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paper, we will consider the Hardy-Sobolev spaces of higher order associated with L. We also give some
new characterizations of the Hardy spaces associated with L.

Keywords: Hardy spaces; Riesz transform; Hardy-Sobolev spaces; Hermite operator
Mathematics Subject Classification: 42B35, 47A60, 32U20

1. Introduction

The Hermite operator L on R is defined by
L=-A+x>, xeR%

The operator L is positive and symmetric in L*(R¢), it can be decomposed as

L=

N =

Zd: AA_ +A_A,,
i=1

where

0 0
Ai:_+ s A—i:__+i, 1SSd
(9)(,‘ ~ (9)(,' o :
When we study the problems associated with L [1-4], the operators A; play the role of the partial
differential operators (% in the classical Euclidean case. For example, we can define the Riesz transform

associated with Hermite operator by
RE=AL'", RL=A,L", i=1,2,--.d

Thangavelu [5] proved that RI.L and Rfl. were bounded on L”(R?) and used them to study the wave
equations associated with L, where 1 < p < co. Their boundedness on the local Hardy spaces [6] can be
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found in [4]. Moreover, whether we can characterize the local Hardy spaces by the Riesz transform
associated with L? This problem was pointed out by Thangavelu in [4] and given a negative answer
in [7]. In fact, the Riesz transform associated with L can characterize a new space which is called
Hardy space associated with L [8]. Therefore, when we want to prove some results for L similar to the
classical case, we must introduce new function spaces for L. In [9], the authors defined the Sobolev
spaces associated with L and used them to study the Schrédinger equation for L. In [10, 11], the authors
defined the Besov spaces associated with L and proved the boundedness of Riesz transforms on these
spaces. In order to prove the endpoint version of the div-curl theorem for the Hermite operator, the
Hardy-Sobolev space was defined in [12]. When we consider the equation L™ F = f with m is a positive
integer and f in the Hardy spaces associated to L, we need to define the higher-order Hardy-Sobolev spaces
associated with L. In this paper, we will define and give several characterizations of these spaces.

In order to state our main results, we first introduce some notations. Let H;(x) denote the Hermite
polynomials on R, which can be defined as

dk 2 2
Hi(x) = (—D"W(e‘x e, k=0,1,2,---

The normalized Hermite functions are defined by
h(x) = (P25 P Hy(x) exp (= £2/2), k=0,1,--

The higher-dimensional Hermite functions on R¢, can be defined in the following way: for @ =
(ala"' ’a,d)a a; € {O$ la"'}$ X = (.XI,"' ,Xd) ERd7

d
ho() = [ ] ha ().
j=1

The Hermite functions {h,} form a complete orthonormal basis of L*(R?). Let |a| = a; + -+ - + ag.
Then we have
Lh, = 2la| + d)h,.

Let {T,L},ZO be the heat semigroup defined by
Tth — e—th — e_t(2n+d)Pnf,

for f € L*(R%) and
P.f = Z < f,hg > hy.

lal=n

Then the Poisson semigroup is defined as
Pf,f — e—tLl/zf — Z e—f(2n+d)l/zpnf, f e LZ(Rd)
n=0

We define Hardy space H i(Rd) for d > 3 as follows (cf. [8])
HRY) = {f e L'R"): M.f € L'(RY)},
where M, f(x) = sup,., [(TEf)(x)l.

The Riesz transforms of higher order can be defined as follows:
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Definition 1.1. Let m be a positive integer. The operator L7 is defined by
L™%h, = Q2lal + d) 2 he,

and the Riesz transform of order m is defined by

m

RL = AilAiz .. 'Al'mL_i,

i1ip iy

where 1 < |i;| < d forl < j<mand for any a € {0,1,2,--- }4.

L
iip iy

The first result of this paper is that we can characterize the Hardy space H, (R?) by R

Theorem 1.2. f € H;(R?) if and only if R, . f € L'RY) forall 1 <ijl < d and f € L'(RY), i.e., there
exists C > 0 such that

CUAl < Y. IRE, . fl + 1Al < Cllflly.

