rewritten as 

𝑑|𝑐𝑘|2

𝑑𝑡
= |𝑐𝑘|2 ∑ 2𝛾𝑛𝑘|𝑐𝑛|2

𝑛  (113) 

Taking into account that 𝛾𝑛𝑛 = 0, the formal solution of equation (111) has the form  

𝑐𝑘(𝑡) = 𝑐𝑘(0) exp (∑ 𝛾𝑛𝑘 ∫ |𝑐𝑛|2𝑑𝑡
𝑡

0𝑛 ) (114) 

Equation (113) implies that if all excited eigenmodes (i.e. eigenmodes with |𝑐𝑛|2 ≠ 0 ) have 

eigenfrequencies 𝜔𝑛
(0)

> 𝜔𝑘
(0)

  (i.e. 𝛾𝑛𝑘 > 0  for all 𝑛 ), then the right side of equation (113) is non-

negative and the amplitude|𝑐𝑘|2 of the eigenmode 𝑘 increases monotonically with time. Taking into 

account (65), this is possible only by reducing the amplitudes of all modes 𝑛 ≠ 𝑘. The amplitude |𝑐𝑘|2 

will increase until |𝑐𝑘|2 = 1 and, accordingly, |𝑐𝑛|2 = 0 for all 𝑛 ≠ 𝑘 are reached, i.e. until the entire 

electric charge of the EW flows into the lower mode 𝑘 . After that, spontaneous emission and 
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rearrangement of the structure of the hydrogen atom will stop. This implies that all pure states of the 

hydrogen atom, with the exception of the ground state (with the lowest eigenfrequency), are unstable. 

Simple estimates [19–23] show that 
𝛾𝑛𝑘

𝜔𝑛𝑘
~𝛼3 ≪ 1, where 𝛼 =

𝑒2

ℏ𝑐
 is the fine structure constant. It 

is this condition that allows spliting the process of solving the Schrödinger equation into two stages: 

first, find the eigenfrequencies and eigenmodes of the atom, based on the assumption that the atom is 

in a stationary state (even if it is in a mixed state), and then calculate the change in the structure 

associated with the spontaneous emission. Note that usually in quantum mechanics, when solving the 

Schrödinger (Klein-Gordon, Pauli, Dirac) equations, it is limited only to the first stage. 

We multiply equation (113) by ℏ𝜔𝑘
(0)

 and sum over all 𝑘. As a result, taking into account (74), 

one obtains 

𝑑ℰ

𝑑𝑡
= ∑ ∑ 𝜔𝑘

(0) 2𝜔𝑛𝑘
3

𝑐3
|𝑐𝑘|2|𝑐𝑛|2|𝐝𝑛𝑘|2

𝑛𝑘  (115) 

