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1. Introduction

In this study, we focus on elliptic operators of mixed local and non-local types (mixed Dirichlet
and Neuman boundary conditions) concerning possible positive solutions for critical problems and
possible optimizers of appropriate mixed Sobolev inequality. We examine the existence of solutions to
the perturbed critical problem. 

Tw = w2∗−1 + λwp, w > 0 in O,
w = 0 in Uc,

Ns(w) = 0 in Π2,
∂w
∂ν

= 0 in ∂O ∩ Π2.

(Pλ)

where U = (Ω ∪ Π2 ∪ (∂Ω ∩ Π2)) and Ω ∪ Π2 is a bounded set with smooth boundary, n ≥ 3, 1 ≤ p <
2∗ − 1 = n+2

n−2 and λ ∈ R. Here, O ⊆ Rn is a nonempty open set, Π1, Π2 are open subsets of Rn \ Ō such
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that Π1 ∪ Π2 = Rn \ Ō, Π1 ∩ Π2 = ∅ and

T = −∆ + (−∆)s, for s ∈ (0, 1). (1.1)

An operator that combines classical Laplace operator −∆ and fractional Laplace operator (−∆)s is
referred to as being ’mixed’. The fractional Laplace operator is defined by

(−∆)sw(x) = Cn,s P.V.
∫
Rn

w(x) − w(y)
|x − y|n+2s dy, s ∈ (0, 1).

The abbreviation ”P.V.” denotes the Cauchy principal value and

Cn,s =

( ∫
Rn

1 − cos(z1)
|z|n+2s dz

)−1

.

Without discussing the specific instances of how this non-local operator is useful in the actual
situations, and the motivations for investigating issues with them, see [1] and references therein for
more details. The study of the mixed operators of the form L in (1.1) is motivated by a wide range
of applications. The numerous applications serve as the motivation for the comprehensive analysis of
operator T in the problem (Pλ), such as the concept of optimum exploration mathematical biology, we
refer to [2–6], and other common uses include heat transmission in magnetized plasmas; see [7]. These
types of operators are naturally developed in the applied sciences to investigate the changes in physical
phenomena that have both local and nonlocal effects. Based on these operators, diffusion patterns
change over different time scales, with the lower-order operator taking the lead for long-term patterns
and the higher-order operator leading for short-term patterns they arise, for instance, in bi-modal power
law distribution processes; see [8]. Further applications arise in the theory of optimal searching and
biomathematics; we refer to [2, 3] and the references therein. Also, this type of operator emerges
in models derived from combining two distinct random processes in the probability theory; for a
comprehensive explanation of such a phenomenon, refer to [9]. Recently, there has been a considerable
focus on investigating elliptic problems having mixed-type operator T , as in (Pλ), exhibiting both local
and nonlocal behaviour. Let us put some light on literature involving mixed operator L problems along
the existing long list. Biagi, Dipierro, and Valdinoci [10] have provided a comprehensive analysis of
a mixed local and non-local elliptic problem. Throughout their study, they proved the existence of
solutions to the elliptic problem, explored the maximum principles that govern the behaviour of these
solutions, and investigated the interior Sobolev regularity of the solutions.

The investigation of mixed-type operators is a widely studied area that is emerging in diverse fields.
This includes scenarios like combining the Lévy stable process, which finds intriguing applications in
understanding animal cropping technique, as discussed in [2, 3, 11, 12]. Aizicovici et al. in [13] have
studied the nonlinear logistic equation of the superdiffusive type driven by a nonhomogeneous differential
operator with Robin boundary condition and existence and multiplicity results of positive solutions to
the linearly coupled Hartree systems with critical exponent involving the classical Laplace operator
studied by Mao et al. in [14], and also interesting nonlocal Hilfer proportional sequential fractional
multi-valued boundary value problems have been studied by [15]. Motivated by the investigation of
non-linear problems having critical exponents, in particular those arising from optimizers of the Sobolev
inequality, the concerns addressed in this paper are motivated. Their findings contribute to a better
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understanding of the characteristics of solutions to the followingT u = g(u), u > 0 in O,
u = 0 in Rn \ O.

(1.2)

Authors have studied various interesting inequalities for mixed operator L in [16, 17]. Lamao et
al. in [18] found out the behavior and properties of solutions to (1.2), specifically focusing on their
summability characteristics. We also refer to [19–21] for interested readers, where we point out that [21]
contains a study of mixed operator Neumann problem. The non-linear generalization of L given by
−∆p + (−∆p)s has also started gaining attention for mixed operators. Dipierro et al. in [22] were the first
to consider mixed operator problems in the presence of classical as well as non-local Neumann boundary
conditions. Their recent article discusses some characteristics and regularity results corresponding with
a mixed local and non-local problem, further with certain specific incentives derived from mathematics
models and population growth. It is worth commenting that none of these articles studies mixed operator
problems under mixed boundary conditions. This made us curious about what happens when we set
up a PDE involving mixed operator L under boundary conditions involving Dirichlet datum in some
part and Neumann (local and non-local both) datum in the remaining part. To answer this, we started
with (Pλ) and the combination of mixed operator as well as mixed Dirichlet Neumann boundary, which
is the striking feature of our paper. In particular, when T = −∆ in (Pλ), Grossi [23] studied classical
problems with mixed boundary conditions and established solutions under some appropriate assumption
on parameter λ. In [24], authors have studied the behaviour of the Sobolev constant with a mixed
boundary condition, where the main goal is to examine appropriate emphasis concerning the Neumann
boundary of a sequence that minimizes using the standard isoperimetric inequalities. In our study, we
define a function space where it contains those functions that are vanishing on some part of Rn \ Ō.
Due to this behavior, the best constant depends on some part of Rn \ Ō, but in the Dirichlet boundary
case, best constant does not depend on O. For further study, see [24]. Biagi et al. [25] studied existence
and non-existence outcomes to (Pλ) type problems under the Dirichlet boundary condition. The
motivation for this paper arises from the investigation of nonlinear problems with critical exponents.
These problems are modeled as

