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1. Introduction

The Hermite operator L on Rd is defined by

L = −∆ + |x|2, x ∈ Rd.

The operator L is positive and symmetric in L2(Rd), it can be decomposed as

L =
1
2

d∑
i=1

AiA−i + A−iAi,

where
Ai =

∂

∂xi
+ xi, A−i = −

∂

∂xi
+ xi, 1 ≤ i ≤ d.

When we study the problems associated with L [1–4], the operators Ai play the role of the partial
differential operators ∂

∂xi
in the classical Euclidean case. For example, we can define the Riesz transform

associated with Hermite operator by

RL
i = AiL−1/2, RL

−i = A−iL−1/2, i = 1, 2, · · · , d.

Thangavelu [5] proved that RL
i and RL

−i were bounded on Lp(Rd) and used them to study the wave
equations associated with L, where 1 < p < ∞. Their boundedness on the local Hardy spaces [6] can be
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found in [4]. Moreover, whether we can characterize the local Hardy spaces by the Riesz transform
associated with L? This problem was pointed out by Thangavelu in [4] and given a negative answer
in [7]. In fact, the Riesz transform associated with L can characterize a new space which is called
Hardy space associated with L [8]. Therefore, when we want to prove some results for L similar to the
classical case, we must introduce new function spaces for L. In [9], the authors defined the Sobolev
spaces associated with L and used them to study the Schrödinger equation for L. In [10, 11], the authors
defined the Besov spaces associated with L and proved the boundedness of Riesz transforms on these
spaces. In order to prove the endpoint version of the div-curl theorem for the Hermite operator, the
Hardy-Sobolev space was defined in [12]. When we consider the equation LmF = f with m is a positive
integer and f in the Hardy spaces associated to L, we need to define the higher-order Hardy-Sobolev spaces
associated with L. In this paper, we will define and give several characterizations of these spaces.

In order to state our main results, we first introduce some notations. Let Hk(x) denote the Hermite
polynomials on R, which can be defined as

Hk(x) = (−1)k dk

dxk (e−x2
)ex2

, k = 0, 1, 2, · · ·

The normalized Hermite functions are defined by

hk(x) =
(
π1/22kk!

)−1/2Hk(x) exp
(
− x2/2

)
, k = 0, 1, · · ·

The higher-dimensional Hermite functions on Rd, can be defined in the following way: for α =

(α1, · · · , αd), αi ∈ {0, 1, · · · }, x = (x1, · · · , xd) ∈ Rd,

hα(x) =

d∏
j=1

hα j(x j).

The Hermite functions {hα} form a complete orthonormal basis of L2(Rd). Let |α| = α1 + · · · + αd.
Then we have

Lhα =
(
2|α| + d

)
hα.

Let {T L
t }t≥0 be the heat semigroup defined by

T L
t f = e−tL f =

∞∑
n=0

e−t(2n+d)Pn f ,

for f ∈ L2(Rd) and
Pn f =

∑
|α|=n

< f , hα > hα.

Then the Poisson semigroup is defined as

PL
t f = e−tL1/2

f =

∞∑
n=0

e−t(2n+d)1/2
Pn f , f ∈ L2(Rd).

We define Hardy space H1
L(Rd) for d ≥ 3 as follows (cf. [8])

H1
L(Rd) =

{
f ∈ L1(Rd) : ML f ∈ L1(Rd)

}
,

whereML f (x) = supt>0 |(T
L
t f )(x)|.

The Riesz transforms of higher order can be defined as follows:
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Definition 1.1. Let m be a positive integer. The operator L−
m
2 is defined by

L−
m
2 hα = (2|α| + d)−

m
2 hα,

and the Riesz transform of order m is defined by

RL
i1i2···im = Ai1 Ai2 · · · Aim L−

m
2 ,

where 1 ≤ |i j| ≤ d for 1 ≤ j ≤ m and for any α ∈ {0, 1, 2, · · · }d.

The first result of this paper is that we can characterize the Hardy space H1
L(Rd) by RL

i1i2···im .