Taking into account that 

∑ ∑ 𝜔𝑘
(0) 2𝜔𝑛𝑘

3

𝑐3
|𝑐𝑘|2|𝑐𝑛|2|𝐝𝑛𝑘|2

𝑛𝑘 = − ∑ ∑ 𝜔𝑛
(0) 2𝜔𝑛𝑘

3

𝑐3
|𝑐𝑘|2|𝑐𝑛|2|𝐝𝑛𝑘|2

𝑘𝑛 =

− ∑ ∑ 𝜔𝑛
(0) 2𝜔𝑛𝑘

3

𝑐3
|𝑐𝑘|2|𝑐𝑛|2|𝐝𝑛𝑘|2

𝑛𝑘    

One can write 

∑ ∑ 𝜔𝑘
(0) 2𝜔𝑛𝑘

3

𝑐3
|𝑐𝑘|2|𝑐𝑛|2|𝐝𝑛𝑘|2

𝑛𝑘 =
1

2
∑ ∑ 𝜔𝑘

(0) 2𝜔𝑛𝑘
3

𝑐3
|𝑐𝑘|2|𝑐𝑛|2|𝐝𝑛𝑘|2

𝑛𝑘 +

1

2
∑ ∑ 𝜔𝑘

(0) 2𝜔𝑛𝑘
3

𝑐3
|𝑐𝑘|2|𝑐𝑛|2|𝐝𝑛𝑘|2

𝑛𝑘 =
1

2
∑ ∑ 𝜔𝑘

(0) 2𝜔𝑛𝑘
3

𝑐3
|𝑐𝑘|2|𝑐𝑛|2|𝐝𝑛𝑘|2

𝑛𝑘 −

1

2
∑ ∑ 𝜔𝑛

(0) 2𝜔𝑛𝑘
3

𝑐3
|𝑐𝑘|2|𝑐𝑛|2|𝐝𝑛𝑘|2

𝑛𝑘 −
1

2
∑ ∑

2𝜔𝑛𝑘
4

𝑐3
|𝑐𝑘|2|𝑐𝑛|2|𝐝𝑛𝑘|2

𝑛𝑘 =

− ∑ ∑
2𝜔𝑛𝑘

4

𝑐3
|𝑐𝑘|2|𝑐𝑛|2|𝐝𝑛𝑘|2

𝑛>𝑘𝑘    

Then, taking into account (102) and (103), one writes equation (115) as 

𝑑ℰ

𝑑𝑡
= −𝐼 (116) 

Equation (116) expresses the energy conservation law for the hydrogen atom: the energy of the 

Maxwell-Pauli field in the hydrogen atom decreases due to spontaneous emission at a rate 𝐼. Thus, the 

results obtained are in full accordance with the energy conservation law. 

Equations (111) and (113) give a complete quantitative description of spontaneous emission and 

the related rearrangement of the structure of the hydrogen atom (what is commonly called a 

spontaneous transition) within the framework of CFT. In this case, the damping rate of the spontaneous 

emission (112), obtained in the framework of CFT, is one and a half times greater than the damping 

rate of the spontaneous emission, which is derived in quantum electrodynamics [29] based on quantum 

concepts. This is due to the fact that in quantum electrodynamics the G-field satisfying condition (18) 

is not taken into account. 

Thus, we come to the conclusion that spontaneous emission occurs in full accordance with CFT 

(in particular, with CED), and in order to explain its cause, there is no need to invoke additional 

hypotheses, such as zitterbewegung and QED-vacuum. 
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Moreover, to explain the spectrum of spontaneous emission and its quantitative characteristics, 

there is no need to use the hypothesis of quantization of fields (electron and electromagnetic), but only 

the concepts and ideas of CFT are sufficient. 

4. Hydrogen atom in an external magnetic field 

The solution of the nonlinear Pauli equation (56) for a hydrogen atom in an external magnetic 

field will be considered in more detail in the next papers of this series. 

In this paper, we consider the behavior of the intrinsic angular momentum vector of a hydrogen 

atom in an external magnetic field. 

As shown in [30], the change in the intrinsic angular momentum 𝐒 of the electron field of an atom 

is described by the equation 

𝑑𝐒

𝑑𝑡
= −𝜇𝐵 ∫ Ψ∗𝛔Ψ × 𝐇Σ𝑑𝑉 + 𝑒 ∫ Ψ∗𝛔Ψ × 𝐆Σ𝑑𝑉 (117) 

The first term on the right-hand side of equation (117) describes the usual classical torque acting 

on the magnetic moment in an external magnetic field. The second term is related to the G-field and 

has no analogues in CED. 

Consider the case 𝐆 = 0 , i.e. when there is no external G-field. Then, in the considered 

approximation, equation (117) takes the form 

𝑑𝐒

𝑑𝑡
= 𝜇𝐵𝐇 × ∫ Ψ∗𝛔Ψ𝑑𝑉 + 𝑒 ∫ Ψ∗𝛔Ψ × 𝐆𝑒𝑑𝑉 (118) 

Let us expand the integrand in (29) into a power series with respect to 𝑅 𝑐⁄ . As a result, one 

obtains  

𝐆𝑒 = 𝐆0 −
𝑒

𝑐

𝜕

𝜕𝑡
∫ Ψ∗𝛔Ψ𝑑𝑉′ +

𝑒

2𝑐2

𝜕2

𝜕𝑡2 ∫ 𝑅Ψ∗𝛔Ψ𝑑𝑉′ −
𝑒

6𝑐3

𝜕3

𝜕𝑡3 ∫ 𝑅2Ψ∗𝛔Ψ𝑑𝑉′ + ⋯ (119) 

We consider the solution of the nonlinear Pauli equation in the form (60), considering the 

parameters 𝑎1 and 𝑎2 as functions of time. In this case, relations (75) and (77) hold, where the unit 

vector 𝛎 depends on time, i.e., rotates in space. 