Lu = f (u) + λg(u),

under some conditions on u and L is some operator like (local/nonlocal/mixed). Here f (u) and g(u)
represent the critical and subcritical nonlinearities, respectively, and λ ∈ R is a parameter. With all
the above literature as motivation where, many authors have studied the existence/nonexistence and
multiplicity of the solutions. We are curious about the critical problem involving mixed local and
nonlocal operator T under the mixed Dirichlet and Neumann boundary conditions. We proved similar
results as in [25] pertaining to problem (Pλ) with mixed boundary conditions in the same spirit. There
exists no single article at present that studies such a problem with mixed boundary conditions; hence,
our article is a breakthrough in this regard. Last but not least, we try to provide a glimpse of problems
available in literature, involving Dirichlet Neumann’s mixed boundary datum to the readers. Brezis et
al. in [26], consider the following Dirichlet boundary value problem:−∆u = up + f (x, u), u > 0 in Ω,

u = 0 in ∂Ω.
(1.3)
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where Ω is the bounded domain of Rn, p = 2∗ − 1 n ≥ 3 and in particular, f (x, u) = λu. They have
studied the existence of solutions to (1.3) for every λ ∈ (0, λ1), (λ1 is the first eigenvalue of −∆) when
n ≥ 4 and problem (1.3) has no solution if λ < (0, λ1) and Ω is star-shaped domain. In [27], Valdinoci
et al. studied the fractional counterpart of problem (1.3) and its results can be seen as an extension of
the classical Brezis-Nirenberg results. Recently, Biagi et al. in [28] have studied the corresponding
Sobolev inequality and found the optimal constant, which is never achieved, and they also proved the
existence and non-existence of a positive solution to a mixed elliptic problem (Pλ) with the Dirichlet
boundary condition using the variational methods. Currently, we have worked on the first principle
eigenvalue problem with mixed operators involving mixed boundary conditions in [29]. Using its
advantage, we extend the results of [28] in our article. Our optimal constant does not depend on the
whole domain as [28]: it only depends on some part of the boundary of the domain. Our findings
offer specific advantages over existing results by introducing a novel approach to nonlinear problems
with critical exponent, which enhances the understanding of this problem (Pλ) with mixed boundary
conditions. These contributions hold substantial potential impact for both theoretical developments
and practical applications in related fields. We also established L∞ result of positive of solutions and
maximum principle for problem (Pλ).

First, we looked into the mixed Sobolev inequality for the case of the mixed operators where the
domain is divided into two disjoint parts, Π1 and Π2. More precisely, suppose n ≥ 3 and 2∗ = 2n

n−2
critical Sobolev exponent. Fix s ∈ (0, 1). Let O be an open set that may not be bounded. We assume
that w : Rn → R that are vanshis outside of U. So, we define the following mixed Sobolev inequality

Sn,s(O,Π1) ‖w‖2L2∗ (O) ≤ ‖∇w‖2L2(O) +

"
Q

|w(x) − w(y)|2

|x − y|n+2s dx dy. (1.4)

Here, constant Sn,s(O,Π1) is taken to be large enough for which inequality (1.4) is satisfied.
We observe that equation (1.4) holds by choosing the constant that is less than or equal to the

following classical Sobolev constant (which depends at some portion on the boundary of O)

S(Π2) =

n
(
ξn
2

) 1
n

C
n−2
2n


2

, (1.5)

where ξn is the measure of the unit ball in Rn and C = Γn
Γ( n

2 Γ( n
2 +1)(

1
2)

3n−2
2 , to further details, we refer

to [23, 24]. From [23], we have classical best Sobolev constant S n ≤ S(Π2). Since from well known the
Sobolev inequality:

S(Π2) ‖w‖2L2∗ (O) ≤ ‖∇w‖2L2(O) ≤ ‖∇w‖2L2(O) +

"
Q

|w(x) − w(y)|2

|x − y|n+2s dx dy = ζ(w)2.

Also, we can see the largest possible constant in (1.4) certainly satisfies Sn,s(O,Π1) ≥ S(Π2) and S(Π2)
depends on some part of domain O. Our goal is to demonstrate the interaction between Sn,s(O,Π1) and
S(Π2) in the following theorem.

Theorem 1.1. Suppose s ∈ (0, 1), O ⊆ Rn is an open set. Then, the following holds true

Sn,s(O,Π1) = S(Π2). (1.6)
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In the following result, we show the optimal constant Sn,s(O,Π1) in (1.4) is never achieved.

Theorem 1.2. Suppose O ⊆ Rn is an open set. Then, Sn,s(O,Π1) in (1.4) is never achieved.

Now, our following result gives us surety of the nonexistence solutions to this problem (Pλ) for λ ≤ 0
and star-shaped bounded domain.

Theorem 1.3. Suppose λ ≤ 0 and O ⊆ Rn is a star-shaped bounded domain. Then, (Pλ) has no solutions,
where 1 ≤ p < 2∗ − 1.

Proof. We follow the same ideas from [Theorem 1.3 in [25]] to complete this proof and also we can
easily complete our proof by using Pohozaév identity and borrowed ideas from [Theorem 1.8 in [30]].

Furthermore, analysis of the existence theory to the problem (Pλ) is dependent on λ. Let us quickly
review the approach of Grossi et al. [23]. We used concepts from [25] to identify the existence of
solutions and studied the properties of the map λ 7→ Sλ,s to determine the inequality Sλ,s < S(Π2).
In the case of p = 1 and for any range of λ, we show problem (Pλ) has no solution. However, (Pλ)
has a solution inside an intermediate range of λ. More precisely, denoting by λ1,s the first eigenvalue
of (−∆)s with mixed Dirichlet-Neumann boundary condition in a bounded open set O and by λ′ the
first eigenvalue of T in O with mixed Dirichlet-Neumann boundary condition, see [29], we have the
following result.

Theorem 1.4. Let p = 1 ( linear case) and O be nonempty bounded open set. There exists λ∗ ∈ [λ1,s, λ
′)

such that the problem (Pλ) possesses at least one solution if λ ∈ (λ∗, λ′). Furthermore, the following are
true

1. For λ ≥ λ′, problem (Pλ) has no solutions.
2. Suppose 0 < λ ≤ λ1,s and B = {w ∈ L2∗(O) : ‖w‖L2∗ (O) ≤ S(Π2)

n−2
4 } ⊆ L2∗(O). Then (Pλ) have no

solutions in B.

In the case of the superlinear perturbation, the scenarios are very different, and the following outcome
is demonstrated using the variational method, which is based on the Mountain pass geometry, see in [31]
and to prove it we state the existence result below.

Theorem 1.5. Suppose p ∈ (1, 2∗ − 1), n ≥ 3. Then, problem (Pλ) has a non-trivial solution

1. If αs,n > τp.n, for all λ > 0.
2. If αs,n ≤ τp.n, λ > 0 large enough.

where,

αs,n = min(2(1 − s), n − 2), and τp.n = n −
(p + 1)(n − 2)

2
. (1.7)

The article is organized in the following way : Section 2 presents the functional framework
suitable for mixed classical and fractional Laplace operators with mixed Dirichlet and Neumann
boundary conditions. In Section 3, we focused on the analysis of mixed-order Sobolev-type inequality
and proved the main results 1.1, 1.2. In Section 4, we present the analysis of the critical problem.
Next, we provide an analysis of the critical problem in Section 4 and also for both cases p = 1 and
1 < p < 2∗ − 1, we complete proof of Theorem 1.4, Theorem 1.5.
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2. Function Space and preliminaries

Throughout this section, we set our notations and formulate the functional setting for (Pλ), which
shall be useful throughout the paper. More precisely, we define the function spaces to study (Pλ), and
also investigated the existence of an optimal constant for some mixed Sobolev-type inequalities.

For every s ∈ (0, 1), we recall the fractional Sobolev spaces; see [32],

H s(Rn) =

{
u ∈ L2(Rn) :

|u(x) − u(y)|
|x − y|

n
2 +s

∈ L2(Rn × Rn)
}
.