—d<iy,,ip<d

Let L, = L + b with b € R* and P? be the semigroup with the infinitesimal generator /L. Then we
can define the following version of higher-order Littlewood-Paley g-functions.

Definition 1.3. Let m be a positive integer and f € L”(RY). The Littlewood-Paley g-function of
higher-order is defined by

2

1/
~ d
gmp()(x) = (f(; Z |lmAi1Ai2 " '1‘\1',,11fo()€)|2 d

—d<iy, - ip<d

The next result of this paper is that the Hardy space H, (R) can be characterized by the higher order
Littlewood-Paley g-function g,, ;.

Theorem 1.4. For f € L'(RY), f € H i(Rd) if and only if g, »(f) € L'(RY) and there exists C > 0 such
that

C™ e < Ngmp(Pllr < Clifllgg-

Now, we introduce the Hardy-Sobolev space of higher order associated to L.

Definition 1.5. We define the Hardy-Sobolev space H'L”’l(Rd ) of order m as the set of functions f € L'(RY)
such that
AilAiz o 'Aimf € Hi(Rd)’ 1< |l]| <d,

with the norm
Wl = D A A, - Ay fllgy + 1flr

—d<iy, - ,in<d

Definition 1.6. A locally integrable function b is called a (1, g)-atom of HZ”I(R") if it satisfies

supp b c B(xo, r);
ILZbl|, < |B(xo, r)|"/47".
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The atomic quasi-norm in HZ”I(R”’) is defined by

1Al _grom = i { > I}

where the infimum is taken over all decompositions f = }’ c;a;, where a; are HZ"’I -atoms. We can give
the atomic decomposition of H'L”’I(Rd).

Theorem 1.7. The norms || - ”Hf’l and || - ”Hf’l
such that for f € HZ“ (RY),

are equivalent, that is, there exists a constant C > 0

—atom

-1
C Al < Wl g < CU g

If we define the following version of the maximal function

(M Lf)(x) = sup |9)" Py f(x)],

>0
then we have

Theorem 1.8. A function f in H)"'(R?) if and only if M,,1.f € H.(R?) and f € L'(R?). Moreover, there
exists a constant C > 0 such that

-1
ClA Mg < 1Mo Ul + IF Nl < Clf g

The paper is organized as follows: in section 1, we will give several characterizations of the Hardy
space H}(R?). The Hardy-Sobolev spaces will be studied in section 2.

Throughout the article, we will use A and C to denote the positive constants, which are independent
of main parameters and may be different at each occurrence. By By ~ B,, we mean that there exists
a constant C > 1 such that C™! < B;/B, < C and A < B means that there exists a positive constant C
such that A < CB.

2. Square function characterizations of H; (R?)

In this section, we will give several new characterizations of H i(Rd).

Define (cf. [13, (1.5)]) 1

1+ x|

pr(x) = (2.1)
The function p; (x) has the following propositions (cf. [13, Lemma 1.4]).

Proposition 2.1. There exists ky > 0 such that

1 (1 . Ix—yl)"“’ -

1 lx — )kéol
pr(x) Cop(x) '

i+ L)

C

In particular, pr(y) ~ pr(x) if |x —y| < Cpr(x).

We say a(x) is an atom for the space H z(Rd), if there exists a ball B(xy, r) such that
(1) supp a c B(xo, r),
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2) lall= < |B(xo, )™,
3) if r<pr(xp), thenfa(x)dx =0.

The atomic quasi-norm in H} (R?) can be defined as

Al atom = inf {3 lel}

where the infimum is taken over all atomic decomposition of f.
In [8, Theorem 1.12], the author proved the following result.

Proposition 2.2. There exists C > 0 satisfying

Cf My < U Ni-arom < Cllf 1.

For b > 0, since p;(x) = pr.»(x), then by the atomic decomposition of Hi(Rd), we can obtain(cf. [7,
Lemma 9])

Lemma 2.3. For f € L'(RY), f € Hi(Rd) is equivalent to f € H£+b(Rd)f0r b>0.
The proof of the following lemma can be found in [9, Lemma 4].