In this case, equation (118) and relation (119) take the form 

𝛎̇ = −𝛾𝑒𝐇 × 𝛎 + 2
𝑒

ℏ
𝛎 × ∫|𝜓|2𝐆𝑒𝑑𝑉 (120) 

𝐆𝑒 = 𝐆0 −
𝑒

𝑐
𝛎̇ +

𝑒

2𝑐2

𝜕2

𝜕𝑡2
(𝛎 ∫ 𝑅|𝜓|2𝑑𝑉′) −

𝑒

6𝑐3

𝜕3

𝜕𝑡3
(𝛎 ∫ 𝑅2|𝜓|2𝑑𝑉′) + ⋯ (121) 

where, taking into account (2), 

𝐆0 = 𝑒𝛎 ∫
|𝜓(𝐫′,𝑡)|

2

𝑅
𝑑𝑉′ = −𝛎𝜑0(𝐫) (122) 

Substituting (121) into equation (120), one obtains 

𝛎̇ = −𝛾𝑒𝐇 × 𝛎 − 2𝛼𝛎 × 𝛎̇ +
𝛼

𝑐
𝛎 × ∫|𝜓|2 𝜕2

𝜕𝑡2
(𝛎 ∫ 𝑅|𝜓|2𝑑𝑉′)𝑑𝑉 −

𝛼

3𝑐2 𝛎 ×

∫|𝜓|2 𝜕3

𝜕𝑡3
(𝛎 ∫ 𝑅2|𝜓|2𝑑𝑉′)𝑑𝑉 + ⋯ (123) 

where 𝛼 =
𝑒2

ℏ𝑐
 is the fine structure constant. 

Restricting ourselves to the first two terms on the right-hand side of equation (123), one obtains 
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𝛎̇ = −𝛾𝑒𝐇 × 𝛎 − 2𝛼𝛎 × 𝛎̇ (124) 

The first term in equation (124) describes the classical Larmor precession of spin in an external 

magnetic field with a frequency 

𝛀𝜈 =
𝑒

𝑚𝑒𝑐
𝐇 (125) 

Equation (124) has the form of the Landau–Lifshitz–Gilbert equation [35,36] with a damping 

parameter 2𝛼 . Note that, in contrast to the Landau–Lifshitz–Gilbert equation [35,36], which is 

phenomenological, equation (124) is not phenomenological, but naturally follows from the theory [30]. 

Let us multiply equation (124) on the left vectorially by 𝛎. As a result of simple transformations, 

one obtains 

𝛎 × 𝛎̇ = 𝛾𝑒𝛎 × 𝛎 × 𝐇 + 2𝛼𝛎̇ (126) 

Substituting (126) into equation (124), one obtains 

𝛎̇ = −
𝛾𝑒

1+4𝛼2 𝐇 × 𝛎 −
2𝛼𝛾𝑒

1+4𝛼2 𝛎 × 𝛎 × 𝐇 (127) 

Equation (127) has the form of the Landau–Lifshitz equation [35]. 

Assuming the vector H to be constant, we consider the scalar product of equation (127) and 𝐇. 

As a result, one obtains 

𝑑(𝛎𝐇)

𝑑𝑡
=

2𝛼

1+4𝛼2 𝛾𝑒(𝐇2 − (𝛎𝐇)2) (128) 

Taking into account that (𝛎𝐇) = 𝐻 cos 𝜃, where 𝜃 is the angle between the vectors 𝛎 and 𝐇, we 

reduce equation (128) to the form  

𝑑𝜃

𝑑𝑡
= −

2𝛼

1+4𝛼2 𝛾𝑒𝐻 sin 𝜃 (129) 

Equation (129) has a solution 

cos 𝜃 =
(1+cos 𝜃0) exp(

4𝛼

1+4𝛼2𝛾𝑒𝐻𝑡)−(1−cos 𝜃0)

(1+cos 𝜃0) exp(
4𝛼

1+4𝛼2𝛾𝑒𝐻𝑡)+(1−cos 𝜃0)
 (130) 

where 𝜃0 is the initial value of the angle 𝜃. 

Taking into account that 𝛾𝑒 < 0, it follows from equation (129) that the angle 𝜃 monotonically 

increases and tends to the limit value 𝜃∞ = 𝜋. The characteristic time of rotation of the vector 𝛎 in an 

external magnetic field is of the order of 

𝑡𝜈 =
𝑚𝑒𝑐

2𝛼𝑒𝐻
 (131) 

Let us compare this time with the period of the Larmor precession of the vector 𝛎 around the 

magnetic field vector 𝐇. 

