

Communications in Analysis and Mechanics, 16(4): 872–895. DOI: 10.3934/cam.2024038 Received: 13 February 2024 Revised: 30 July 2024 Accepted: 08 November 2024 Published: 26 November 2024

https://www.aimspress.com/journal/cam

Research article

Brezis Nirenberg type results for local non-local problems under mixed boundary conditions

Lovelesh Sharma*

Department of Mathematics, Indian Institute of Technology Jodhpur, Rajasthan 342030, India

* Correspondence: Emaii: loveleshkaushik679@gmail.com, sharma.94@iitj.ac.in.

Appendix

Proposition 0.1. The space $(X_{\Pi_1}^{1,2}(U), \langle ., . \rangle)$ is a Hilbert space with scalar product given by

$$\langle u, v \rangle := \int_O \nabla u . \nabla v \, dx + \iint_Q \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n + 2s}} \, dx dy$$

Proof. It is easy to check that $\eta(.)$ is a norm on $\mathcal{X}_{\Pi_1}^{1,2}(U)$, since $\eta(u) = 0$ implies u = 0 a.e. in \mathbb{R}^n follows straightaway from $||u||_{L^2(O)} \leq \zeta(u)$, $\forall u \in \mathcal{X}_{\Pi_1}^{1,2}(U)$. In order to show that $\mathcal{X}_{\Pi_1}^{1,2}(U)$ is a Hilbert space, we need to prove that $\mathcal{X}_{\Pi_1}^{1,2}(U)$ is complete with respect to the norm $\eta(.)$. For this, let $\{u_j\}_{j\in\mathbb{N}}$ be a Cauchy sequence in $\mathcal{X}_{\Pi_1}^{1,2}(U)$. From $||u||_{L^2(O)} \leq \zeta(u)$, $\forall u \in \mathcal{X}_{\Pi_1}^{1,2}(U)$, we can easily deduce that $\{u_j\}_{j\in\mathbb{N}}$ is a Cauchy sequence in $\mathcal{L}^{2^*}(O)$, and since it is a complete Banach space, there exists a $u \in L^{2^*}(O)$ such that $u_j \to u$ in $L^{2^*}(O)$ as $j \to \infty$. Hence, up to a subsequence still denoted by itself such that $u_j \to u$ a.e. in O, for this, we refer [[1], Theorem IV.9]. Clearly, we also have that $\{\nabla u_j\}_j$ is a Cauchy sequence in $L^2(O)$, and hence there exists $w \in L^2(O)$ such that $\nabla u_j \to w$ in $L^2(O)$ as $j \to \infty$. Now we will show that $\nabla u = w$. If we fix $\phi \in C_0^{\infty}(O)$, then by the definition of weak derivative one has

$$\int_{O} \frac{\partial u_j}{\partial x_i} \phi \, \mathrm{d}x = -\int_{O} u_j \frac{\partial \phi}{\partial x_i} \, \mathrm{d}x, \ \forall \ 1 \le i \le n.$$
(0.1)

Using the fact that strong convergence in $L^{2^*}(O)$ as well as in $L^2(O)$ implies weak convergence in these spaces, we have

$$\int_{O} u_j \frac{\partial \phi}{\partial x_i} \, \mathrm{d}x \to \int_{O} u \frac{\partial \phi}{\partial x_i} \, \mathrm{d}x \text{ and } \int_{O} \frac{\partial u_j}{\partial x_i} \phi \, \mathrm{d}x \to \int_{O} w_i \phi \, \mathrm{d}x \text{ as } j \to \infty.$$
(0.2)

Letting $j \to \infty$ in (0.1) and using (0.2), we obtain

$$\int_{O} w_i \phi \, \mathrm{d}x = - \int_{O} u \frac{\partial \phi}{\partial x_i} \, \mathrm{d}x, \ \forall \ 1 \le i \le n.$$

