Let $ L = -\Delta+|x|^2 $ be the Hermite operator on $ \mathbb R^{d} $, where $ \Delta $ is the Laplacian on $ \mathbb R^{d} $. In this paper, we will consider the Hardy-Sobolev spaces of higher order associated with $ L $. We also give some new characterizations of the Hardy spaces associated with $ L $.
Citation: Jizheng Huang, Shuangshuang Ying. Hardy-Sobolev spaces of higher order associated to Hermite operator[J]. Communications in Analysis and Mechanics, 2024, 16(4): 858-871. doi: 10.3934/cam.2024037
Let $ L = -\Delta+|x|^2 $ be the Hermite operator on $ \mathbb R^{d} $, where $ \Delta $ is the Laplacian on $ \mathbb R^{d} $. In this paper, we will consider the Hardy-Sobolev spaces of higher order associated with $ L $. We also give some new characterizations of the Hardy spaces associated with $ L $.
[1] | E. Harboure, L. de Rosa, C. Segovia, J. L. Torrea, $L^p$-dimension free boundedness for Riesz transforms associated to Hermite functions, Math. Ann., 328 (2004), 653–682. https://doi.org/10.1007/s00208-003-0501-2 doi: 10.1007/s00208-003-0501-2 |
[2] | F. Lust-Piquard, Dimension free estimates for Riesz transforms associated to the harmonic oscillator on $\mathbb R^n$, Potential Anal., 24 (2006), 47–62. https://doi.org/10.1007/s11118-005-4389-1 doi: 10.1007/s11118-005-4389-1 |
[3] | K. Stempak, J. L. Torrea, Poisson integrals and Riesz transforms for the Hermite function expansions with weights, J. Funct. Anal., 202 (2003), 443–472. https://doi.org/10.1016/S0022-1236(03)00083-1 doi: 10.1016/S0022-1236(03)00083-1 |
[4] | S. Thangavelu, Lectures on Hermite and Laguerre expansions, Mathematical Notes, Vol. 42, Princeton University Press, Princeton, NJ, 1993. https://doi.org/10.1515/9780691213927 |
[5] | S. Thangavelu, Riesz transforms and wave equation for the Hermite operator, Comm. Partial Differential Equations, 15 (1990), 1199–1215. https://doi.org/10.1080/03605309908820720 doi: 10.1080/03605309908820720 |
[6] | D. Goldberg, A local version of real Hardy spaces, Duke Math. J., 46 (1979), 27–42. https://doi.org/10.1215/S0012-7094-79-04603-9 doi: 10.1215/S0012-7094-79-04603-9 |
[7] | J. Z. Huang, The boundedness of Riesz transforms for Hermite expansions on the Hardy spaces, J. Math. Anal. Appl., 385 (2012), 559–571. https://doi.org/10.1016/j.jmaa.2011.06.075 doi: 10.1016/j.jmaa.2011.06.075 |
[8] | J. Dziubański, Atomic Decomposition of $H^p$ Spaces Associated with some Schrödinger Operators, Indiana University Math. J., 47 (1998), 75–98. https://doi.org/10.1512/iumj.1998.47.1479 doi: 10.1512/iumj.1998.47.1479 |
[9] | B. Bongioanni, J. L. Torrea, Sobolev spaces associated to the harmonic oscillator, Proc. Indian. Acad. Sci. Math. Sci., 116 (2003), 337–360. https://doi.org/10.1007/BF02829750 doi: 10.1007/BF02829750 |
[10] | T. A. Bui, X. T. Duong, Higher-order Riesz transforms of Hermite operators on new Besov and Triebel-Lizorkin spaces, Constr. Approx., 53 (2021), 85–120. https://doi.org/10.1007/s00365-019-09493-y doi: 10.1007/s00365-019-09493-y |
[11] | T. A. Bui, X. T. Duong, Besov and Triebel-Lizorkin spaces associated to Hermite operators, J. Fourier Anal. Appl., 21 (2015), 405–448. https://doi.org/10.1007/s00041-014-9378-6 doi: 10.1007/s00041-014-9378-6 |
[12] | J. Z. Huang, Hardy-Sobolev spaces associated with Hermite expansions and interpolation, Nonlinear Anal., 157 (2017), 104–122. https://doi.org/10.1016/j.na.2017.03.014 doi: 10.1016/j.na.2017.03.014 |
[13] | Z. W. Shen, $L^p$ estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble), 45 (1995), 513–546. https://doi.org/10.5802/aif.1463 doi: 10.5802/aif.1463 |
[14] | J. Z. Huang, Higher order Riesz transforms for Hermite expansions, J. Inequal. Appl., 2017 (2017), 1–17. https://doi.org/10.1186/s13660-017-1376-1 doi: 10.1186/s13660-017-1376-1 |
[15] | C. Lin, H. Liu, $BMO_L(\mathbb H^n)$ spaces and Carleson measures for Schrödinger operators, Adv. Math., 228 (2011), 1631–1688. https://doi.org/10.1016/j.aim.2011.06.024 doi: 10.1016/j.aim.2011.06.024 |
[16] | E. Stein, Singular integral and differentiability properties of functions, Princeton University Press, Princeton, NJ, 1970. |
[17] | J. Dziubański, G. Garrigós, T. Martinez, J. L. Torrea, J. Zienkiewicz, BMO spaces related to Schrödinger operator with potential satisfying reverse Hölder inequality, Math. Z., 249 (2005), 329–356. https://doi.org/10.1007/s00209-004-0701-9 doi: 10.1007/s00209-004-0701-9 |
[18] | S. Hofmann, G. Z. Lu, D. Mitres, M. Mitrea, L. X. Yan, Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, Mem. Am. Math. Soc., 214 (2011), 1007. https://doi.org/10.1090/S0065-9266-2011-00624-6 doi: 10.1090/S0065-9266-2011-00624-6 |