Using (125), one obtains  

|𝛀𝜈|𝑡𝜈 = (2𝛼)−1 ≫ 1 (132) 

Thus, the period of the Larmor precession of the vector 𝛎 is much shorter than the characteristic 

time of the change in the angle 𝜃 in an external magnetic field. From this point of view, we can say 

that the Larmor precession of the vector 𝛎 occurs quasi-stationary. 

Thus, according to equation (127), the vector 𝛎 (vector of intrinsic angular momentum 𝐒) of a 

hydrogen atom in an external magnetic field performs a Larmor precession around the vector 𝐇 with 

an angular frequency (125) and, at the same time, slowly turns, tending to take a direction antiparallel 

to the vector 𝐇 . Accordingly, the vector of intrinsic magnetic moment 𝛍  (82) performs a Larmor 
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precession and tends to take a direction parallel to the vector 𝐇, i.e. (𝛍𝐇) → 𝜇𝐵𝐻 at 𝑡 → ∞. Such a 

behavior of the magnetic moment has a simple explanation from the point of view of classical physics. 

As is known, any system tends to the state with the lowest potential energy, and the potential energy 

of a magnetic dipole in a magnetic field is 𝑈 = −(𝛍𝐇). At constant |𝛍| = 𝜇𝐵 and 𝐇, such a state is 

the state in which the magnetic moment is parallel to the vector 𝐇. 

Due to the turn of the intrinsic magnetic moment of the atom in an external magnetic field, the 

potential energy of the atom changes by ∆𝑈 = −∆(𝛍𝐇) = −𝜇𝐵𝐻 + (𝛍𝐇)0 , where (𝛍𝐇)0 =

𝜇𝐵𝐻 cos 𝜃0 is the initial value of the potential energy of the magnetic moment. Thus, 

∆𝑈 = −𝜇𝐵𝐻(1 + cos 𝜃0)     (133) 

Let us calculate the energy carried away by the field 𝐆 during dipole radiation of an atom located 

in an external magnetic field. In the dipole approximation, the radiation intensity of the field 𝐆  is 

determined by relation (98). In the Section 3.3, we considered the case when the direction of the spin 

does not change (𝛎̇ = 0), but the dipole moment of the atom changes (𝐝̇ ≠ 0). Let us now consider the 

case when 𝛎̇ ≠ 0 while the atom does not have an electric dipole moment: 𝐝 = 0 (for example, the 

atom is in a pure s-state). 

In this case, relation (98) takes the form 

𝐼𝐆 =
𝑒2|𝛎̇|2

𝑐
 (134) 

If the atom is in an external magnetic field 𝐇, then using (127) one obtains 

|𝛎̇|2 =
𝛾𝑒

2

(1+4𝛼2)
𝐻2 sin2 𝜃 (135) 

where 𝜃 is the angle between the vectors 𝛎 and 𝐇. 

Thus, 

𝐼𝐆 =
𝑒2

(1+4𝛼2)𝑐
𝛾𝑒

2𝐻2 sin2 𝜃 (136) 

Because under the action of the field 𝐆, the intrinsic magnetic moment of the atom tends to take 

a direction parallel to the vector 𝐇, the radiation intensity (136) rapidly decreases. As a result, the total 

energy carried away by the field 𝐆 is equal to ∆ℰ𝐆 = ∫ 𝐼𝐆𝑑𝑡
∞

0
. Using (129), one obtains 

∆ℰ𝐆 = −
1+4𝛼2

2𝛼𝛾𝑒𝐻
∫ 𝐼𝐆

𝑑𝜃

sin 𝜃

𝜋

𝜃0
 (137) 

Substituting (136) into (137), one obtains 

∆ℰ𝐆 = 𝜇𝐵𝐻(1 + cos 𝜃0) (138) 

Comparing (138) with (133), we see that the difference in potential energy resulting from the turn 

of the intrinsic magnetic moment in an external magnetic field is completely carried away by the wave 

field 𝐆. 