We assume that O ∪ Π2 is bounded with a smooth boundary. We define the function space X1,2
D

(O ∪
Π2 ∪ (∂O ∩ Π2)) as the completion of C∞0 (O ∪ Π2 ∪ (∂O ∩ Π2)) equipped with the following norm

ζ(u)2 = ||∇u||2L2(O) + [u]2
s , u ∈ C∞0 (O ∪ Π2 ∪ (∂O ∩ Π2)),

where [u]s is the Gagliardo seminorm of u defined by

[u]2
s =

( ∫
Q

|u(x) − u(y)|2

|x − y|n+2s dxdy
)
.

The symbol U is used throughout the article instead of (O ∪Π2 ∪ (∂O ∩Π2)) to keep things simple. and
Q = R2n \ (Ωc ×Ωc).

Specifically for U , Rn, we have

u ≡ 0 a.e. in Uc = Π1 ∪ (∂O ∩ Π1), for all u ∈ X1,2
Π1

(U). (2.1)

In order to verify equation (2.1), suppose U is bounded, then we can see as

X
1,2
U (O) = C∞0 (U)

‖.‖H1(Rn) = {u ∈ H1(Rn) : w|U ∈ H1
0(U), w ≡ 0 a.e. in Uc}.

The Sobolev inequality allows us to deduce the existence of constant C = S(Π2) > 0. Given
by the classical Sobolev inequality, we infer the existence of a constant, independent by O, such that

S(Π2)‖w‖2L2∗ (O) ≤ ‖∇w‖2L2(O) ≤ ζ(w)2 ∀ u ∈ C∞0 (U). (2.2)

In particular, when O = Rn, we have

X
1,2
Π1

(Rn) = {w ∈ L2∗(Rn) : ∇w ∈ L2(Rn) and [w]2
s < ∞}.

We now describe a few essential properties of X1,2
Π1

(U) space. The proof of the following proposition
can be found in the appendix.

Proposition 2.1. The space
(
X

1,2
Π1

(U), 〈., .〉
)

is a Hilbert space under the following inner product defined
by

〈w, v〉 =

∫
O

∇w · ∇v dx +

"
Q

(w(x) − w(y))(v(x) − v(y))
|x − y|n+2s dxdy.
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Proposition 2.2. If s ∈ (0, 1), then for every w, v ∈ X1,2
Π1

(U), it holds∫
O

vTw dx =

∫
O

∇w · ∇v dx +

"
Q

(w(x) − w(y))(v(x) − v(y))
|x − y|n+2s dxdy

−

∫
∂O∩Π2

v
∂w
∂ν

dσ −
∫

Π2

vNsw dx.

Proof. By directly using the integrate by parts formula and w, v ≡ 0 a.e. in Π1 ∪ (∂O ∩ Π1) = Uc, we
can follow Lemma 3.3 of [33] to obtain the conclusion.

Definition 2.3. We say that w ∈ X1,2
Π1

(U) is a weak solution to the problem (Pλ) if∫
O

∇w · ∇ϕ dx +

"
Q

(w(x) − w(y))(ϕ(x) − ϕ(y))
|x − y|n+2s dxdy =

∫
O

(w2∗−1 + λwp)ϕ dx, (2.3)

∀ ϕ ∈ X1,2
Π1

(U) as a test function.

We can see the definition 2.3 is well defined. Indeed, if w, v ∈ X1,2
Π1

(U), then∣∣∣∣∣ ∫
O

∇w · ∇v dx +

"
Q

(w(x) − w(y)) (v(x) − v(y))
|x − y|n+2s dx dy

∣∣∣∣∣
≤

∫
O

|∇w · ∇v| dx +

"
Q

|w(x) − w(y)| |v(x) − v(y)|
|x − y|n+2s dx dy

≤ ‖∇w‖L2(O) · ‖∇v‖L2(O) + [w]s · [v]s ≤ 2ζ(w)ζ(v) < ∞.

Moreover, since X1,2
Π1

(O) ↪→ L2∗(O) and p < 2∗ − 1, using Hölder’s inequality. We also have∫
O

|(w2∗−1 + λwp)v| dx

≤ C‖w‖L2∗ (O) · ‖v‖L2∗ (O) + |λ| ‖w‖L2∗ (O) · ‖v‖
L

2∗
2∗−p (O)

< ∞.

Now, we introduce the functional Jλ associated to (Pλ) i.e.

Jλ : X1,2
Π1

(U)→ R, such that

Jλ(w) =
1
2
ζ(w)2 −

1
2∗

∫
O

|w|2
∗

dx −
λ

p + 1

∫
O

|w|p+1 dx, (2.4)

we can see that functional Jλ is C1. If w is a critical point of Jλ then we conclude that w is a weak
solution to (Pλ). Due to non-compactness, we can not use the standard minimization technique to
prove the existence of the solution to (Pλ) since functional Jλ does not satisfy the Palais-Smale (PS )c

condition.

Remark 2.4. We can see this by the density argument to C∞0 (U) in X1,2
Π1

(U), we may extend inequality
(2.2) to every function w ∈ X1,2

Π1
(U), then we obtain

S(Π2)‖w‖2L2∗ (O) ≤ ζ(w)2 = ‖∇w‖2L2(O) + [w]2
s .
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3. Mixed Sobolev type inequality

The mixed Sobolev inequality (2.2) is the subject of further investigation in this section, that is,

S(Π2)‖w‖2L2∗ (O) ≤ ζ(w)2, ∀ w ∈ C∞0 (U),

to proving Theorems 1.1 and 1.2. Because of this, our main aim is to figure out the sharp constant in
(2.2), namely,

Sn,s(O,Π1) = inf
{
ζ(w)2 : w ∈ C∞0 (U) ∩M(O)

}
, (3.1)

where
M(O) = {w ∈ L2∗(O) : ‖w‖L2∗ (O) = 1}.

Since, C∞0 (U) is dense in X1,2
Π1

(U) corresponding to the norm ζ(·), using embedding X1,2
Π1

(U) ↪→ L2(O),
we have

Sn,s(O,Π1) = inf
{
ζ(w)2 : w ∈ X1,2

Π1
(U) ∩M(O)

}
.

Furthermore, we know the constant Sn,s(O,Π1) is translation invariant.
Let us recall some useful properties of S(Π2). For a detail study of these properties, see in [23].

Remark 3.1. We define

S(Π2) = inf
{
‖∇w‖2L2(O) : w ∈ C∞0 (U) ∩M(O)

}
, (3.2)

We observe that the constant S(Π2), defined by (3.2), depends on some part of the boundary of
O, under some suitable hypotheses, is achieved. Lions et al. in [24], establish adequate geometric
conditions for the domains O and Π2 that guarantee the achieving of the optimal constant S(Π2),
utilizing symmetrization arguments derived from the classical isoperimetric inequality. We follow
from [Theorem 2.1 in [34]] to get the following result and also for more study about the best Sobolev
constant which depends on the domain O, see in [23]. We recall the following result (in our notations)

that represents the relations between S(Π2) and Sn = 1
n(n−2)π

(
Γ(n)
Γ( n

2 )

) 2
n
, is the classical Sobolev constant

see [26].

