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1. Introduction

The motion of an incompressible viscous fluid with variable density in a bounded domain Ω ⊂ R2

with a smooth boundary is governed by the following equations in [0,T ] ×Ω:
div u = 0,
∂tρ + div (ρu) = 0,
∂t(ρu) + div (ρu ⊗ u) + ∇p = εdiv S(∇u),

(1.1)

where ε > 0 is the viscosity coefficient, ρ = ρ(t, x) is the density, u = u(t, x) = (u1, u2)T and p = p(t, x)
are velocity and pressure, respectively, and S(∇u) is given by

S(∇u) := µ
(
∇u + (∇u)T

)
.
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The aim of this paper is to investigate the vanishing viscosity limit of the nonhomogeneous incompress-
ible NS equations (1.1) with the following initial and no-slip boundary conditions:u = 0, on ∂Ω,

ρ(0, x) = ρ0, (ρu)(0, x) = ρ0u0.
(1.2)

Formally, by taking ε = 0 in the problem (1.1)-(1.2), this transforms into the subsequent nonhomoge-
neous Euler equations 

divuE = 0,
∂tρ

E + div(ρEuE) = 0,
∂t(ρEuE) + div(ρEuE ⊗ uE) + ∇p = 0,

(1.3)

with the initial and impermeable boundary conditions as follows.uE · n = 0, on ∂Ω,

ρE(0, x) = ρE
0 , (ρ

EuE)(0, x) = ρE
0 uE

0 ,
(1.4)

which is used to describe the motion of an ideal fluid without viscosity. We shall investigate the
convergence, as ε → 0, of weak solutions for the nonhomogeneous NS system with a no-slip boundary
condition to the strong solution of the Euler equations with variable density. The exploration of the
inviscid limit of the NS systerm has been a persistent challenge in fluid dynamics for a considerable
duration. In the groundbreaking work referenced by Prandtl [2], he examined the behavior of fluid
flow in proximity to physical boundaries and introduced the concept of the boundary layer. In the
presence of physical boundaries, viscous forces act to slow down the fluid near the boundary, resulting
in a rapid change in flow direction perpendicular to the boundary. The impact of viscosity is primarily
concentrated in a thin layer close to the boundary, known as the boundary layer.

For incompressible viscous fluids, Prandtl simplified the NS equations to derive the equations
governing fluid dynamics within the boundary layer, known as the Prandtl equations. Outside this layer,
the fluid can be approximated as ideal and unaffected by viscosity, as the influence of viscosity on the
flow is minimal. In this region, the motion of the fluid is governed by the Euler equations.

The rigorous justification of Prandtl’s boundary layer theory is both theoretically and practically
significant but remains a significant challenge. The primary difficulties stem from two main aspects:
the well-posedness of the Prandtl equations and the vanishing viscosity limit issue itself. Although
numerous intriguing results have been obtained regarding the well-posedness of the Prandtl equations,
as referenced in [3–11] and further citations, the meticulous mathematical verification of the vanishing
viscosity limit remains limited to certain specific scenarios. Some notable examples include the works
referenced in [12–16].

Studying the vanishing viscosity limit for solutions of the NS equations in the energy space is a
pivotal approach, pioneered by Kato. In his work [1], Kato introduced the concept of an artificial
boundary layer to investigate the behavior of incompressible viscous flows with a no-slip boundary
condition as viscosity diminishes. His research findings uncovered that, under specific conditions of
energy dissipation within a boundary region, the width of which scales with viscosity, the viscous flow
can be accurately approximated by an inviscid flow in the energy space.

Since Kato’s initial work, this result has undergone significant improvement. Wang, in [17], relaxed
Kato’s energy dissipation conditions, allowing for the dissipation to be captured solely through tangential
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derivatives of the tangential or normal velocity components. This relaxation came at the cost of a slight
increase in the size of the boundary region considered.

In another notable study, Kelliher [18] proposed an alternative approach, replacing Kato’s energy
condition with one based on the vorticity of the flow. This vorticity-based condition provided a different
perspective on the vanishing viscosity limit.

More recently, Wang et al. [19] extended the investigation to the Navier boundary conditions, which
encompass the non-slip boundary condition as a special case. Their work explored the vanishing
viscosity limit for the incompressible NS equations and derived several Kato-type conditions that
guarantee the limit holds in the energy space. These conditions provide a deeper understanding of the
behavior of viscous flows as they approach the inviscid limit.