If the angles of the magnetic moments of atoms are distributed randomly and uniformly in the 

range [0, 𝜋] , then, averaging (138) over all angles 𝜃0 , we obtain that atoms, being in an external 

magnetic field, on average lose energy carried away by the field 𝐆, equal to 

∆ℰ𝐆
̅̅ ̅̅ ̅ = 𝜇𝐵𝐻     (139) 

Let us take into account the third term in expansion (121): 

𝐆𝑒 = 𝐆0 −
𝑒

𝑐
𝛎̇ +

𝑒

2𝑐2

𝜕2

𝜕𝑡2
(𝛎 ∫ 𝑅|𝜓|2𝑑𝑉′) (140) 

In particular, if the atom is in a pure state, then |𝜓|2 does not depend on time, and relation (140) 
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takes the form  

𝐆𝑒 = 𝐆0 −
𝑒

𝑐
𝛎̇ +

𝑒

2𝑐2 𝛎̈ ∫ 𝑅|𝜓|2𝑑𝑉′ (141) 

In this case, equation (123) takes the form 

𝛎̇ = 𝛾𝑒𝛎 × 𝐇 − 2𝛼𝛎 × 𝛎̇ +
𝛼𝑏

𝑐
𝛎 × 𝛎̈ (142) 

where 

𝑏 = ∫ ∫ 𝑅|𝜓(𝐫)|2|𝜓(𝐫′)|2𝑑𝑉′ 𝑑𝑉 (143) 

By analogy with equation (127), equation (142) can be reduced to the form 

𝛎̇ =
𝛾𝑒

1+4𝛼2 𝛎 × 𝐇 +
𝛼𝑏

(1+4𝛼2)𝑐
𝛎 × 𝛎̈ −

2𝛼

1+4𝛼2 𝛾𝑒𝛎 × 𝛎 × 𝐇 −
2𝛼2𝑏

(1+4𝛼2)𝑐
𝛎 × 𝛎 × 𝛎̈ (144) 

To calculate the derivative 𝛎̈, we take into account that the second and subsequent terms on the 

right-hand side of (144) are small compared to the first one. As a result, one can write approximately  

𝛎̇ ≈
𝛾𝑒

1+4𝛼2 𝛎 × 𝐇 (145) 

𝛎̈ ≈
𝛾𝑒

1+4𝛼2 𝛎̇ × 𝐇 ≈ − (
𝛾𝑒

1+4𝛼2)
𝟐

𝐇 × 𝛎 × 𝐇 = − (
𝛾𝑒

1+4𝛼2)
𝟐

(𝛎𝐇2 − 𝐇(𝛎𝐇)) (146) 

Substituting (146) into (144), one obtains 

𝛎̇ =
𝛾𝑒

1+4𝛼2 (1 +
𝛼𝑏𝛾𝑒

(1+4𝛼2)2𝑐
(𝛎𝐇)) 𝛎 × 𝐇 −

2𝛼

1+4𝛼2 𝛾𝑒 [1 +
𝛼𝑏𝛾𝑒

(1+4𝛼2)2𝑐
(𝛎𝐇)] 𝛎 × 𝛎 × 𝐇 (147) 

Assuming the vector 𝐇 to be constant, we multiply equation (147) by it. As a result, one obtains 

𝐇𝛎̇ = −
2𝛼

1+4𝛼2 𝛾𝑒 [1 +
𝛼𝑏𝛾𝑒

(1+4𝛼2)2𝑐
(𝛎𝐇)] [(𝛎𝐇)2 − 𝐇2] (148) 

Taking into account that (𝛎𝐇) = 𝐻 cos 𝜃, one obtains 

𝑑𝜃

𝑑𝑡
= −

2𝛼

1+4𝛼2 𝛾𝑒H (1 +
𝛼𝑏𝛾𝑒

(1+4𝛼2)2𝑐
𝐻 cos 𝜃) sin 𝜃 (149) 

Equation (149) differs from equation (129) by an additional factor (1 +
𝛼𝑏𝛾𝑒

(1+4𝛼2)2𝑐
𝐻 cos 𝜃) on the 

right-hand side. 

When 

𝐻 > −
(1+4𝛼2)

2
𝑐

𝛼𝑏𝛾𝑒
= (1 + 4𝛼2)2 𝑚𝑒𝑐2

𝛼𝑏𝑒
 (150) 

the right-hand side of equation (149) changes sign as the angle 𝜃 changes from zero to 𝜋. In this case, 

when 

cos 𝜃 < −
(1+4𝛼2)

2
𝑐

𝛼𝑏𝛾𝑒𝐻
 (151) 

the right-hand side of equation (149) is positive and the angle 𝜃 increases until it reaches the value 

𝜃 = 𝜋. Thus, the magnetic moment of the EW turns in the magnetic field until it becomes parallel to 

the vector 𝐇. On the contrary, when  

cos 𝜃 > −
(1+4𝛼2)

2
𝑐

𝛼𝑏𝛾𝑒𝐻
 (152) 

the right-hand side of equation (149) is negative, and the angle 𝜃 decreases until it reaches the value 

𝜃 = 0. Thus, the magnetic moment of the EW turns in the magnetic field until it becomes antiparallel 
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to the vector 𝐇. 