Theorem 3.2. Let O ⊂ Rn be a bounded regular domain, then

S (Π2) ≤ 2−
1
nSn

moreover, if Π2 is smooth and S (Π2) < 2−
1
nSn, then the constant S (Π2) is achieved, where Sn is the

classical best Sobolev constant.

Properties of S(Π2) and Sn :

1. The best constant S(Π2) is dependent on domain O. We have the following explicit expression

S(Π2) =

n
(
ξn
2

) 1
n

C
n−2
2n


2

, (3.3)

where, Γ(·) is the Euler Gamma function.
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2. For any open set O , we have

S(Π2) = inf
{
‖∇w‖2L2(O) : w ∈ D1,2

0 (U) ∩M(O)
}
,

where,D1,2
0 (U) is the clousre of the space C∞0 (U) under the gradient norm ‖∇w‖L2(O).

3. Suppose O is a bounded set, then Sn is never achieved.
4. In particular, when U = Rn, then Sn and S(Π2) are attained by the family of functions

A =
{
Ht,x0(x) = t

2−n
2 F((x − x0)/t) : t > 0, x0 ∈ R

n},
where

F(z) = c (1 + |z|2)
2−n

2 , c > 0 such that ‖F‖L2∗ (Rn) = 1.

So, we can show the following Theorem 1.1.

Proof of Theorem 1.1. Since, ζ(w)2 ≥ ‖∇w‖2L2(O), ∀ w ∈ C∞0 (U) and also Sn,s(O,Π1) is translation-
invariance. So, we have

Sn,s(O,Π1) ≥ inf
{
‖∇w‖2L2(O) : w ∈ C∞0 (U) ∩M(O)

}
= S(Π2).

Now, to prove the reverse inequality, without loss of generality, we may suppose that x0 = 0 ∈ O, and
r > 0 such that Br(0) ⊆ O. We see for any w ∈ C∞0 (U) ∩M(O), there exists n0 = n0(w) ∈ N such that

supp(w) ⊆ Bκr(0) ∀ κ ≥ n0,

now set wκ(x) = κ
n−2

2 w(κx), for κ ≥ n0, we see that

supp(wκ) ⊆ Br(0) ⊆ O and ‖wκ‖L2∗ (O) = 1.

By the definition of Sn,s(O,Π1), we can see

Sn,s(O,Π1) ≤ ζ(wκ)2 = ‖∇wκ‖
2
L2(O) + [wκ]2

s = ‖∇w‖2L2(O) + κ2s−2[w]2
s , ∀ n ≥ n0.

Then, we have
Sn,s(O,Π1) ≤ ‖∇w‖2L2(O),

as κ → ∞, since 0 < s < 1. As w ∈ C∞0 (U) ∩M(O) is arbitrary, then using Remark 3.1, we obtain

Sn,s(O,Π1) ≤ S(Π2),

and we proved the required inequality: Sn,s(O,Π1) = S(Π2).

We are now able to show Theorem 1.2.

Proof of Theorem 1.2. By contrary argument, if we suppose there exists a nonzero function w0 ∈ X
1,2
Π1

(U)
such that ‖w0‖L2∗ (O) = 1 and ζ(w0)2 = ‖∇w0‖

2
L2(O) + [w0]2

s = S(Π2). We have X1,2
Π1

(U) ⊆ D1,2
0 (U) by

straightforwardness of the fact that ζ(w0) ≥ ‖∇w0‖
2
L2(O), see above properties (2), we have

S(Π2) ≤ ‖∇w0‖
2
L2(O) ≤ ‖∇w0‖

2
L2(O) + [w0]2

s = ζ(w0)2 = S(Π2),

that implies [w0]s = 0. Hence, w0 must be constant in Rn. We have a contradiction with the fact
‖w0‖L2∗ (O) = 1.
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Remark 3.3. Our Theorem 1.2 says that constant Sn,s(O,Π1) = S(Π2) is never achieved in the space
X

1,2
Π1

(U) but if (U = Rn) we show S(Π2) achieve in a limiting sense. More precisely, ifA = {Hθ,x0} which
is defined in (4), we have

ζ(Hθ,x0)
2 → S(Π2) as θ → ∞.

Indeed,

|F (θ)| ≤ D min{1, |θ|2−n} and |∇F(θ)| ≤ D min{|θ|, |θ|1−n},

for someD > 0. Therefore ( constantD varies in the following calculations)

[F(θ)]2
s =

"
Rn×Rn

|F(x + y) − F(x)|2

|y|n+2s dx dy

≤

"
Rn×B1

∣∣∣∣∣∣
∫ 1

0
∇F(x + θy) · y dθ

∣∣∣∣∣∣2 dx dy
|y|n+2s

+2
"
Rn×(Rn\B1)

(
|F(x + y)|2 + |F(x)|2

) dx dy
|y|n+2s

≤

$
Rn×B1×(0,1)

min{|x + θy|2, |x + θy|2(1−n)}
dx dy dθ
|y|n+2s−2

+4
"
Rn×(Rn\B1)

|F(t)|2
dt dy
|y|n+2s

≤

$
Rn×B1×(0,1)

min{|t|2, |t|2(1−n)}
dt dy dθ
|y|n+2s−2

+D

"
Rn×(Rn\B1)

min{1, |t|2(2−n)}
dt dy
|y|n+2s .

So, [F(θ)]2
s < +∞. Hence, F ∈ X1,2

Π1
(Rn) and consequently Hθ,x0 ∈ X

1,2
Π1

(Rn), ∀ θ > 0 and x0 ∈ R
n.

Moreover, recalling that

Hθ,x0(x) = θ
2−n

2 F
( x − x0

θ

)
and ‖Hθ,x0‖L2∗ (Rn) = ‖F‖L2∗ (Rn) = 1,

follows same idea of the proof of Theorem 1.1 we have

ζ(Hθ,x0)
2 = ζ(Hθ,0)2 = ‖∇F‖2L2(Rn) + θ2s−2[F]2

s .

From this, since F = H1,0. We obtain

ζ(Hθ,x0)
2 → ‖∇F‖2L2(Rn) = S(Π2), as θ → ∞.

In the following section, we discussed the critical problems involving mixed operator settings with
mixed boundary conditions.
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4. Study to critical problems with mixed type operator T critical

We now develop our study for the existence and non-existence of solutions to the problem (Pλ).
Suppose O is a bounded set with smooth boundary, λ is a real parameter, and 1 ≤ p < 2∗ − 1.

Moreover, we adopt all the definitions and notation of Section s 2, 3. Finally, we introduce nonnegative
space

X1,2
+ (U) = {w ∈ X1,2

Π1
(U) : w ≥ 0 a.e. in U}.

We are defining the definition of solution to (Pλ).