Theorem 1.2. f ∈ H1
L(Rd) if and only if RL

i1i2···im f ∈ L1(Rd) for all 1 ≤ |i j| ≤ d and f ∈ L1(Rd), i.e., there
exists C > 0 such that

C−1‖ f ‖H1
L
≤

∑
−d≤i1,··· ,im≤d

‖RL
i1i2···im f ‖L1 + ‖ f ‖L1 ≤ C‖ f ‖H1

L
.

Let Lb = L + b with b ∈ R+ and Pb
t be the semigroup with the infinitesimal generator

√
Lb. Then we

can define the following version of higher-order Littlewood-Paley g-functions.

Definition 1.3. Let m be a positive integer and f ∈ Lp(Rd). The Littlewood-Paley g-function of
higher-order is defined by

gm,b( f )(x) =

∫ ∞

0

∑
−d≤i1,··· ,im≤d

∣∣∣tmAi1 Ai2 · · · Aim Pb
t f (x)

∣∣∣2 dt
t


1/2

.

The next result of this paper is that the Hardy space H1
L(Rd) can be characterized by the higher order

Littlewood-Paley g-function gm,b.

Theorem 1.4. For f ∈ L1(Rd), f ∈ H1
L(Rd) if and only if gm,b( f ) ∈ L1(Rd) and there exists C > 0 such

that
C−1‖ f ‖H1

L
≤ ‖gm,b( f )‖L1 ≤ C‖ f ‖H1

L
.

Now, we introduce the Hardy-Sobolev space of higher order associated to L.

Definition 1.5. We define the Hardy-Sobolev space Hm,1
L (Rd) of order m as the set of functions f ∈ L1(Rd)

such that
Ai1 Ai2 · · · Aim f ∈ H1

L(Rd), 1 ≤ |i j| ≤ d,

with the norm
‖ f ‖Hm,1

L
=

∑
−d≤i1,··· ,im≤d

‖Ai1 Ai2 · · · Aim f ‖H1
L

+ ‖ f ‖L1 .

Definition 1.6. A locally integrable function b is called a (1, q)-atom of Hm,1
L (Rd) if it satisfies

supp b ⊂ B(x0, r);
‖L

m
2 b‖q ≤ |B(x0, r)|1/q−1.
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The atomic quasi-norm in Hm,1
L (Rd) is defined by

‖ f ‖Hm,1
L −atom = inf

{∑
|c j|

}
,

where the infimum is taken over all decompositions f =
∑

c ja j, where a j are Hm,1
L -atoms. We can give

the atomic decomposition of Hm,1
L (Rd).

Theorem 1.7. The norms ‖ · ‖Hm,1
L

and ‖ · ‖Hm,1
L −atom are equivalent, that is, there exists a constant C > 0

such that for f ∈ Hm,1
L (Rd),

C−1‖ f ‖Hm,1
L
≤ ‖ f ‖Hm,1

L −atom ≤ C‖ f ‖Hm,1
L
.

If we define the following version of the maximal function

(Mm,L f )(x) = sup
t>0
|∂m

t PL
t f (x)|,

then we have

Theorem 1.8. A function f in Hm,1
L (Rd) if and only if Mm,L f ∈ H1

L(Rd) and f ∈ L1(Rd). Moreover, there
exists a constant C > 0 such that

C−1‖ f ‖Hm,1
L
≤ ‖Mm,L f ‖H1

L
+ ‖ f ‖L1 ≤ C‖ f ‖Hm,1

L
.

The paper is organized as follows: in section 1, we will give several characterizations of the Hardy
space H1

L(Rd). The Hardy-Sobolev spaces will be studied in section 2.
Throughout the article, we will use A and C to denote the positive constants, which are independent

of main parameters and may be different at each occurrence. By B1 ∼ B2, we mean that there exists
a constant C > 1 such that C−1 ≤ B1/B2 ≤ C and A . B means that there exists a positive constant C
such that A ≤ CB.

2. Square function characterizations of H1
L(Rd)

In this section, we will give several new characterizations of H1
L(Rd).