Lemma 24. IfB € Rand f € L*(R?), then for j=1,2,--- ,d
AP f = (L+2PAf,

andfor j=-1,-2,---,—d
AP f=(L-2YAf.
The boundedness of Rﬁ 4, on LP(R?) can be found in [1, Theorem B].

Proposition 2.5. The Riesz transforms associated to L of higher order Rﬁ
where 1 < p < co.

. are bounded on L? (RY),

s

The boundedness of Riesz transforms on Hardy spaces has been proved in [7, Theorem 2] and [14,
Theorem 2].

Proposition 2.6. (1) f € H.(R?) if and only if R“f € L'(R?) for 1 < |i| < d and f € L'(R?). Moreover
the operators R* are bounded on H](RY), that is, there exists C > 0 satisfying

[R5 £l < €l

(2) The Riesz transforms of higher order Rl.Ll’iz’._,’l.m are also bounded on Hi(Rd), i.e., there exists
C > 0 satisfied

||Rﬁ,i2;" lmf”Hi < C”f”Hi’
where 1 < il <dand j=1,2,--- ,m.

Now, we can prove Theorem 1.2. In the following, we let (i) = 2 for i > 0 and (i) = -2 for i < 0.
We use X(iy, i, - - , i) to denote X(i;) + X(i2) + - - - Z(i,,).
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Proof of Theorem 1.2. First, we let f € H i(Rd). Then, by Proposition 2.6, we obtain

For the reverse, by Lemma 2.3, it is sufficient to prove f € H i +h(Rd) for some b > 0. We will prove
this by induction. If m = 1, this can be given by Proposition 2.6. We assume m = n — 1 holds, then for
m = n, by Lemma 2.4

R f = Ag(L+b+3(in- i) 2 Ay A (L+b)"5 f
= RIPGTWAL A L+ b)TT f) € LR,
Therefore, we can choose b € R* such that b + Z(i5, - - - ,i,) > 0, then

—1

A Ay (L+ D) T feH] s, iR = HI(RY),

Therefore f € H; (R?) follows from the inductive assumption, and Theorem 1.2 is proved.

Let . an
0 d
&0 () = ( f l) |
o t

Then, we can characterize H, (R?) by ggq’b [15, Theorem 4] and g, (cf. [14, Theorem 1]).

mn

n 0
f %Pff(X)

Proposition 2.7. (a) For f € L'(RY), f € Hl(Rd) if and only ifgf;’b(f) e L'(RY) and there exists C > 0
such that

C_1||f||Hz < llgn (Nl < Cllf g -
(b) For f € L'R?), f € HL/(R?) if and only if g1,(f) € L'(RY) and there exists C > 0 such that

Cfllyy < llg1s(Hllzr < Cllflly.

In the following, we will prove Theorem 1.4.

Proof of Theorem 1.4. If f € H}(R?), then by Proposition 2.2, we have f = Y;2, A;ax, where q; are
atoms.
By Lemma 2.4, we know

(=1)"A;, -+ Ay, PPhy
o m
= A - -Aim—(e_’(Ler)”z)(L +b)2h,

orm
_ a_m( —t(L+b+2(i1,~-~,im))”2)A. Ay (L+ b)_%h
- 8tm e 1 lm (¢4
— 0_me+Z(il7"‘ ’im)(Rb h )
= o ! iy i V)

then
0 b+2(i1, sim) ¢ Db
P b ’m(R.

m b
W ! llﬂ“'simak) = (_1) Ail o .AimP[ ak’

where q;, are atoms for f.
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Therefore
gi,h(ak) = Z [g?n,b-}—z(il’...’[m)(Rf?l’... ,imak)]2~

—d<iy, - ip<d

Then, by Proposition 2.7 and Proposition 2.6

0 b
lgmp@l < > 18 pesiy i RE i@l
—d<iy, ip<d
b
< C D IR adly
—d<iy,,ip<d
<

Clialy < C.