Definition 4.1. We say that a u ∈ X1,2
+ (U) is a weak solution to (Pλ) if it satisfies the following properties

1. |{x ∈ U : u(x) > 0}| > 0,
2. For every test function ϕ ∈ X1,2

+ (U) we have∫
O

∇u · ∇ϕdx +

"
Q

(u(x) − u(y))(ϕ(x) − ϕ(y))
|x − y|n+2s dxdy

=

∫
O

(
u2∗−1 + λup

)
ϕ dx.

To study the existence of solutions to (Pλ), first we prove the solution is non-negative and bounded
by the following theorem.

Theorem 4.2. Let w0 ∈ X
1,2
+ (U) be the solution to (Pλ) and λ ∈ R, 1 ≤ p < 2∗ − 1. Then, the following

facts hold:

1. w0 ∈ L∞(O),
2. if λ ≥ 0, then w0 > 0 a.e. in U.

Proof. We can easily prove w0 ∈ L∞(O) by using [Theorem 4.1] [28] and also easily it can be followed
from well know result Moser’s iteration method; see [Theorem 1.1 in [35]]. By the fact that just using
the definition of function space, w0 ≡ 0 a.e. in Uc, implies that w0 ∈ L∞(Rn). Suppose λ ≥ 0 and recall

that w0 is a solution of (Pλ) (in the sense of Definition (4.1)), and since w0 ≥ 0 a.e. in U, for every
ϕ ∈ X1,2

+ (U), we find

∫
O

∇w · ∇ϕ dx +

"
Q

(w(x) − w(y))(ϕ(x) − ϕ(y))
|x − y|n+2s dx dy =

∫
O

(w2∗−1 + λwp)ϕ dx ≥ 0, (4.1)

for each ϕ ∈ X1,2
+ (U). By using the Strong Maximum Principle, refer to [29], we have w0 > 0 a.e. in

U.

Thanks to Theorem 4.2, we are able to prove Theorem 1.3.

Next, for λ > 0, we can start our study separately for the linear case p = 1 and the superlinear case
1 < p < 2∗ − 1 of the solvability of (Pλ).
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4.1. Case: (if p = 1)

Let us start studying to solve the following problem (Pλ)
Tw = w2∗−1 + λw, w > 0 in O,
w = 0 in Uc,

Ns(w) = 0 in Π2,
∂w
∂ν

= 0 in ∂O ∩ Π2.

(Pλ)

In this context, we study for any λ > 0, solutions to problem (Pλ) correlates the first eigenvalues λ1,s

and λ′ of (−∆)s and of T with mixed boundary conditions respectively.

Definition 4.3. For O is the bounded open set, we define

(1) [see [36]], the first eigenvalue of (−∆)s with mixed boundary conditions as

λ1,s = inf
{
[w]2

s : u ∈ C∞0 (U) and ‖w‖L2(O) = 1
}
; (4.2)

(2) [see [29]] the first eigenvalue of T with mixed boundary conditions as

λ′ = inf
{
ζ(w)2 : w ∈ C∞0 (U) and ‖w‖L2(O) = 1

}
. (4.3)

We subsequently provide a brief overview of the main properties of λ1,s, and λ′ in the following
remark.

Remark 4.4. ( Some Properties of λ1,s and λ′ ). As regards λ1,s we observe that, since the map
u 7→ [u]s= N(u) is a norm for C∞0 (U) that is equivalent to the full ‖.‖Hs(Rn), we refer to [32, Theorem 6.5]
and recalling U is bounded since O ∪ Π2 is bounded, one has

λ1,s = inf
{
[w]2

s : w ∈ Ds,2
0 (U) and ‖w‖L2(O) = 1

}
,

whereDs,2
0 (U) ⊆ L2(O) is the completion of C∞0 (U) under the norm N(u). Furthermore, we can easily

see that λ1,s is truly achieved in this bigger space Ds,2
0 (U) since the embedding Ds,2

0 (U) ↪→ L2(O) is
compact. So,

∃ ϕ0 ∈ D
s,2
0 (U) : ‖ϕ0‖L2(O) = 1 and [ϕ0]2 = λ1,s > 0.

Indeed, it is possible to choose the function ϕ0 to be strictly positive a.e. in U.
In addition, see in [36] or [Proposition 9 in [37]], since ϕ0 is a constrained minimizer of the

functional w 7→ [w]2
s and using the Lagrange Multiplier method,"

Q

(ϕ0(x) − ϕ0(y))(v(x) − v(y))
|x − y|n+2s dx dy = λ1,s

∫
O

ϕ0v dx ∀ v ∈ Ds,2
0 (U),

and it shows that ϕ0 is a weak solution to the following eigenvalue problem
(−∆)sw = λ1,sw w > 0 in O

w = 0 in Uc,

Ns(w) = 0 in Π2,
∂w
∂ν

= 0 in ∂O ∩ Π2.
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Similarly, we can see, since ζ(·) defines a norm on C∞0 (U) that is equivalent to the full H1-norm in Rn,
and

λ′ = inf
{
ζ(w)2 : w ∈ X1,2

Π1
(O) and ‖w‖L2(O) = 1

}
.

Furthermore, it is easy to see that λ′ is truly achieved in the larger space X1,2
Π1

(U) and we know
embedding X1,2

Π1
(U) ↪→ L2(O) is compact, that is,

∃ ψ0 ∈ X
1,2
Π1

(U) : ‖ψ0‖L2(O) = 1 and ζ(ψ0)2 = λ′ > 0.

Indeed, it is possible to choose the function ψ0 > 0 a.e. in U.
Moreover, see in [29], since ψ0 is a constrained minimizer of the functional ζ(·)2 and using the

Lagrange Multiplier method,∫
O

∇ψ0 · ∇v dx +

"
Q

(ψ0(x) − ψ0(y))(v(x) − v(y))
|x − y|n+2s dx dy

= λ′
∫
O

ψ0v dx ∀ v ∈ X1,2
Π1

(U),

and it shows that ψ0 is a solution to the following eigenvalue problem
Tw = λ′w, w > 0 in O,

w = 0 in Uc,

Ns(w) = 0 in Π2,
∂w
∂ν

= 0 in ∂O ∩ Π2.

We are approaching the proof of Theorem 1.4. Several independent results will help us to get this.
Initially, we establish a lemma that connects the existence of solutions for (Pλ) with the existence of
constrained minimizers for an appropriate functional Rλ. We define

Rλ(w) = ζ(w)2 − λ‖w‖2L2(O), for any w ∈ X1,2
Π1

(U), (4.4)

constrained to the manifoldV(O) = X1,2
Π1

(U) ∩M(O).

We identify some useful properties of S(Π2)(λ) = infu∈V(O) Rλ(w) in the following remark.

Remark 4.5. By using the definition of S(Π2)(λ) and Hölder’s inequality, for every w ∈ V(O), we have

1. S(Π2)(λ) ≤ S(Π2), ∀ λ > 0,
2. S(Π2)(λ) ≤ S(Π2)(λ∗), ∀ 0 < λ∗ < λ.

Additionally, keep in mind take note of Remark 4.4) and the definition of λ′ in (4.3), λ′ is attained in the
space X1,2

Π1
(U), easy to check

S(Π2)(λ) ≥ 0 ⇐⇒ 0 < λ ≤ λ′.