Define (cf. [13, (1.5)])

ρL(x) =
1

1 + |x|
. (2.1)

The function ρL(x) has the following propositions (cf. [13, Lemma 1.4]).

Proposition 2.1. There exists k0 > 0 such that

1
C

(
1 +
|x − y|
ρL(x)

)−k0

≤
ρL(y)
ρL(x)

≤ C
(
1 +
|x − y|
ρL(x)

) k0
k0+1

.

In particular, ρL(y) ∼ ρL(x) if |x − y| < CρL(x).

We say a(x) is an atom for the space H1
L(Rd), if there exists a ball B(x0, r) such that

(1) supp a ⊂ B(x0, r),
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(2) ‖a‖L∞ ≤ |B(x0, r)|−1,

(3) i f r < ρL(x0), then
∫

a(x)dx = 0.

The atomic quasi-norm in H1
L(Rd) can be defined as

‖ f ‖L−atom = inf
{∑
|c j|

}
,

where the infimum is taken over all atomic decomposition of f .
In [8, Theorem 1.12], the author proved the following result.

Proposition 2.2. There exists C > 0 satisfying

C−1‖ f ‖H1
L
≤ ‖ f ‖L−atom ≤ C‖ f ‖H1

L
.

For b > 0, since ρL(x) = ρL+b(x), then by the atomic decomposition of H1
L(Rd), we can obtain(cf. [7,

Lemma 9])

Lemma 2.3. For f ∈ L1(Rd), f ∈ H1
L(Rd) is equivalent to f ∈ H1

L+b(Rd) for b > 0.

The proof of the following lemma can be found in [9, Lemma 4].

Lemma 2.4. If β ∈ R and f ∈ L2(Rd), then for j = 1, 2, · · · , d

A jLβ f = (L + 2)βA j f ,

and for j = −1,−2, · · · ,−d
A jLβ f = (L − 2)βA j f .

The boundedness of RL
i1,··· ,im on Lp(Rd) can be found in [1, Theorem B].

Proposition 2.5. The Riesz transforms associated to L of higher order RL
i1,··· ,im are bounded on Lp(Rd),

where 1 < p < ∞.

The boundedness of Riesz transforms on Hardy spaces has been proved in [7, Theorem 2] and [14,
Theorem 2].

Proposition 2.6. (1) f ∈ H1
L(Rd) if and only if RL

i f ∈ L1(Rd) for 1 ≤ |i| ≤ d and f ∈ L1(Rd). Moreover,
the operators RL

i are bounded on H1
L(Rd), that is, there exists C > 0 satisfying∥∥∥RL

i f
∥∥∥

H1
L
≤ C

∥∥∥ f
∥∥∥

H1
L
.

(2) The Riesz transforms of higher order RL
i1,i2,··· ,im are also bounded on H1

L(Rd), i.e., there exists
C > 0 satisfied ∥∥∥RL

i1,i2,··· ,im f
∥∥∥

H1
L
≤ C

∥∥∥ f
∥∥∥

H1
L
,

where 1 ≤ |i j| ≤ d and j = 1, 2, · · · ,m.

Now, we can prove Theorem 1.2. In the following, we let Σ(i) = 2 for i > 0 and Σ(i) = −2 for i < 0.
We use Σ(i1, i2, · · · , im) to denote Σ(i1) + Σ(i2) + · · ·Σ(im).
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Proof of Theorem 1.2. First, we let f ∈ H1
L(Rd). Then, by Proposition 2.6, we obtain∥∥∥RL

i1i2···im f
∥∥∥

L1 ≤
∥∥∥RL

i1i2···im f
∥∥∥

H1
L
≤ C‖ f ‖H1

L
.

For the reverse, by Lemma 2.3, it is sufficient to prove f ∈ H1
L+b(Rd) for some b > 0. We will prove

this by induction. If m = 1, this can be given by Proposition 2.6. We assume m = n − 1 holds, then for
m = n, by Lemma 2.4

Rb
i1i2···in f = Ai1(L + b + Σ(i2, · · · , in))−

1
2 Ai2 · · · Ain(L + b)−

m−1
2 f

= Rb+Σ(i2,··· ,in)
i1

(Ai2 · · · Ain(L + b)−
m−1

2 f ) ∈ L1(Rd).