For the reverse, we assume g,,,(f) € L'(R?), then we will prove the theorem by induction of .
When m = 1, it follows from Proposition 2.7. We assume the case of m holds, then we will prove m + 1
holds. We first prove

« dt R ,ds dt
[ wa e a, @RS =mmemen [ [ e ca@urert S e
0 0 0

This can be proved by changing variables as follows:

N ,ds dt
f f |Sthi1 tm+1 t+sf( ))' —
f f |A;, -+ Ay (PP fOO) P sdtds

f f JA;, -+ Ay (PEFCO)P(E = 5)*" sdtdss
f f (t— sy sds|A;, - A, (PP f(x)[dt

= 2m+1 . b 2
B 2m(2m +1) f ll lm+1(P fx))lde

dt
[ — tm+1Ai Az Pb 20
2m(2m +1) L | ! m+l( tf(x))|
Let K be the Hilbert space defined as & € K if and only if & = {A;, ... ; (¢)}, where —d < iy,--- ,i, < d

and 0 < 7 < co with . J
t
I = f D MiesOF = <.
0 ; P <d

—d<iy, - ,ip<

Leth = {t"A;, - -A,-m(Pf f(x))}. Then, by the inductive assumption, we know s € K, and (2.2) shows

f ZnsA thnK = = g € L'RY.
0

j=—d

If we use Hy (R?) to denote the K—valued Hardy spaces associated to L, then h € Hi(RY) c Ly (R?), i.e.,

IAlly = f DT IrA AL PP eL(R")
0

—d<iy,,im<d

Therefore, by the inductive assumption, we know f € H}(R?) and Theorem 1.4 is proved.
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3. Hardy-Sobolev spaces

We first prove that HZ”] (R%) is a Banach space. In order to do that, we need the following lemma
(cf. p.122in [16]).

Lemma 3.1. Let 1 < p < oo, f € WP(RY) and {f,} be a sequence such that ||f, — fl|, = 0. Then, for
any |a| < k, we have
‘ Ff 0°f

where W*P is the classical Sobolev spaces.

— 0,

p

ox®  Ox“

By Lemma 3.1, we can prove
Proposition 3.2. H}"'(R%) is a Banach space.

Proof. Let {f,} be a Cauchy sequence in HZ”I(R"). Then {xf 6; Su)u+v=m 1s a Cauchy sequence in H i(Rd).
Since H}(R?) is a Banach space, there exists g € H; (RY) such that

k!9 = gl = - 3.1)
Let f be the limit of {f,} in L'(R?). Then, by Lemma 2.3,
e, - a1l —o. 32

By (3.1) and (3.2), we obtain g = xf&}f. This proves [|A; Ay, - -+ A, fu — Ay Aiy -+ A, fllgy — 0 for
1 <lijl <d, ie.,|lf, - f||H.Ln,1 — 0, then we get HZ“(R") is a Banach space.

Now, we give an equivalent characterization of HZ”I(R”’).

m

Definition 3.3. Let H"'(R%) = L~% (H}(R%)) or
HM R = {f e L'RY) : L? f € HI(RY),
with the norm IIfIIWZn.l = IIL%fIIH; + 1z

Theorem 3.4. The norms || - ||yn1 and || - |l4m1 are equivalent, that is, there exists a constant C > 0 such
L L
that for f € H;"'(R%),
-1
C 1Al < fllygpr < Cllfllgo.

Proof. Let f € H"'(RY). Then, by Theorem 1.2,

[ 1l ILZ fllgy + 1Al < Z IRy L2l + 11l

—d<it - im<d

Do A, Al + Al

—d<iy, ip<d

IA

lA; Aj, -« 'Aimf”Hi + A1z

—d<iy, iy<d
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< Clfllgs

ie., f e H"RY.
If f € H;"'(RY), by Proposition 2.6,

Wl = >0 TG A, - Ay fllg + 11l

—d<iy,,ip<d

L m
”Ri1i2~-~imL2f||Hi + A1z

—dﬁil 5ttt ,l-de

CILE fllgy + 1If L
< Clifllygm-

IA

This gives the proof of Theorem 3.4.