It follows at once that

$$\frac{\partial u}{\partial x_i} = w_i \in L^2(O), \ \forall \ 1 \le i \le n, \ i.e., \ \nabla u = w.$$

Hence, the proof of our claim is finished. Next, we aim to prove that $\mathcal{X}_{\Pi_1}^{1,2}(U)$ is complete. For this, one can notice that $u_j \to u$ a.e. in O as $j \to \infty$. More precisely, it means that there exists a set $D_1 \subset \mathbb{R}^n$ such that

$$|D_1| = 0$$
 and $u_j(x) \to u(x)$ as $j \to \infty$ for all $x \in O \setminus D_1$. (0.3)

Furthermore, given any $\mathcal{H} : \mathbb{R}^n \to \mathbb{R}$, for any $(x, y) \in \mathbb{R}^{2n}$, we consider the following function

$$G_{\mathcal{H}}(x,y) = \left[\frac{(\mathcal{H}(x) - \mathcal{H}(y))\chi_{\mathcal{Q}}(x,y)}{|x - y|^{\frac{n+2s}{2}}}\right].$$
(0.4)

Now, since

$$G_{u_j}(x,y) - G_{u_k}(x,y) = \left[\frac{\left(u_j(x) - u_k(y) - u_j(x) + u_k(y) \right) \chi_Q(x,y)}{|x - y|^{\frac{n+2s}{2}}} \right]$$

and $\{u_j\}_j$ is a Cauchy sequence, we have for any $\varepsilon > 0$, there exists $n_{\varepsilon} \in \mathbb{N}$ such that, if $j, k \ge n_{\varepsilon}$, then

$$\epsilon^{2} \geq C_{n,s} \iint_{Q} \frac{\left| \left(u_{j} - u_{k} \right) (x) - \left(u_{j} - u_{k} \right) (y) \right|^{2}}{|x - y|^{n + 2s}} dx dy = \left\| G_{u_{j}} - G_{u_{k}} \right\|_{L^{2}(\mathbb{R}^{2n})}^{2}.$$

It follows that $\{G_{u_j}\}_j$ is a Cauchy sequence in $L^2(\mathbb{R}^{2n})$. From this, we infer there exists $G \in L^2(\mathbb{R}^{2n})$ such that $G_{u_j} \to G$ in $L^2(\mathbb{R}^{2n})$ as $j \to \infty$, and hence, without loss of generality, we have $G_{u_j} \to G$ a.e. in \mathbb{R}^{2n} as $j \to \infty$. It means that we can find $D_2 \subset \mathbb{R}^{2n}$ such that

$$|D_2| = 0 \text{ and } G_{u_j}(x, y) \to G(x, y) \text{ as } j \to \infty, \ \forall \ (x, y) \in \mathbb{R}^{2n} \backslash D_2.$$
(0.5)

For any $x \in O$, we define the following sets such as

$$M_x = \left\{ y \in \mathbb{R}^n : (x, y) \in \mathbb{R}^{2n} \backslash Z_2 \right\}, \quad P = \left\{ x \in \Omega : |\mathbb{R}^n \backslash M_x| = 0 \right\}$$

and

$$N = \left\{ (x, y) \in \mathbb{R}^{2n} : x \in O \text{ and } y \in \mathbb{R}^n \backslash M_x \right\}.$$

Our next goal is to show

$$N \subseteq D_2 \tag{0.6}$$

Indeed, if $(x, y) \in N$, then $y \in \mathbb{R}^n \setminus M_x$, namely $(x, y) \notin \mathbb{R}^{2n} \setminus D_2$, and hence $(x, y) \in D_2$, as desired. In addition, by (0.5) and (0.6), we find that |N| = 0. Hence, by Fubini's theorem, it follows that

$$0=|N|=\int_O |\mathbb{R}^n \backslash M_x| \, dx$$

and thus $|\mathbb{R}^n \setminus M_x| = 0$ for a.e. $x \in O$. Also, we have $|O \setminus P| = 0$ which, together with (0.3), gives

$$|O \setminus (P \setminus D_1)| = |(O \setminus P) \cup D_1| \le |O \setminus P| + |D_1| = 0$$

Communications in Analysis and Mechanics

Volume 16, Issue 4, 872-895.