Therefore, we can choose b ∈ R+ such that b + Σ(i2, · · · , in) > 0, then

Ai2 · · · Ain(L + b)−
m−1

2 f ∈ H1
L+b+Σ(i2,··· ,in)(R

d) = H1
L(Rd).

Therefore f ∈ H1
L(Rd) follows from the inductive assumption, and Theorem 1.2 is proved.

Let

g0
m,b( f )(x) =

(∫ ∞

0

∣∣∣∣∣tm ∂
m

∂tm Pb
t f (x)

∣∣∣∣∣2 dt
t

)1/2

.

Then, we can characterize H1
L(Rd) by g0

m,b [15, Theorem 4] and g1,b (cf. [14, Theorem 1]).

Proposition 2.7. (a) For f ∈ L1(Rd), f ∈ H1
L(Rd) if and only if g0

m,b( f ) ∈ L1(Rd) and there exists C > 0
such that

C−1‖ f ‖H1
L
≤ ‖g0

m,b( f )‖L1 ≤ C‖ f ‖H1
L
.

(b) For f ∈ L1(Rd), f ∈ H1
L(Rd) if and only if g1,b( f ) ∈ L1(Rd) and there exists C > 0 such that

C−1‖ f ‖H1
L
≤ ‖g1,b( f )‖L1 ≤ C‖ f ‖H1

L
.

In the following, we will prove Theorem 1.4.

Proof of Theorem 1.4. If f ∈ H1
L(Rd), then by Proposition 2.2, we have f =

∑∞
k=1 λkak, where ak are

atoms.
By Lemma 2.4, we know

(−1)mAi1 · · · Aim Pb
t hα

= Ai1 · · · Aim
∂m

∂tm (e−t(L+b)1/2
)(L + b)−

m
2 hα

=
∂m

∂tm

(
e−t(L+b+Σ(i1,··· ,im))1/2)

Ai1 · · · Aim(L + b)−
m
2 hα

=
∂m

∂tm Pb+
∑

(i1,··· ,im)
t (Rb

i1,··· ,imhα),

then
∂m

∂tm Pb+Σ(i1,··· ,im)
t (Rb

i1,··· ,imak) = (−1)mAi1 · · · Aim Pb
t ak,

where ak are atoms for f .

Communications in Analysis and Mechanics Volume 16, Issue 4, 858–871.



864

Therefore
g2

m,b(ak) =
∑

−d≤i1,··· ,im≤d

[g0
m,b+Σ(i1,··· ,im)(R

b
i1,··· ,imak)]2.

Then, by Proposition 2.7 and Proposition 2.6

‖gm,b(ak)‖L1 ≤
∑

−d≤i1,··· ,im≤d

‖g0
m,b+Σ(i1,··· ,im)(R

b
i1,··· ,imak)‖L1

≤ C
∑

−d≤i1,··· ,im≤d

‖Rb
i1,··· ,imak‖H1

L

≤ C‖ak‖H1
L
≤ C.

For the reverse, we assume gm,b( f ) ∈ L1(Rd), then we will prove the theorem by induction of m.
When m = 1, it follows from Proposition 2.7. We assume the case of m holds, then we will prove m + 1
holds. We first prove∫ ∞

0
|tm+1Ai1 · · · Aim+1(P

b
t f (x))|2

dt
t

= 2m(2m + 1)
∫ ∞

0

∫ ∞

0
|stmAi1 · · · Aim+1(P

b
t+s f (x))|2

ds
s

dt
t
. (2.2)

This can be proved by changing variables as follows:∫ ∞

0

∫ ∞

0
|stmAi1 · · · Aim+1(P

b
t+s f (x))|2

ds
s

dt
t

=

∫ ∞

0

∫ ∞

0
|Ai1 · · · Aim+1(P

b
t+s f (x))|2t2m−1sdtds

=

∫ ∞

0

∫ ∞

s
|Ai1 · · · Aim+1(P

b
t f (x))|2(t − s)2m−1sdtds

=

∫ ∞

0

∫ t

0
(t − s)2m−1sds|Ai1 · · · Aim+1(P

b
t f (x))|2dt

=
1

2m(2m + 1)

∫ ∞

0
t2m+1|Ai1 · · · Aim+1(P

b
t f (x))|2dt

=
1

2m(2m + 1)

∫ ∞

0
|tm+1Ai1 · · · Aim+1(P

b
t f (x))|2

dt
t
.

