In this paper, we are concerned with an elliptic problem with mixed Dirichlet and Neumann boundary conditions that involve a mixed operator (i.e., the combination of classical Laplace operator and fractional Laplace operator) and critical nonlinearity. Also, we focus on identifying the optimal constant in the mixed Sobolev inequality, which we show is never achieved. Furthermore, by using variational methods, we provide an existence and nonexistence theory for both linear and superlinear perturbation cases.
Citation: Lovelesh Sharma. Brezis Nirenberg type results for local non-local problems under mixed boundary conditions[J]. Communications in Analysis and Mechanics, 2024, 16(4): 872-895. doi: 10.3934/cam.2024038
In this paper, we are concerned with an elliptic problem with mixed Dirichlet and Neumann boundary conditions that involve a mixed operator (i.e., the combination of classical Laplace operator and fractional Laplace operator) and critical nonlinearity. Also, we focus on identifying the optimal constant in the mixed Sobolev inequality, which we show is never achieved. Furthermore, by using variational methods, we provide an existence and nonexistence theory for both linear and superlinear perturbation cases.
[1] | E. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[2] | S. Dipierro, E. Lippi, E. Valdinoci, Nonlocal logistic equations with Neumann conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 40 (2023), 1093–1166. https://doi.org/10.4171/aihpc/57https://doi.org/10.4171/aihpc/57 doi: 10.4171/aihpc/57 |
[3] | S. Dipierro, E. Valdinoci, Description of an ecological niche for a mixed local/nonlocal dispersal: an evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes, Phys. A, 575 (2021), 126052. https://doi.org/10.1016/j.physa.2021.126052 doi: 10.1016/j.physa.2021.126052 |
[4] | C. Kao, Y. Lou, W. Shen, Evolution of mixed dispersal in periodic environments, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2047–2072. https://doi.org/10.3934/dcdsb.2012.17.2047 doi: 10.3934/dcdsb.2012.17.2047 |
[5] | A. Massaccesi, E. Valdinoci, Is a nonlocal diffusion strategy convenient for biological populations in competition? J. Math. Biol., 74 (2017), 113–147. https://doi.org/10.1007/s00285-016-1019-z |
[6] | B. Pellacci, G. Verzini, Best dispersal strategies in spatially heterogeneous environments: optimization of the principal eigenvalue for indefinite fractional Neumann problems, J. Math. Biol., 76 (2018), 1357–1386. https://doi.org/10.1007/s00285-017-1180-z doi: 10.1007/s00285-017-1180-z |
[7] | D. Blazevski, D. Negrete, Local and nonlocal anisotropic transport in reversed shear magnetic fields: Shearless cantori and nondiffusive transport, Phy. Review E, 87 (2013), 063106, https://doi.org/10.1103/PhysRevE.87.063106 doi: 10.1103/PhysRevE.87.063106 |
[8] | G. Pagnini, S. Vitali, Should I stay or should I go? Zero-size jumps in random walks for Lévy flights, Fract. Calc. Appl. Anal., 24 (2021), 137–167. https://doi.org/10.1515/fca-2021-0007 doi: 10.1515/fca-2021-0007 |
[9] | L. Zheng, J. He. A class of singular nonlinear boundary value problems in the theory of pseudoplastic fluids. J. Northeast. Univ. Nat. Sci., 19 (1998), 208–211. |
[10] | S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Comm. Partial Differential Equations, 47 (2022), 585–629. https://doi.org/10.1080/03605302.2021.1998908 doi: 10.1080/03605302.2021.1998908 |
[11] | E. Montefusco, B. Pellacci, G. Verzini, Fractional diffusion with Neumann boundary conditions: the logistic equation, Discrete Contin. Dyn. Syst, 18 (2013), 2175–2202. https://doi.org/10.3934/dcdsb.2013.18.2175 doi: 10.3934/dcdsb.2013.18.2175 |
[12] | B. Pellacci, G. Verzini, Best dispersal strategies in spatially heterogeneous environments: optimization of the principal eigenvalue for indefinite fractional Neumann problems, J. Math. Biol, 76 (2018), 1357–1386. https://doi.org/10.1007/s00285-017-1180-z doi: 10.1007/s00285-017-1180-z |
[13] | S. Aizicovici, N. S. Papageorgiou, V. Staicu, Nonlinear nonhomogeneous logistic equations of superdiffusive type, Appl. Set-Valued Anal. Optim, 4 (2022), 277–292. https://doi.org/10.23952/asvao.4.2022.3.03 doi: 10.23952/asvao.4.2022.3.03 |
[14] | A. Mao, X. Luo. Multiplicity of solutions to linearly coupled Hartree systems with critical exponent, J. Nonlinear Var. Anal., 7 (2023), 173–200. https://doi.org/10.23952/jnva.7.2023.2.01 doi: 10.23952/jnva.7.2023.2.01 |
[15] | A. Samadi, S. K. Ntouyas, J. Tariboon, Nonlocal Hilfer proportional sequential fractional multi-valued boundary value problems, J. Nonlinear Funct. Anal, 2023 (2023), 1–16. https://doi.org/10.23952/jnfa.2023.22 doi: 10.23952/jnfa.2023.22 |
[16] | S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A faber-krahn inequality for mixed local and nonlocal operators, JAMA, 150 (2023), 405–448. https://doi.org/10.1007/s11854-023-0272-5 doi: 10.1007/s11854-023-0272-5 |