In particular, we infer that $P \setminus D_1$ is non-empty. Let us fix $x_0 \in P \setminus D_1$. Now, since $x_0 \in O \setminus D_1$, we have

$$\lim_{j \to +\infty} u_j(x_0) = u(x_0)$$

by (0.3). Moreover, $|\mathbb{R}^n \setminus M_{x_0}| = 0$, since $x_0 \in P$, namely for any $y \in M_{x_0}$, it follows that $(x_0, y) \in \mathbb{R}^{2n} \setminus D_2$. Hence, by using (0.4) and (0.5), we obtain that

$$\lim_{j \to +\infty} G_{u_j}(x_0, y) = |x_0 - y|^{\frac{-(n+2s)}{2}} \lim_{j \to +\infty} \left(u_j(x_0) - u_k(y) \right) \chi_Q(x_0, y) = G(x_0, y)$$

In addition, since $O \times (\mathbb{R}^N \setminus O) \subseteq Q$, by the definition in (0.4),

$$G_{u_j}(x_0, y) = \left[\frac{u_j(x_0) - u_k(y)}{|x_0 - y|^{\frac{n+2s}{2}}}\right] \quad \text{for a.e. } y \in \mathbb{R}^n \setminus O.$$

Hence, we have

$$\lim_{j \to +\infty} u_j(y) = \lim_{j \to +\infty} \left(u_k(x_0) - |x_0 - y|^{\frac{n+2s}{2}} G_{u_j}(x_0, y) \right)$$
$$= u(x_0) - |x_0 - y|^{\frac{n+2s}{2}} G(x_0, y) = u(y).$$

This implies that $u_j \to u$ a.e. in $\mathbb{R}^n \setminus O$ as $j \to \infty$. Consequently, by Fatou's lemma, we obtain

$$\begin{split} \iint_{Q} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} dx dy &\leq \liminf_{j \to \infty} \iint_{Q} \frac{|u_j(x) - u_j(y)|^2}{|x - y|^{n+2s}} dx dy \\ &\liminf_{j \to \infty} \iint_{Q} \frac{|u_j(x) - u_j(y)|^2}{|x - y|^{n+2s}} dx dy + \liminf_{j \to \infty} \int_{O} |\nabla u_j|^2 dx dy \\ &= \liminf_{j \to \infty} \eta(u_j)^2 < +\infty. \end{split}$$

Hence, we deduce that $[u]_s^2 < +\infty$. Now it remains to show that $\eta(u_j) \to \eta(u)$ as $j \to \infty$. For this, let us take $i \ge n_{\epsilon}$, then by using Fatou's lemma, we get

$$\begin{aligned} \left[u_{i}-u\right]_{s}^{2} &\leq \liminf_{j \to \infty} \left[u_{i}-u_{j}\right]_{s}^{2} \\ &\leq \liminf_{j \to \infty} \left[u_{i}-u_{j}\right]_{s}^{2} + \liminf_{j \to \infty} \left\|\nabla u_{i}-\nabla u_{j}\right\|_{L^{2}(\mathbb{R}^{n})}^{2} \\ &\leq \liminf_{j \to \infty} \eta(u_{i}-u_{j})^{2} \leq \epsilon. \end{aligned}$$

Hence, $u_i \to u \in \chi^{1,2}_{\Pi_1}(U)$ as $i \to \infty$, which completes the proof.

References

1. H. Brezis, *Analyse fonctionnelle*, Collection Mathématiques Appliquées pour la Maîtrise, Collection of Applied Mathematics for the Master's Degree. Masson, Paris, 1983.

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

Communications in Analysis and Mechanics