Let K be the Hilbert space defined as h ∈ K if and only if h = {hi1,··· ,im(t)}, where −d ≤ i1, · · · , im ≤ d
and 0 < t < ∞ with

‖h‖2K =

∫ ∞

0

∑
−d≤i1,··· ,im≤d

|hi1,··· ,im(t)|2
dt
t
< ∞.

Let h = {tmAi1 · · · Aim(Pb
t f (x))}. Then, by the inductive assumption, we know h ∈ K, and (2.2) shows∫ ∞

0

d∑
j=−d

‖sA jPb
sh‖

2
K

ds
s

= gm+1,b( f ) ∈ L1(Rd).

If we use H1
K(Rd) to denote the K−valued Hardy spaces associated to L, then h ∈ H1

K(Rd) ⊂ L1
K(Rd), i.e.,

‖h‖2K =

∫ ∞

0

∑
−d≤i1,··· ,im≤d

|tmAi1 · · · Aim(Pb
t f (x))|2

dt
t
∈ L1(Rd).

Therefore, by the inductive assumption, we know f ∈ H1
L(Rd) and Theorem 1.4 is proved.
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3. Hardy-Sobolev spaces

We first prove that Hm,1
L (Rd) is a Banach space. In order to do that, we need the following lemma

(cf. p.122 in [16]).

Lemma 3.1. Let 1 ≤ p < ∞, f ∈ Wk,p(Rd) and { fn} be a sequence such that ‖ fn − f ‖p → 0. Then, for
any |α| ≤ k, we have ∥∥∥∥∥∂α fn

∂xα
−
∂α f
∂xα

∥∥∥∥∥
p
→ 0,

where Wk,p is the classical Sobolev spaces.

By Lemma 3.1, we can prove

Proposition 3.2. Hm,1
L (Rd) is a Banach space.

Proof. Let { fn} be a Cauchy sequence in Hm,1
L (Rd). Then {xµi ∂

ν
j fn}µ+ν=m is a Cauchy sequence in H1

L(Rd).
Since H1

L(Rd) is a Banach space, there exists g ∈ H1
L(Rd) such that∥∥∥xµi ∂

ν
j fn − g

∥∥∥
H1

L
→ 0. (3.1)

Let f be the limit of { fn} in L1(Rd). Then, by Lemma 2.3,∥∥∥xµi ∂
ν
j fn − xµi ∂

ν
j f

∥∥∥
L1 → 0. (3.2)

By (3.1) and (3.2), we obtain g = xµi ∂
ν
j f . This proves ‖Ai1 Ai2 · · · Aim fn − Ai1 Ai2 · · · Aim f ‖H1

L
→ 0 for

1 ≤ |i j| ≤ d, i.e., ‖ fn − f ‖Hm,1
L
→ 0, then we get Hm,1

L (Rd) is a Banach space.

Now, we give an equivalent characterization of Hm,1
L (Rd).

Definition 3.3. LetHm,1
L (Rd) = L−

m
2 (H1

L(Rd)) or

H
m,1
L (Rd) = { f ∈ L1(Rd) : L

m
2 f ∈ H1

L(Rd)},

with the norm ‖ f ‖
H

m,1
L

= ‖L
m
2 f ‖H1

L
+ ‖ f ‖L1 .

Theorem 3.4. The norms ‖ · ‖Hm,1
L

and ‖ · ‖
H

m,1
L

are equivalent, that is, there exists a constant C > 0 such

that for f ∈ Hm,1
L (Rd),

C−1‖ f ‖Hm,1
L
≤ ‖ f ‖

H
m,1
L
≤ C‖ f ‖Hm,1

L
.