Using properties of S(Π2)(λ), we prove the next result.
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Lemma 4.6. We consider
S(Π2)(λ) = inf

w∈V(O)
Rλ(w), ∀ λ > 0. (4.5)

Suppose that S(Π2)(λ) > 0 and S(Π2)(λ) is achieved; that is, there exists some function u ∈ V(O) such
that Rλ(u) = S(Π2)(λ). Then, there exists a solution of (Pλ).

Proof. By assumption, we know that there exists u ∈ V(O)) as a constrained minimizer for Rλ, that
is, Rλ(u) = S(Π2)(λ). We can easily see Rλ(|u|) ≤ Rλ(u), then we may suppose that u ≥ 0 a.e. in O.
Furthermore, by the Lagrange multiplier method, ∃ µ ∈ R, and we have

∫
O

∇u · ∇ϕ +

"
Q

(u(x) − u(y))(ϕ(x) − ϕ(y))
|x − y|n+2s =

∫
O

(µu2∗−1 + λu)ϕ dx, ∀ ϕ ∈ X1,2
Π1

(U). (4.6)

Now, take ϕ = u as a test function in (4.6), we obtain

µ = µ‖u‖2
∗

L2∗ (Rn) = ζ(u)2 − λ‖u‖2L2(Rn) = Rλ(u) = S(Π2)(λ) > 0. (4.7)

As a consequence, setting w = S(Π2)(λ)
n−2

4 u, we see that w ≥ 0 a.e. in O and for every ϕ ∈ X1,2
Π1

(U)
using (4.6) and (4.7), we have

1

S(Π2)(λ)
n−2

4

(∫
O

∇w · ∇ϕ +

"
Q

(w(x) − w(y))(ϕ(x) − ϕ(y))
|x − y|n+2s

)
=

∫
O

µ

(
w

S(Π2)(λ)
n−2

4

)2∗−1

ϕ dx

+

∫
O

λ

S(Π2)(λ)
n−2

4

wϕ dx, ∀ ϕ ∈ X1,2
Π1

(U),

then we obtain that∫
O

∇w · ∇ϕ +

"
Q

(w(x) − w(y))(ϕ(x) − ϕ(y))
|x − y|n+2s =

∫
O

(w2∗−1 + λw)ϕ dx, ∀ ϕ ∈ X1,2
Π1

(U).

Hence, we obtain w as a solution to (Pλ). In this manner, we have completed the proof of this lemma.

On account of Lemma 4.6, the sign of the real number S(Π2)(λ) plays a crucial role to study the
solvability of (Pλ). In this perspective, we have already identified by Remark 4.5 that

S(Π2)(λ) ≥ 0 ⇐⇒ 0 < λ ≤ λ′.

We are provided with additional information as a result of the following outcome together with
Remark 4.5.

Lemma 4.7. We have
S(Π2)(λ) = S(Π2) > 0 ∀ λ ∈ (0, λ1,s].

Proof. Suppose λ ∈
(
0, λ1,s

]
and using Remark 4.5, we have S(Π2)(λ) ≤ S(Π2). On the other hand, to

prove the reverse part of it, using the definition of λ1,s that is defined by (4.2). For any w ∈ C∞0 (U)∩M(O),
we have

Rλ(w) = ‖∇w‖2L2(O) +
(
[w]2

s − λ‖w‖
2
L2(O)

)
≥ ‖∇w‖2L2(O) +

(
λ1,s − λ

)
‖w‖2L2(O) ≥ ‖∇w‖2L2(O).
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But we know, C∞0 (U) is dense in X1,2
Π1

(U), we can see

S(Π2)(λ) = inf
{
Rλ(w) : w ∈ C∞0 (U) ∩M(O)

}
≥ inf

{
‖∇w‖2L2(O) : w ∈ C∞0 (U) ∩M(O)

}
= S(Π2).

Thus we get the desired result S(Π2)(λ) = S(Π2).

Lemma 4.8. The function λ 7→ S(Π2)(λ) is continuous on (0,∞).

Proof. First, we shall show the left continuity. Suppose λ0 > 0, ε > 0. So, using the definition of
S(Π2) (λ0) there exists v = vε,λ0 ∈ V(O) such that

S(Π2) (λ0) ≤ Rλ0(v) < Sn (λ0) +
ε

2
.

using the monotonicity of S(Π2)(·) and ∀ λ < λ0 , deduce that

0 < S(Π2) (λ) − S(Π2) (λ0) ≤ Rλ(v) − S(Π2) (λ0) =
(
Rλ0(v) − S(Π2) (λ0)

)
+ (λ0 − λ) ‖v‖2L2(O)

<
ε

2
+ (λ0 − λ) ‖v‖2L2(O).

As a consequence, setting δε = ε/
(
2‖v‖2L2(O)

)
, we conclude that

0 < S(Π2) (λ) − S(Π2) (λ0) < ε for every λ0 − δε < λ ≤ λ0.

Hence, S(Π2)(·) is left continuous at λ0.

We find some other properties of S(Π2)(λ) in the following remark.

Remark 4.9. By combining Remark 4.5 and Lemma 4.7, we conclude the following estimates:

(i) S(Π2)(λ) = S(Π2), ∀ 0 < λ ≤ λ1,s,
(ii) S(Π2)(λ) ≥ 0, ∀ 0 < λ ≤ λ′,

(iii) S(Π2)(λ) < 0, ∀ λ > λ′.

Proof of Theorem 1.4: First, we define

µ = sup
{
λ > 0 : S(Π2)(λ∗) = S(Π2) for all 0 < λ∗ ≤ λ

}
. (4.8)

Based on Lemma 4.7, it is evident that λ1,s ≤ µ < ∞. Furthermore, from Lemma 4.8 that S(Π2)(·) is
continuous, we can establish S(Π2)(µ) = S(Π2).

An observation worth noting is that S(Π2)(·) ≥ 0 on (0, λ′] and S(Π2)(·) < 0 on (λ′,∞), again
by the continuity of S(Π2)(·) we deduce that S(Π2)(λ′) = 0, consequently recalling that S(Π2)(·) is
nonincreasing on (0,∞), we have µ ∈ [λ1,s, λ

′). Now, we aim to show that the assertion of Theorem 1.4
satisfies with choice of λ∗. Specifically, we treat the following three cases separately:

Case I: (If 0 < λ ≤ λ1,s), by the contrary statement, let us assume that ∃ w ∈ B that is the soluton to
problem (Pλ). Then, setting

u = w/‖w‖L2∗ (O), and B = {w ∈ L2∗(O) : ‖w‖L2∗ (O) ≤ S(Π2) (n−2)/4}.
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Based on the characteristics of w and using the definition of weak solution (2.3) (take ϕ = w and p = 1),
we have

Rλ(u) =
1

‖w‖2
L2∗ (O)

Rλ(w) =
1

‖w‖2
L2∗ (O)

(
ζ(u)2 − λ‖w‖2L2(O)

)
=

1
‖w‖2

L2∗ (O)

∫
O

w2∗ dx

= ‖w‖2
∗−2

L2∗ (O) ≤ S(Π2) (since u ∈ B),

Consequently, from Lemma 4.7, we obtain

Rλ(u) = S(Π2) = S(Π2)(λ). (4.9)

Hence, we conclude that S(Π2)(λ) is achieved at u. Now, recalling (3.2), and since w ∈ X1,2
Π1

(U) ⊆

D
1,2
0 (U), from (4.9), we obtain

S(Π2) ≤ ‖∇w‖2L2(O) = Rλ(w) −
(
[w]2

s − λ‖w‖
2
L2(O)

)
≤ Rλ(w) = S(Π2),

which shows that S(Π2) is achieved. using the fact that λ ≤ λ1,s and w ∈ X1,2
Π1

(U) ⊆ Ds,2
0 (U).

