The objective of this paper is to examine the vanishing viscosity limit of the nonhomogeneous incompressible NS systerm, subject to the no-slip boundary condition. By adopting Kato's approach of constructing an artificial boundary layer [
Citation: Shuai Xi. A Kato-type criterion for the inviscid limit of the nonhomogeneous NS equations with no-slip boundary condition[J]. Communications in Analysis and Mechanics, 2024, 16(4): 896-909. doi: 10.3934/cam.2024039
The objective of this paper is to examine the vanishing viscosity limit of the nonhomogeneous incompressible NS systerm, subject to the no-slip boundary condition. By adopting Kato's approach of constructing an artificial boundary layer [
[1] | T. Kato, Remarks on the zero viscosity limit for nonstationary Navier-Stokes flows with boundary, Seminar on nonlinear partial differential equations, in Seminar on Nonlinear Partial Differential Equations (ed. S. S. Chern), Springer, New York, NY, (1984), 85–98. https://doi.org/10.1007/978-1-4612-1110-5_6 |
[2] | L. Prandtl, $\ddot{ U }$ber Fl$\ddot{ u }$ssigkeitsbewegungen bei sehr kleiner Reibung, In: "Verh. Int. Math. Kongr., Heidelberg 1904", Teubner, 1905. |
[3] |
R. Alexandre, Y. G. Wang, C. J. Xu, T. Yang, Well-posedness of the Prandtl equation in Sobolev spaces, J. Amer. Math. Soc., 28 (2015), 745–784. https://doi.org/10.1090/S0894-0347-2014-00813-4 doi: 10.1090/S0894-0347-2014-00813-4
![]() |
[4] | R. E. Caflisch, M. Sammartino, Existence and singularities for the Prandtl boundary layer equation, Z. Angew. Math. Mech., 80 (2000), 733–744. |
[5] | M. Cannone, M. C. Lombardo, M. Sammartino, Existence and uniqueness for the Prandtl equations, C. R. Acad. Sci. Paris S$\acute{e}$r. I Math., 332 (2001), 277–282. https://doi.org/10.1016/S0764-4442(00)01798-5 |
[6] |
M. C. Lombardo, M. Cannone, M. Sammartino, Well-posedness of the boundary layer equations, SIAM J. Math. Anal., 35 (2003), 987–1004. https://doi.org/10.1137/S0036141002412057 doi: 10.1137/S0036141002412057
![]() |
[7] |
N. Masmoudi, T. K. Wong, Local-in time existence and uniqueness of solutions to the Prandtl equation by energy methods, Comm. Pure Appl. Math., 68 (2015), 1683–1741. https://doi.org/10.1002/cpa.21595 doi: 10.1002/cpa.21595
![]() |
[8] | O. A. Oleinik, V. N. Samokhin, Mathematical Models in Boundary Layer Theory, Applied Mathematics and Mathematical Computation, 15., Chapman & Hall/CRC, 1999. |
[9] |
M. Sammartino, R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, Ⅰ. Existence for Euler and Prandtl equations, Comm. Math. Phys., 192 (1998), 433–461. https://doi.org/10.1007/s002200050304 doi: 10.1007/s002200050304
![]() |
[10] | E. Weinan, B. Engquist, Blow up of solutions of the unsteady Prandtl equation, Comm. Pure Appl. Math., 50 (1997), 1287–1293. |
[11] |
Z. P. Xin, L. Zhang, On the global existence of solutions to the Prandtl system, Adv. Math., 181 (2004), 88–133. https://doi.org/10.1016/S0001-8708(03)00046-X doi: 10.1016/S0001-8708(03)00046-X
![]() |
[12] |
Y. Guo, T. T. Nguyen, Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate, Ann. PDE, 3 (2017), 1–58. https://doi.org/10.1007/s40818-016-0020-6 doi: 10.1007/s40818-016-0020-6
![]() |
[13] |
C. J. Liu, Y. G. Wang, Stability of boundary layers for the nonisentropic nonhomogeneous circularly symmetric 2d flow, SIAM J. Math. Anal., 46 (2014), 256–309. https://doi.org/10.1137/130906507 doi: 10.1137/130906507
![]() |
[14] |