Proof. Let f ∈ Hm,1
L (Rd). Then, by Theorem 1.2,

‖ f ‖
H

m,1
L

= ‖L
m
2 f ‖H1

L
+ ‖ f ‖L1 ≤

∑
−d≤i1,··· ,im≤d

‖RL
i1i2···im L

m
2 f ‖L1 + ‖ f ‖L1

=
∑

−d≤i1,··· ,im≤d

‖Ai1 Ai2 · · · Aim f ‖L1 + ‖ f ‖L1

≤
∑

−d≤i1,··· ,im≤d

‖Ai1 Ai2 · · · Aim f ‖H1
L

+ ‖ f ‖L1
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≤ C‖ f ‖Hm,1
L
,

i.e., f ∈ Hm,1
L (Rd).

If f ∈ Hm,1
L (Rd), by Proposition 2.6,

‖ f ‖Hm,1
L

=
∑

−d≤i1,··· ,im≤d

‖Ai1 Ai2 · · · Aim f ‖H1
L

+ ‖ f ‖L1

=
∑

−d≤i1,··· ,im≤d

‖RL
i1i2···im L

m
2 f ‖H1

L
+ ‖ f ‖L1

≤ C‖L
m
2 f ‖H1

L
+ ‖ f ‖L1

≤ C‖ f ‖
H

m,1
L
.

This gives the proof of Theorem 3.4.

In the following, we consider the atomic decomposition of Hm,1
L (Rd). Given a > 0, we define the

operator

L−a f (x) =
1

Γ(a)

∫ ∞

0
e−tL f (x)ta dt

t
, x ∈ Rd, (3.3)

where f ∈ S(Rd). Then, we have (cf. [9, Proposition 2])

Lemma 3.5. The operator L−a has the integral representation

L−a f (x) =

∫
Rd

Ka(x, y) f (y)dy, x ∈ Rd,

for f ∈ S(Rd). Moreover, there exists Φa ∈ L1(Rd) and a constant C > 0 such that

Ka(x, y) ≤ CΦa(x − y), for all x, y ∈ Rd.

Let Gt(x, y) denote the heat kernel of L, i.e.,

e−tL f (x) =

∫
Rd

Gt(x, y) f (y)dy.

Fayman-Kac formula gives
Gt(x, y) ≤ ht(x − y),

where ht(x) is the Gauss kernel.
The heat kernel Gb

t (x, y) of the semigroup {e−t(L+b)} is

Gb
t (x, y) = e−btGt(x, y).

It is easy to know
Gb

t (x, y) ≤ Gt(x, y).

Therefore, we have the following estimations for Gb
t (x, y) (cf. [17, Proposition 2-3]).
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Lemma 3.6. (a) For N ∈ N, there exists CN > 0 such that

0 ≤ Gb
t (x, y) ≤ CNt−

d
2 e−(5t)−1 |x−y|2

(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N

. (3.4)

(b) For every N > 0, there are CN > 0 and C > 0 such that for all |h| ≤ |x−y|
2 ,

|Gb
t (x + h, y) −Gb

t (x, y)| ≤ CN

(
|h|
√

t

)
t−

d
2 e−Ct−1 |x−y|2

(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N

. (3.5)

In order to prove the atomic decomposition of Hm,1
L (Rd), we need the following lemma.

Lemma 3.7. Let a(x) be an (1, q)-atom associated to ball B(x0, r) of H1
L(Rd) . Then

|L−
m
2 a(x)| ≤ C

r
|x − x0|

d+1

for |x − x0| ≥ 2r.

Proof. For f ∈ S(Rd), we have

L−
m
2 f (x) =

1
Γ(m

2 )

∫ ∞

0
e−tL f (x)t

m
2 −1dt

=
1

Γ(m
2 )

∫ ∞

0

∫
Rd

GL
t (x, y) f (y)dyt

m
2 −1dt.

Therefore

Ka(x, y) =
1

Γ(m
2 )

∫ ∞

0
GL

t (x, y)t
m
2 −1dt.