Thus, we conclude that v ∈ D1,2
0 (U) achieves the optimal Sobolev constant S(Π2). We get a contradiction

since O is bounded and from Remark 3.1 that S(Π2) is never achieved in X1,2
Π1

(U).

Case II: (If µ < λ < λ′), from Lemma 4.8, we know S(Π2)(·) is continuous and 0 ≤ S(Π2)(λ) <
S(Π2). (Using the definition of µ), i.e., (4.8), we have from this, following the same ideas of [Lemma
1.2, [26]], the best constant S(Π2)(λ) is achieved, i.e., v ∈ V(O) such that

Rλ(v) = S(Π2)(λ).

Since, we have λ < λ′ and v . 0, then we deduce that

S(Π2)(λ) = ‖v‖2L2(O)

(
ζ(v)2

‖v‖2
L2(O)

− λ
)

≥ ‖v‖2L2(O)(λ
′ − λ) > 0.

Thus, S(Π2)(λ) > 0 and it is achieved. Using Lemma 4.7, a solution to (Pλ), does exist.

Case III: (If λ ≥ λ′) arguing by contradiction, we may assume that there exists a solution to (Pλ)
i.e., that 0 , ϕ0 ∈ X

1,2
Π1

(U) such that ϕ0 > 0 a.e. in U. We can see that∫
O

∇ϕ0 · ∇u dx +

"
Q

(ϕ0(x) − ϕ0(y))(u(x) − u(y))
|x − y|n+2s dx dy

= λ′
∫
O

ϕ0u dx ∀ u ∈ X1,2
Π1

(U),
(4.10)

that is, ϕ0 is an eigenfunction for mixed operator T corresponding to the eigenvalue λ′.
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In particular, choosing w = u ∈ X1,2
+ (U), more specifically, using the above-mentioned identity (4.10)

and recalling that u is a solution to problem (Pλ), using the definition (2.3) (for p = 1),
we obtain

λ′
∫
O

ϕ0w dx =

∫
O

∇ϕ0 · ∇w dx +

"
Q

(ϕ0(x) − ϕ0(y))(w(x) − w(y))
|x − y|n+2s dx dy

=

∫
O

(w2∗−1 + λw)ϕ0 dx

> λ

∫
O

wϕ0 dx,

since by using Theorem 4.2, we have w, ϕ0 > 0 a.e. in O, which is contradiction with λ ≥ λ′.

4.2. Superlinear case (1 < p < 2∗ − 1):

In this section, we examine the proof of Theorem 1.5. We use the Mountain Pass Theorem to
establish the existence of a solution for (Pλ) if 1 < p < 2∗ − 1 (superlinear case). The key obstacle when
utilizing the Mountain Pass Theorem is confirming the fulfillment of a (PS )c condition at a specified
level c, much like the scenario observed in the purely local case, see [26]. In particular, it is essential to
demonstrate that the Palais-Smale condition holds for every c that is strictly less than the first critical
level as defined by the Mountain Pass Theorem. Keeping with the methodology in [26], we examine a
slightly improved following energy functional about (2.4), namely

Jλ(w) =
1
2
ζ(w)2 −

1
2∗

∫
O

(w+)2∗ dx −
λ

p + 1

∫
O

(w+)p+1 dx ∀ w ∈ X1,2
Π1

(U), (4.11)

where w+ = max{w, 0} denotes the positive part of w. Now, it is simple to see that any nonzero critical
point of Jλ is a solution to (Pλ). In particular, since we are assuming λ > 0, we have Tw ≥ 0 in O (in
a weak sense) since we can see it by using the definition of the weak solution 2.3 and in the proof of
Theorem 4.2. Note that w ≡ 0 a.e. in Uc, allows us to apply the Weak Maximum Principle with mixed
boundary conditions, which follow from [38, Theorem 1.2]. We have w ≥ 0 a.e. in Rn then we deduce
that w+ ≡ w. Hence w > 0 a.e. in U is a solution to problem (Pλ). In the following lemma, our aim is

to establish that the functional Jλ satisfies a local (PS ) condition at level c ∈ R, which is related to the
best Sobolev constant S(Π2).

Lemma 4.10. The functional Jλ satisfies the (PS )c for every c <
1
n

(S(Π2))n/2.

Proof. It is a well-known result. So, we can easily prove this lemma by following Lemma 4.10 in [25].

The final step required to show Theorem 1.5 is demonstrating a path with energy below the S(Π2)/n
critical obstacle. To do this, we first provide an auxiliary function similar to the one employed in [26].

Now, we define a non-increasing cut-off function by

ψ0(t) =

{
1, if 0 ≤ t ≤ 1

2 ,

0, if t ≥ 1.
(4.12)
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Then, we consider a function ψρ(x) : Rn → R by

ψρ(x) = ψ0

(
|x|
ρ

)
, (4.13)

for given ρ > 0 such that Bρ(0) ⊂ O. Finally, for all ε > 0, let

Uε(x) =
ε(n−2)/2(

|x|2 + ε2)(n−2)/2 and %ε(x) =
ψρ(x) Uε(x)
‖ψρ Uε‖L2∗ (O)

∈ X
1,2
Π1

(U).

Lemma 4.11. Suppose n ≥ 3 and p ∈ (1, 2∗ − 1). Furthermore, constants αs,n, τp.n are given in (1.7).
Then, the following statements hold true.

(1) If αs,n > τp.n, then there exists ε > 0 such that

sup
t≥0
Jλ(t%ε) <

1
n

(S(Π2))n/2, ∀ λ > 0.

(2) If, instead, αs,n ≤ τp.n, then there exist ε > 0, λ0 > 0 such that

sup
t≥0
Jλ(t%ε) <

1
n

(S(Π2))n/2, ∀ λ ≥ λ0.