As a result, in a field that satisfies condition (150), we will observe only two possible orientations 

of the magnetic moment: parallel and antiparallel to the vector 𝐇. If the field 𝐇 is inhomogeneous (as 

in the Stern and Gerlach experiments), this will lead to the separation of the atomic beam in space into 

two parts, one of which corresponds to the parallel and the other to the antiparallel orientation of the 

intrinsic magnetic moment of the EW of the atom with respect to the vector 𝐇. 

Thus, the fulfillment of condition (150) actually means an explanation of the results of the Stern 

and Gerlach experiments. 

If condition (150) is not satisfied, then the magnetic moment of the atom is always oriented 

parallel to the field 𝐇. In this case, the results obtained at the beginning of this section remain valid 

and the atomic beam does not split into two parts in a nonuniform external magnetic field. 

Let us estimate the right-hand side of inequality (150) for the hydrogen atom in the ground state. 

As shown in the Appendix (see Supplementary), in this case 

𝑏 =
35

16
𝑎𝐵 (153) 

Substituting (153) into the right-hand side of (150), one obtains 

(1 + 4𝛼2)2 𝑚𝑒𝑐2

𝛼𝑏𝑒
= 2 × 1013gauss (154) 

which is a billion times higher than the value of the magnetic field strength in the Stern and Gerlach 

experiments. Thus, condition (150) is not satisfied in the Stern and Gerlach experiments. 

At the same time, equation (149), and hence also equation (142), with a different value of the 

coefficient 𝑏, shows a possible mechanism leading to a two-valued result in the Stern and Gerlach 

experiments. This explanation of the Stern and Gerlach experiments is understandable and seems very 

tempting. 

There is another way to explain the results of the Stern and Gerlach experiments within the 

framework of this theory. If, in addition to the external magnetic field 𝐇, there is an external field 𝐆, 

then in all equations (142)-(152) the vector 𝐇 should be replaced by the vector 𝐇 +
2𝑒

ℏ𝛾𝑒
𝐆. In particular, 

condition (150) must be satisfied not by the modulus of the magnetic field strength 𝐇, but by the 

modulus |𝐇 +
2𝑒

ℏ𝛾𝑒
𝐆|. In this case, the Stern and Gerlach experiments can be explained if we assume 

that the external field 𝐆  in these experiments was sufficiently strong and, at the same time, 

homogeneous. In this case, the field 𝐆 affects the orientation of the intrinsic magnetic moment of the 

atom, but does not affect the spatial separation of the atomic beam, because it is affected by the gradient 

of the vector 𝐇 +
2𝑒

ℏ𝛾𝑒
𝐆 [30]. 

5. Conclusions 

In this work, we did not consider such “quantum” phenomena as light-atom interaction, the 

Compton effect, the photoelectric effect, thermal radiation, and the Lamb-Retherford experiment. 

They were considered in detail in [18–23] on the basis of the nonlinear Schrödinger equation (5), which, 

as we have shown, is a direct consequence of the theory [30]. 

Thus, we have shown that the united Maxwell-Pauli theory [30], considered as a CFT, naturally 
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describes and explains all the basic “quantum” phenomena (spontaneous “transitions” and the 

associated discrete spectrum of spontaneous emission, light-atom interactions, Compton effect, 

photoelectric effect, thermal radiation, Lamb-Retherford experiment, spin and spin magnetic moment 

of an atom, etc.) without any quantization and without using additional hypotheses. In particular, to 

explain and describe the so-called spontaneous “transitions” and spontaneous emission, we did not 

need such a hypothetical object as QED-vacuum and the related zero-point fluctuations and 

zitterbewegung: this theory does fine without them. 

Note that the theory under consideration is completely deterministic: in it, as Einstein stated, “God 

does not play dice.” This is another fundamental difference between the theory under consideration 

and the probabilistic theory based on linear wave equations (Schrödinger, Pauli, Klein-Gordon and 

Dirac) and the Copenhagen interpretation. 

In conclusion, I would like to note that the theory developed in [18−23,30,31] and in this work, 

in a certain sense, realizes Einstein’s dream [37]: the creation of a theory in which all physical objects 

are classical fields. 
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