Then, by Lemma 3.6 and note that ρL(x) ≤ 1, when |h| ≤ |x−y|
2 , we have

|Ka(x, y + h) − Ka(x, y)|

≤
1

Γ(m
2 )

∫ ∞

0
|GL

t (x, y + h) −GL
t (x, y)|t

m
2 −1dt

≤ C
∫ ∞

0

(
|h|
√

t

)
t−

d
2 e−Ct−1 |x−y|2

(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N

t
m
2 −1dt

= C
∫ |x−y|2

0

(
|h|
√

t

)
t−

d
2 e−Ct−1 |x−y|2

(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N

t
m
2 −1dt

+C
∫ ∞

|x−y|2

(
|h|
√

t

)
t−

d
2 e−Ct−1 |x−y|2

(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N

t
m
2 −1dt

≤ C|h|
∫ |x−y|2

0
t−

d+3
2 + m

2 e−Ct−1 |x−y|2
( √

t
ρ(x)

)−m

dt

+C|h|
∫ ∞

|x−y|2
t−

d+3
2 + m

2

( √
t

ρ(x)

)−m

dt
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≤ C
|h|

|x − y|d+3

∫ |x−y|2

0

(
|x − y|2

t

) d+3
2

e−Ct−1 |x−y|2dt + C|h|
∫ ∞

|x−y|2
t−

d+3
2 dt

≤ C
|h|

|x − y|d+1 .

If r < ρL(x0), then a satisfies the vanishing condition, so

|L−
m
2 a(x)| ≤

∫
B(x0,r)

|K m
2
(x, y) − K m

2
(x, x0)||a(y)|dy

≤ C
∫

B(x0,r)

r
|x − x0|

d+1 |a(y)|dy ≤ C
r

|x − x0|
d+1 .

If r ≥ ρL(x0), by Proposition 2.1, we can obtain ρ(x) ≤ Cr for x ∈ B(x0, r). Then, following from
Lemma 3.6, we have

|K m
2
(x, y)| ≤ C

∫ ∞

0
t−

d
2 e−At−1 |x−y|2

(
1 +

√
t

ρ(x)
+

√
t

ρ(y)

)−N

t
m
2 −1dt

= C
∫ |x−y|2

0
t−

d+2
2 + m

2 e−At−1 |x−y|2
( √t
ρ(x)

)−(m+1)

dt

+C
∫ ∞

|x−y|2
t−

d+2
2 + m

2

( √t
ρ(x)

)−(m+1)

dt

≤ C
ρ(x)
|x − y|d+3

∫ |x−y|2

0

(
|x − y|2

t

) d+3
2

e−At−1 |x−y|2dt

+Cρ(x)
∫ ∞

|x−y|2
t−

d+3
2 dt

≤ C
r

|x − y|d+1 .

When y ∈ B(x0, r) and |x − x0| > 2r, we obtain

|x − y| ≥ |x − x0| − |x0 − y| ≥ |x − x0| −
|x − x0|

2
=
|x − x0|

2
.

Therefore

|L−
m
2 a(x)| ≤

∫
B(x0,r)

|K m
2
(x, y)||a(y)|dy

≤ C
∫

B(x0,r)

r
|x − y|d+1 |a(y)|dy

≤ C
∫

B(x0,r)

r
|x − x0|

d+1 |a(y)|dy

≤ C
r

|x − x0|
d+1 .

This gives the proof of Lemma 3.7.
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Now we can give the proof of Theorem 1.7.