In this paper, we delve into the vanishing viscosity limit for solutions of the nonhomogeneous
incompressible NS equations (1.1) within the context of the energy space. Although extensive research
has been conducted on the nonhomogeneous incompressible NS equations (1.1), as exemplified by
the works in [20–27] and their associated references, there is a notable dearth of studies exploring the
vanishing viscosity limit problem for (1.1) in a domain with boundaries. Previously, the vanishing
viscosity limit for the nonhomogeneous NS system with Navier friction boundary conditions was
investigated in [28], where the influence of the boundary layer was significantly weaker compared to the
case with a non-slip boundary condition. In our present work, we focus on the vanishing viscosity limit
for solutions of the nonhomogeneous incompressible NS equations (1.1) subject to a no-slip boundary
condition. By employing Kato’s innovative approach of constructing an artificial boundary layer, we
derive a sufficient condition for convergence to occur within the energy space. This investigation not
only enhances our understanding of the nonhomogeneous NS equations but also provides valuable
insights for further exploring complex fluid dynamics problems.

The structure of this paper is outlined as follows. We revisit the existence of the weak solutions to the
nonhomogeneous NS equations (1.1) and the strong solution to the nonhomogeneous Euler equations
(1.3) in Section 2, subject to a no-slip boundary condition. Following this, we summarize the main
finding of Theorem 2.1. And then, we give a crucial relative energy inequality in Section 3, which
serves as a fundamental tool in our analysis. Finally, in Section 4, we provide rigorous proof of our
main result.

2. Preliminaries and main result

In the subsequent calculations, we employ the notation o(1) to denote a quantity that converges to 0,
as ε goes to 0. Additionally, O(1) will be used to signify a quantity that is bounded.

For the NS equations, we initially postulate that the lower bounds imposed on µ and η imply that the
tensor product

S(∇u) : ∇u =
µ

2
(∂iu j + ∂ jui)2

constitutes a quadratic form that is strictly positive, relative to (∂iu j)1≤i, j≤2, and there exists a constant
C0 > 0 such that for any u ∈ H1(Ω),∫

Ω

S(∇u) : ∇udx ≥ C0

∫
Ω

|∇u|2dx. (2.1)
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Let us revisit the definition of weak solutions to the nonhomogeneous incompressible NS equations [29]:

Definition 2.1. For a fixed T > 0, we denote (ρ, u) as a weak solution to the systerm (1.1) for the
nonhomogeneous NS equations on [0,T ] with the no-slip boundary condition. This solution is associated
with initial data:

0 < ρ0 ≤ ρ0 ≤ ρ0 < ∞,
√
ρ0u0 ∈ L2(Ω), (2.2)

if:

u ∈ L2([0,T ]; H1
0(Ω)),

√
ρu ∈ Cw([0,T ]; L2(Ω)),

satisfy the systerm (1.1) in the sense of distributions,

0 < ρ0 ≤ ρ ≤ ρ0 < ∞, (2.3)

for (x, t) ∈ Ω × [0,T ] and the energy inequality:

1
2
‖
√
ρu ‖L2(Ω) +ε

∫ τ

0

∫
Ω

S(∇u) : ∇udxdt ≤
1
2
‖
√
ρ0u0 ‖L2(Ω) (2.4)

holds for almost all τ ∈ [0,T ].

Proposition 2.1. For the initial data (ρ0, u0) satisfies (2.2), given any fixed T > 0, there exists a weak
solution, defined in Definition 2.1, to the nonhomogeneous NS equations on the time interval [0,T ].

Additionally, the existence of a strong solution to the problem described by equation (1.2) for the
nonhomogeneous Euler equations has been established in numerous studies:

Proposition 2.2. Given that ρE
0 , u

E
0 ∈ H3(Ω) satisfy the compatibility conditions of the systerm (1.2),

and that 0 < ρE
0 ≤ ρ

E
0 ≤ ρ

E
0 < ∞, it follows that there exists T > 0 and a unique solution (ρE, uE) to (1.2)

on the domain [0,T ] ×Ω that satisfies

0 < ρE ≤ ρE ≤ ρE < ∞

and
uE, ρE ∈ C(0,T ; H3(Ω)),

∂tuE, ∂tρ
E ∈ C(0,T ; H2(Ω)).

The principal result of this paper is summarized as follows:

Theorem 2.1. Consider (ρE, uE) as the strong solution of the Euler equations defined on the time interval
[0,T ] and corresponding to the initial conditions (ρE

0 , u
E
0 ) as specified in Proposition 2.2. Additionally,

let (ρε , uε) represent a weak solution of the nonhomogeneous NS equations on the same time interval
[0,T ] with initial conditions (ρε0, u

ε
0) that fulfill the conditions stated in (2.2) for every value of ε within

the range (0, 1), as outlined in Proposition 2.1. If

‖ ρε0 − ρ
E
0 ‖L2(Ω) +‖uε0 − uE

0 ‖L2(Ω) = o(1), (2.5)
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we have
sup

t∈(0,T )

(
‖ ρε − ρE ‖L2(Ω) +‖uε − uE‖L2(Ω)

)
= o(1),

if the subsequent condition is met:

ε ‖ ∂τuεn ‖
2
L2([0,T ];L2(Ωδ))

→ 0, ‖ ∇ρε ‖L∞([0,T ]×Ωδ)= O(1),

where uεn represents the normal components of uε , ∂τ represents the tangential derivative, Ωδ := {x ∈
Ω|dist(x, ∂Ω) < δ}, and under the condition that δ approaches 0 as ε approaches 0, with the relationship
ε = o(δ).