In the following, we consider the atomic decomposition of HZ”’I(R‘J). Given a > 0, we define the

operator
L™f(x) = 1 f ) e 't f(x)t“d—t xeR?
" T Jo t’ ’
where f € S(RY). Then, we have (cf. [9, Proposition 2])

Lemma 3.5. The operator L™ has the integral representation

Lf(x) = fR ) K. (x,y)f()dy, xe€RY,

for f € S(RY). Moreover, there exists ®, € L'(R?) and a constant C > 0 such that
K.,(x,y) < CO,(x—Y), forall x,y e R,

Let G,(x, y) denote the heat kernel of L, i.e.,

) = f G0 ) f ).
Rd

Fayman-Kac formula gives
Gi(x,y) < h(x =),

where h,(x) is the Gauss kernel.
The heat kernel G?(x, y) of the semigroup {e~"c™?} is

Gl(x,y) = € "Gy(x,y).

It is easy to know
G (x,y) < Gi(x, ).

Therefore, we have the following estimations for G(x, y) (cf. [17, Proposition 2-3]).

(3.3)
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Lemma 3.6. (a) For N € N, there exists Cy > 0 such that

PRI Vi AN\

0 < G'(x,y) < Cyt~ 4ol (1 FLI —) . (3.4)

S P " p()

(b) For every N > 0, there are Cy > 0 and C > 0 such that for all |h| < @,
2
Al _¢ _crtpeyp Vi VY
IGP(x + I, y) — GP(x, y) < C (—)r  gmCrben (1 L —) 3.5)
A R R P pO)

In order to prove the atomic decomposition of H?’I(Rd), we need the following lemma.

Lemma 3.7. Let a(x) be an (1, g)-atom associated to ball B(xy,r) of H (Rd) Then

L_%(l x)| < C—
L ¥a(l < Cr— s

for |x — xo| = 2r.

Proof. For f € S(RY), we have

L2 f(x) = r(lg) fo we—’Lf(x)t%—ldz
= F(I%) fo i fR GHOey) [yt dr.
Therefore | .
Ka<x,y>:r(%) fO Gl (x,y)t*'dt

Then, by Lemma 3.6 and note that p;(x) < 1, when |h] < = = | we have
|Ka(-x’y + h) - Ka(-xa )’)|

— IGE(x,y + h) — GE(x, )t dt
F(E)fov t y t y

e
i |x—)| ( ) 4o .lx_}lz G ‘[) el

IA

IA

p(x) p(y)
4 Crlep Vi i .
Ct™ |x—y| 1 ld
|x—>|2( ) p(x) P(Y)) !

IA

b= )‘2 d+ -1 2 t o
on [ e (%) .

+Clh| ;s (i) dt
p(x)

lx—y[?
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2 d+3

h = X — 2\ 2 -1 2 0 d+3
_ 'M f PN ® ety 4 oy 5 dt
lx =yl 0 t

|Al
o =yt

lx—y[?

If r < pr(xp), then a satisfies the vanishing condition, so

IL™2a(x)|

IA

f Kz (x,y) = Kz (x, x0)lla(y)ldy
B(xo,r)

r

.
< Cf ———|a(y)|dy < C————.
Blxor) X = Xol**! |x — xol+!