Proof. We have

Jλ(t%ε) =
t2

2

∫
O

|∇%ε|
2 dx +

t2

2

"
Q

|%ε(x) − %ε(y)|2

|x − y|n+2s dxdy

−
t2∗

2∗
− λ

tp+1

p + 1

∫
O

%ε(x)p+1 dx;
(4.14)

we then turn to estimate the integrals of (4.14). We use the [Lemma 5.1 and Lemma 5.3 in [39]] and
obtain the following integrals:∫

O

|∇%ε|
2 dx = S(Π2) + O(εn−2) as ε→ 0+ and,"

Q

|%ε(x) − %ε(y)|2

|x − y|n+2s dxdy = O(εks,n), where αs,n = min{2(1 − s), n − 2}.

and also for more ideas, we refer to [Proposition 21 in [27]].
Next, it is easy to see that Lp+1-norm of %ε and∫

Rn
%ε(x)p+1 dx = C1

∫
Bρ(0)

Uε(x)p+1 dx

= C1 ε
−(p+1) n−2

2

∫ ρ

0

σn−1(
σ2

ε2 + 1
)(p+1) n−2

2

dσ

≥ C1 ε
n−(p+1) n−2

2

∫ ρ/ε

1

tn−1(
t2 + 1

)(p+1) n−2
2

dt

=
C1

n
εn−(p+1) n−2

2

((
ε

ρ

)n

+ 1
)
,

(4.15)
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where the constant C1 > 0 is adjusted line to line. Now, combining the above integrals and using (4.14)
we deduce that

Jλ(t%ε) ≤
t2

2
(S(Π2) + O(εn−2) + O(εαs,n)) −

t2∗

2∗
−Cλ

tp+1

p + 1
εn−(p+1) n−2

2

=
t2

2
(
S(Π2) + O(εαs,n)

)
−

t2∗

2∗
−Cλ

tp+1

p + 1
ετp.n

≤
t2

2
(
S(Π2) + Cεαs,n

)
−

t2∗

2∗
−Cλ

tp+1

p + 1
ετp.n ,

(4.16)

where ε > 0 and C > 0, suitable constants. Let us set

fε,λ(t) =
t2

2
(
S(Π2) + Cεαs,n

)
−

t2∗

2∗
−Cλ

tp+1

p + 1
ετp.n , (4.17)

such that fε,λ(0) = 0 and fε,λ(t)→ −∞ as t → ∞. So, there exists tε,λ ≥ 0 such that

sup
t≥0

fε,λ(t) = fε,λ(tε,λ).

We can see that for tε,λ = 0, we have fε,λ(t) ≤ 0 for all t ≥ 0, and the lemma is trivially established as a
consequence of (4.16). On the other hand, if tε,λ > 0, we obtain

0 = f ′ε,λ(tε,λ) = tε,λ(S(Π2) + Cεαs,n) − t2∗−1
ε,λ −Cλtp

ε,λε
τp.n . (4.18)

from which we may easily conclude that

tε,λ < (S(Π2) + Cεαs,n)1/(2∗−2).

We now distinguish two cases, according to the assumptions.

Case (1): ( If αs,n > τp.n), for ε > 0 small enough, using equation (4.18), we have

tε,λ ≥ µλ > 0,

and using the fact that the following map

t 7→
t2

2
(S(Π2) + Cεαs,n) −

t2∗

2∗

is increasing in the closed interval [0,S(Π2) + Cεαs,n)1/(2∗−2)] containing tε,λ, we have

sup
t≥0

fε,λ(t) = fε,λ(tε,λ)

<
(S(Π2) + Cεαs,n)1+2/(2∗−2)

2
−

(S(Π2) + Cεαs,n)2∗/(2∗−2)

2∗
−Cετp.n

=
1
n

(S(Π2) + Cεαs,n)n/2 −Cετp.n

<
1
n

(S(Π2))n/2, for ε > 0 sufficiently small.
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Case (2): (for αs,n ≤ τp.n), let us start by claiming that

lim
λ→∞

tε,λ = 0. (4.19)

By contrary, we assume that e = lim supλ→∞ tε,λ > 0, then choosing a sequence {λk}k≥1 diverging to∞,
as k → ∞ and from (4.18) we obtain

S(Π2) + Cεαs,n = t2∗−2
ε,λk

+ Cλkt
p−1
ε,λk
ετp.n → ∞

which is a contradiction. Hence, we have limλ→∞ tε,λ = 0.
So, using (4.16) and (4.19), we have

0 ≤ sup
t≥0
Jλ(t%ε) ≤ fε,λ(tε,λ) ≤

t2
ε,λ

2
(
S(Π2) + Cεαs,n

)
−

t2∗
ε,λ

2∗
→ 0 as λ→ ∞,

which implies the existence of λ0 = λ0(p, s, n, ε) > 0 such that

sup
t≥0
Jλ(t%ε) <

1
n

(S(Π2))2/n for all λ ≥ λ0,

for fix ε > 0 is small enough. Thus, our work is done.

In the next lemma, we verify the functional Jλ satisfies Mountain Pass geometry. We follow the
same arguments of [Proposition 3.1 in [31]].

Lemma 4.12. There exist positive constants a, c1, c2 > 0 such that

(1) For any w ∈ X1,2
Π1

(U) with ζ(w) = a, it holds that Jλ(w) ≥ c2,
(2) There exists a tε > 0 large enough so that ζ(%εtε) > c1 and Jλ(tε%ε) < c2.

Proof. By the Sobolev embedding and Remark (3.1), we have

Jλ(w) ≥
1
2
ζ(w)2 −

C
2∗
ζ(w)2∗ − λ(S(Π2))

2∗
p+1 ζ(w)p+1,

for any w ∈ X1,2
Π1

(U). Since 1 < p < 2∗ − 1, we can easily obtain the part (1) assuming ζ(w) is small
enough. On the other hand, we have

lim
t→∞

Jλ (tvε) = −∞,

from which we easily complete our proof.

Proof of Theorem 1.5. Hence, by using the Mountain Pass theorem and thanks to Lemmas 4.12, 4.10,
and 4.11, we complete the proof of Theorem 1.5.

Communications in Analysis and Mechanics Volume 16, Issue 4, 872–895.



892

5. Conclusions

In this paper, firstly we identify the optimal constant in the mixed Sobolev inequality under mixed
boundary conditions. We prove optimal constant Sn,s(O,Π1) = S(Π2), which is our Theorem 1.1, and
Theorem (1.2) says that constant S(Π2) is never achieved in the space X1,2

Π1
(U), but if U = Rn then it

is achieved in the limiting sense. In addition, the aim of this manuscript is to prove the existence and
non-existence of a positive solution for (Pλ) using the variational methods. Moreover, we note that
the case p = 1 in Theorem 1.4 is different compared to the case 1 < p < 2∗ − 1 in Theorem 1.5 in a
structural aspect. However, Theorem 1.5 ensures the existence of solutions for all λ large enough, while
Theorem 1.4 only recognizes solutions for λ in a certain interval, demonstrating that no solutions exist
when λ is too large. Therefore, the case p = 1 cannot be considered as the limit case of the setting
1 < p < 2∗ − 1.

Lastly, we will come back to the study of (Pλ)for sublinear perturbations (0 < p < 1) and with some
singular type nonlinearity with critical exponent under the mixed boundary conditions in future work.
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