M. C. Lopes Filho, A. L. Mazzucato, H. J. Nussenzveig Lopes, M. Taylor, Vanishing viscosity limit and boundary layers for circularly symmetric 2d flows, Bull. Braz. Math. Soc. (N.S.), 39 (2008), 471–513. https://doi.org/10.1007/s00574-008-0001-9 doi: 10.1007/s00574-008-0001-9
![]() |
[15] |
Y. Maekawa, On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half plane, Comm. Pure Appl. Math., 67 (2014), 1045–1128. https://doi.org/10.1002/cpa.21516 doi: 10.1002/cpa.21516
![]() |
[16] |
M. Sammartin, R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, Ⅱ. Construction of the NS solution, Comm. Math. Phys., 192 (1998), 463–491. https://doi.org/10.1007/s002200050305 doi: 10.1007/s002200050305
![]() |
[17] |
X. Wang, A Kato type theorem on zero viscoity limit of NS flows, Indiana Univ. Math. J., 50 (2001), 223–241. https://doi.org/10.1512/iumj.2001.50.2098 doi: 10.1512/iumj.2001.50.2098
![]() |
[18] |
J. P. Kelliher, On Kato's conditions for vanishing viscosity, Indiana Univ. Math. J., 56 (2007), 1711–1721. https://doi.org/10.1512/iumj.2007.56.3080 doi: 10.1512/iumj.2007.56.3080
![]() |
[19] |
Y. G. Wang, J. R. Yin, S.Y. Zhu, Vanishing viscosity limit for incompressible Navier-Stokes equations with Navier boundary conditions for small slip length, J. Math. Phy., 58 (2017), 101507. https://doi.org/10.1063/1.5004975 doi: 10.1063/1.5004975
![]() |
[20] | S. A. Antontsev, A. V. Kazhikov, Mathematical Study of Flows of Nonhomogeneous Fluids, Novosibirsk State University, Novosibirsk, USSR, 1973. |
[21] |
R. Danchin, Density-dependent incompressible fluids in bounded domains, J. Math. Fluid Mech., 8 (2006), 333–381. https://doi.org/10.1007/s00021-004-0147-1 doi: 10.1007/s00021-004-0147-1
![]() |
[22] | A. V. Kazhikov, Solvability of the initial-boundary value problem for the equations of the motion of an inhomogeneous viscous incompressible fluid, Dokl. Akad. Nauk., 216 (1974), 1008–1010. |
[23] |
O. Ladyzhenskaya, V. Solonnikov, Unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids, J. Soviet Math., 9 (1978), 697–749. https://doi.org/10.1007/BF01085325 doi: 10.1007/BF01085325
![]() |
[24] | H. Okamoto, On the equation of nonstationary stratified fluid motion: Uniqueness and existence of the solutions, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 30 (1984), 615–643. |
[25] |
R. Salvi, The equations of viscous incompressible nonhomogeneous fluid: on the existence and regularity, J. Australian Math. Soc. Ser. B., 33 (1991), 94–110. https://doi.org/10.1017/S0334270000008651 doi: 10.1017/S0334270000008651
![]() |
[26] |
P. Braz e Silva, M. A. Rojas-Medar, E. J. Villamizar-Roa, Strong solutions for the nonhomogeneous Navier-Stokes equations in unbounded domains, Math. Methods Appl. Sci., 33 (2010), 358–372. https://doi.org/10.1002/mma.1178 doi: 10.1002/mma.1178
![]() |
[27] |
S. Itoh, A. Tani, Solvability of nonstationary problems for nonhomogeneous incompressible fluids and the convergence with vanishing viscosity, Tokyo J. Math., 22 (1999), 17–42. https://doi.org/10.3836/tjm/1270041610 doi: 10.3836/tjm/1270041610
![]() |
[28] |
L. C. F. Ferreira, G. Planas, E. J. Villamizar-Roa, On the Nonhomogeneous Navier-Stokes System with Navier Friction Boundary Conditions, SIAM J. Math. Anal., 45 (2013), 2576–2595. https://doi.org/10.1137/12089380X doi: 10.1137/12089380X
![]() |
[29] |
E. Feireisl, B. J. Jin, A. Novotný, Relative entropies, suitable weak solutions, and weak-strong uniqueness for the nonhomogeneous Navier-Stokes system, J. Math. Fluid Mech., 4 (2012), 717–730. https://doi.org/10.1007/s00021-011-0091-9 doi: 10.1007/s00021-011-0091-9
![]() |