If r > pr(xy), by Proposition 2.1, we can obtain p(x) < Cr for x € B(xy,r). Then, following from
Lemma 3.6, we have

” -1 t t -N m
|K%(x,y)| < Cf f%e‘At |x_y2(1 + i + i) li_ldt
0 px)  py)
be=yl* —(m
- ¢ f } z-f’z”+’z"e—A“|x—ylz(_\/;)(H)dt
0 p(x)

00 —(m+1)
+C f t‘d?*'?( \/Z) dt
lx—y[2 P(x)

x—y? 2, 43
C— p(x) f Y (|X - yl ) ’ e—Az’llx—y|2dl
0

|x _ y|d+3 t

IA

00

+Cp(x) T ar

IA

|x _ y|d+1 :
When y € B(xy, r) and |x — xo| > 2r, we obtain

lx = xol _ |x = xol
2 2

lx =yl > |x = xo| = |xo =y = |x = x0| =

Therefore

IL™2 a(x)|

IA

f 1Ky (x, llaCy)ldy
B(xo,r)

r
< C f ————la(y)|dy
B(xg,r) |)C - )’|d+1

,
< CL( )Wﬁl()’ﬂd}’
X0,"
r
< —_.
|X — x0|d+l

This gives the proof of Lemma 3.7.
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Now we can give the proof of Theorem 1.7.

Proof of Theorem 1.7. To show f = >, A;b; € HZ”I(R‘[), it suffices to prove that for any (1, g)-atom b, we
have ||b|| H! < C with C independent of b. By Theorem 3.4 and Proposition 2.5,

15[ LBl = Z IR iy..iy, LBl + I1L"Bl

i1+ iy
_dSil [ ,i,,zﬁd

Do Ay A, - Ayl + IIL" Bl

—d<iy, - ,ip<d

= > f IR .. L"*b(x)ldx + f IL"2b(x)|dx
-~ im<d ¥ B(xo.1)

—d<iy B(xo,r)

IA

BI7 > IR, LBl + Bl IL"2bl

P02+ iy
_dSil [ ,i,,ISd

< CB7|Bli' < C.

For the reverse, if f € H)"'(R?), there exists g € H}(R?) such that f = L™/?g. Since g = ¥, 4;a;, where
a; are (1,¢)-atoms in H}(RY), we get f = Y, L,L7™%a; with |4, < oo. Since L™%q; does not have
compact support, it is not an atom for HZ’I(R").

Let a be a (1, g)-atom of H; (R?) such that supp a C B(xo, r) and b(x) = L™™*a. We choose a smooth
partition of unity 1 = ¢y + Z‘Jf‘;l ¢j, where ¢ = 1 and ¢; = 0 on |x — xo| < 2r.

supp ¢o C {x: |x — xo| < 4r}, supp d, C {x: 2r < |x — xo| < 8r}

and ¢;(x) = ¢(2'/x) for j > 2. Then b(x) = ¢ob + X7, ¢;b. We will show ¢;b = A;b; for appropriate
scalars A;, where b; are (1, g)-atoms in HZ"](R") and )} |4,] < C.
It is obvious, supp b; C B(x,2*"/r). Let

A = 24 DL )

For j = 0, since ||L"/b||;« = 1, we get |[L™?¢ob||« < C. For j > 1, since L is self-adjoint and Lemma
3.7, we have

L2 = sup f L% (¢,b)(0g(x)dx
Rd

lgll g7 _,
= sup | (¢B)x)(L2g)(x)dx
ligll, o =1 JRI
< sup f ¢(X)L™2a(x)L™2 g(x)dx
llgll, ¢ =1 J2M+ir<|x—xo|<24+/r
i Nd/ r
< C@'r) (zjr)dHIIgIIqu

< C2QIryV.

So A; < C27/, which gives Y, |1;| < C.
In order to give the proof of Theorem 1.8, we need the following Poisson maximal function charac-
terization of H} (R?)(cf. [18, Theorem 8.2]).
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Lemma 3.8. For f € L'(RY), we have f € Hi(Rd) if and only if Mp(f) € L'(R?), where

Mp(f)(x) = sup |PE(f)(x)L.

>0

Moreover, there exists C > 0 such that

C™ A < IMp(Hll + 11 < Cllf ;-
Proof of Theorem 1.8. By Theorem 3.4 and Lemma 3.8, we obtain
Wt oy = IL2 fllgy
1Mp(LE )l

sup [P(L? f)|

>0

&

L

sup |L? PE(f)]

>0

Mo, (O

L!

This completes the proof of Theorem 1.8.
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