[17] | S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Hong-Krahn-Szegö inequality for mixed local and nonlocal operators, Math. Eng., 5 (2023), 1–25. https://doi.org/10.3934/mine.2023014 doi: 10.3934/mine.2023014 |
[18] | C. LaMao, S. Huang, Q. Tian, C. Huang, Regularity results of solutions to elliptic equations involving mixed local and nonlocal operators, AIMS Math., 7 (2022), 4199–4210. https://doi.org/10.3934/math.2022233 doi: 10.3934/math.2022233 |
[19] | N. Abatangelo, M. Cozzi, An elliptic boundary value problem with fractional nonlinearity, SIAM J. Math. Anal., 53 (2021), 3577–3601. https://doi.org/10.1137/20M1342641 doi: 10.1137/20M1342641 |
[20] | G. Barles, E. Chasseigne, A. Ciomaga, C. Imbert, Lipschitz regularity of solutions for mixed integro-differential equations. J. Differential Equations, 252 (2012), 6012–6060. https://doi.org/10.1016/j.jde.2012.02.013 |
[21] | G. Bisci, V. Radulescu, R. Servadei, Variational methods for nonlocal fractional problems, volume 162 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 162 (2016). https://doi.org/10.1017/CBO9781316282397 |
[22] | S. Dipierro, E. Lippi, E. Valdinoci, Linear theory for a mixed operator with Neumann conditions, Asymptot. Anal, 128 (2022), 571–594. https://doi.org/10.3233/asy-211718 doi: 10.3233/asy-211718 |
[23] | M. Grossi, On some semilinear elliptic equations with critical nonlinearities and mixed boundary conditions, Rend. Mat. Appl., 10 (1990), 287–302. |
[24] | P. Lions, F. Pacella, M. Tricarico, Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, Indiana. Univ. Math. J., 37 (1988), 301–324. https://doi.org/10.1512/iumj.1988.37.37015 doi: 10.1512/iumj.1988.37.37015 |
[25] | S. Biagi, S. Dipierro, E. Valdinoc, E. Vecchi, A Brezis-Nirenberg type result for mixed local and nonlocal operators, preprint, 2022, arXiv: 2209.07502. https://doi.org/10.48550/arXiv.2209.07502 |
[26] | H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math, 36 (1983), 437–477. https://doi.org/10.1002/cpa.3160360405 doi: 10.1002/cpa.3160360405 |
[27] | R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67–102. https://doi.org/10.1090/S0002-9947-2014-05884-4 doi: 10.1090/S0002-9947-2014-05884-4 |
[28] | S. Biagi, D. Mugnai, E. Vecchi, A Brezis-Oswald approach to mixed local and nonlocal operators, Commun. Contemp. Math., 26 (2024), 2250057. https://doi.org/10.1142/S0219199722500572 doi: 10.1142/S0219199722500572 |
[29] | J Giacomoni, T. Mukherjee, L. Sharma, Eigenvalue problem associated with mixed operators under mixed boundary conditions, In preparation. |
[30] | G. Anthal, J. Giacomoni, K. Sreenadh, A Choquard type equation involving mixed local and nonlocal operators, J. Math. Anal. Appl., 527 (2023), 127440. https://doi.org/10.1016/j.jmaa.2023.127440 doi: 10.1016/j.jmaa.2023.127440 |
[31] | B. Barrios, E. Colorado, R. Servadei, F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 32 (2015), 875–900. https://doi.org/10.1016/j.anihpc.2014.04.003 doi: 10.1016/j.anihpc.2014.04.003 |
[32] | E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math, 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[33] | S. Dipierro, X. Ros-Oton, E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam., 33 (2017), 377–416. https://doi.org/10.4171/RMI/942 doi: 10.4171/RMI/942 |
[34] | B. Abdellaoui, E. Colorado, I. Peral, Effect of the boundary conditions in the behaviour of the optimal constant of some Caffarelli-Kohn-Nirenberg inequalities. Application to some doubly critical nonlinear elliptic problems, Adv. Differential Equations, 11 (2006), 667–720. https://doi.org/10.57262/ade/1355867690 doi: 10.57262/ade/1355867690 |
[35] | X. Su, E. Valdinoci, Y. Wei, J. Zhang, Regularity results for solutions of mixed local and nonlocal elliptic equations, Math. Z., 302 (2022), 1855–1878. https://doi.org/10.1007/s00209-022-03132-2 doi: 10.1007/s00209-022-03132-2 |
[36] | T. Leonori, M. Medina, I. Peral, A. Primo, F. Soria, Principal eigenvalue of mixed problem for the fractional Laplacian: moving the boundary conditions, J. Differential Equ., 265 (2018), 593–619. https://doi.org/10.1016/j.jde.2018.03.001 doi: 10.1016/j.jde.2018.03.001 |
[37] | R. Servadei, E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst, 33 (2013), 2105–2137. https://doi.org/10.3934/dcds.2013.33.2105 doi: 10.3934/dcds.2013.33.2105 |
[38] | S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Comm. Partial Differential Equations, 47 (2022), 585–629. https://doi.org/10.1080/03605302.2021.1998908 doi: 10.1080/03605302.2021.1998908 |
[39] | J. da Silva, A. Fiscella, V. Viloria, Mixed local-nonlocal quasilinear problems with critical nonlinearities, J. Differential Equations, 408 (2024), 494–536. https://doi.org/10.1016/j.jde.2024.07.028 doi: 10.1016/j.jde.2024.07.028 |
cam-16-04-038-s001.pdf |