Proof of Theorem 1.7. To show f =
∑
λibi ∈ Hm,1

L (Rd), it suffices to prove that for any (1, q)-atom b, we
have ‖b‖Hm,1

L
≤ C with C independent of b. By Theorem 3.4 and Proposition 2.5,

‖b‖Hm,1
L

= ‖Lm/2b‖H1
L

=
∑

−d≤i1,··· ,im≤d

‖RL
i1i2···im Lm/2b‖L1 + ‖Lm/2b‖L1

=
∑

−d≤i1,··· ,im≤d

‖Ai1 Ai2 · · · Aimb‖L1 + ‖Lm/2b‖L1

=
∑

−d≤i1,··· ,im≤d

∫
B(x0,r)

|RL
i1i2···im Lm/2b(x)|dx +

∫
B(x0,r)

|Lm/2b(x)|dx

≤ |B|
1
q′

∑
−d≤i1,··· ,im≤d

‖RL
i1i2···im Lm/2b‖Lq + |B|

1
q′ ‖Lm/2b‖Lq

≤ C|B|
1
q′ |B|

1
q−1
≤ C.

For the reverse, if f ∈ Hm,1
L (Rd), there exists g ∈ H1

L(Rd) such that f = L−m/2g. Since g =
∑
λiai, where

ai are (1, q)-atoms in H1
L(Rd), we get f =

∑
λiL−m/2ai with

∑
|λ j| < ∞. Since L−m/2ai does not have

compact support, it is not an atom for Hm,1
L (Rd).

Let a be a (1, q)-atom of H1
L(Rd) such that supp a ⊂ B(x0, r) and b(x) = L−m/2a. We choose a smooth

partition of unity 1 = φ0 +
∑∞

j=1 φ j, where φ0 ≡ 1 and φ1 ≡ 0 on |x − x0| < 2r.

supp φ0 ⊂ {x : |x − x0| ≤ 4r}, supp φ1 ⊂ {x : 2r ≤ |x − x0| ≤ 8r}

and φ j(x) = φ1(21− jx) for j ≥ 2. Then b(x) = φ0b +
∑∞

j=1 φ jb. We will show φ jb = λ jb j for appropriate
scalars λ j, where b j are (1, q)-atoms in Hm,1

L (Rd) and
∑
|λ j| < C.

It is obvious, supp b j ⊂ B(x0, 24+ jr). Let

λ j = [2(4+ j)r]d(1− 1
q )
‖Lm/2(φ jb)‖Lq .

For j = 0, since ‖Lm/2b‖Lq = 1, we get ‖Lm/2φ0b‖Lq ≤ C. For j ≥ 1, since L is self-adjoint and Lemma
3.7, we have

‖L
m
2 (φ jb)‖Lq = sup

‖g‖
Lq′=1

∫
Rd

L
m
2 (φ jb)(x)g(x)dx

= sup
‖g‖

Lq′=1

∫
Rd

(φ jb)(x)(L−
m
2 g)(x)dx

≤ sup
‖g‖

Lq′=1

∫
21+ jr≤|x−x0 |≤24+ jr

φ j(x)L−
m
2 a(x)L−

m
2 g(x)dx

≤ C(2 jr)d/q r
(2 jr)d+1 ‖g‖Lq′

≤ C2− j(2 jr)−
d
q′ .

So λ j ≤ C2− j, which gives
∑
|λ j| ≤ C.

In order to give the proof of Theorem 1.8, we need the following Poisson maximal function charac-
terization of H1

L(Rd)(cf. [18, Theorem 8.2]).
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Lemma 3.8. For f ∈ L1(Rd), we have f ∈ H1
L(Rd) if and only if MP( f ) ∈ L1(Rd), where

MP( f )(x) = sup
t>0
|PL

t ( f )(x)|.

Moreover, there exists C > 0 such that

C−1‖ f ‖H1
L
≤ ‖MP( f )‖L1 + ‖ f ‖L1 ≤ C‖ f ‖H1

L
.

Proof of Theorem 1.8. By Theorem 3.4 and Lemma 3.8, we obtain

‖ f ‖Hm,1
L (Rd) ≈ ‖L

m
2 f ‖H1

L

≈ ‖MP(L
m
2 f )‖L1

=

∥∥∥∥∥∥sup
t>0
|PL

t (L
m
2 f )|

∥∥∥∥∥∥
L1

=

∥∥∥∥∥∥sup
t>0
|L

m
2 PL

t ( f )|

∥∥∥∥∥∥
L1

= ‖Mm,L( f )‖L1 .

This completes the proof of Theorem 1.8.
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