3. Relative energy inequality

We define the relative energyD([ρ, u]|[U]) of (ρ, u) with respect to U as follows:

D([ρ, u]|[U]) :=
1
2
‖
√
ρ(u − U)‖2L2(Ω)dx.

Furthermore, we will employ the relative energy inequality provided in [29].

Proposition 3.1. Consider (ρ, u) as a weak solution of the nonhomogeneous NS equations defined on
the interval [0,T ] corresponding to the initial data (ρ0, u0). For any smooth function U that fulfills
U |∂Ω = 0, the following relative energy inequality holds:

D([ρ, u]|[U])(τ) + ε

∫ τ

0

∫
Ω

S(∇u) : ∇udxdt ≤ D0 +L(ρ, u,U)

for almost all τ ∈ (0,T ), here
D0 = D([ρ0, u0]|[U0]), (3.1)

with U0 is the initial data of U, and

L(ρ, u,U) :=
∫ τ

0

∫
Ω

ρ (∂tU + (u · ∇)U) · (U − u)dxdt + ε

∫ τ

0

∫
Ω

S(∇u) : ∇Udxdt.

In the following, we give a simple proof of this Proposition.

Proof. Multiplying (1.1)3 to U and integrating over [0,T ] ×Ω, we obtain∫
Ω

ρu · Udx =

∫
Ω

ρ0u0 · U0dx (3.2)

+

∫ τ

0

∫
Ω

(
ρu · ∂tU + (ρu ⊗ u) : ∇U − εS(∇u) : ∇U

)
dxdt.

Similarly, multiplying (1.1)2 by 1
2 |U |

2 and integrating over [0,T ] ×Ω, we obtain∫
Ω

1
2
ρ|U |2dx =

∫
Ω

1
2
ρ0|U0|

2dx +

∫ τ

0

∫
Ω

(
ρU · ∂tU + ρu · ∇U · U

)
dxdt. (3.3)

Summing up (2.4), (3.2) and (3.3), we have

D([ρ, u]|[U])(τ) + ε

∫ τ

0

∫
Ω

S(∇u) : ∇udxdt

≤ D0 +

∫ τ

0

∫
Ω

ρ (∂tU + (u · ∇)U) · (U − u)dxdt + ε

∫ τ

0

∫
Ω

S(∇u) : ∇Udxdt
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4. Proof of the main result

In this section, we aim to prove Theorem 2.1.
Initially, we introduce a Kato-type “fake” boundary layer. Consider uE = (uE

τ , u
E
n )T as a smooth

solution of equation (1.2), as described in Proposition 2.2. Define

v = (vτ, vn)T :=
(
uE
τ (t, xτ, 0) f

( xn

δ

)
, − ∂τuE

τ (t, xτ, 0)
∫ xn

0
f
( s
δ

)
ds

)T

, (4.1)

and f satisfies

f ∈ C∞[0,∞), f (0) = 1, supp f ⊂ [0, 1),∫ 1

0
f (s)ds = 0, ‖ f ‖L∞ < +∞, ‖ f ′‖L∞ < +∞. (4.2)

We can obtain that:

vn|∂Ω = 0, div v = 0, (4.3)

sup
t∈(0,T ),x∈Ω

‖vτ,
1
δ

vn, ∂tv, ∂τvτ, δ∂nvτ‖ = O(1),

here, vn designates the component of v that lies in the normal direction, whereas vτ characterizes its
tangential component. Correspondingly, ∂n and ∂τ are symbols that signify the normal and tangential
derivatives, respectively. For simplicity and convenience, we omit the subscript ε.

We have the following estimate.
ρ0 ≤ ρ ≤ ρ0, (4.4)

sup
t∈(0,T )

‖
√
ρu ‖2L2(Ω) +ε

∫ τ

0

∫
Ω

|∇u|2dxdt ≤ O(1). (4.5)

Let U = uE − v. By using the no-slip boundary condition of U, we obtain∫
Ω

1
2
ρ|u − U |2dx + ε

∫ τ

0

∫
Ω

S(∇u) : ∇udxdt ≤ E0 +L(ρ, u,U) (4.6)

with

L(ρ, u,U)

=

∫ τ

0

∫
Ω

ρ
(
(u · ∇)uE

)
· wdxdt +

∫ τ

0

∫
Ω

ρ (∂tU − (u · ∇)v) · wdxdt

+ ε

∫ τ

0

∫
Ω

S(∇u) : ∇Udxdt =

3∑
k=1

Lk,

Here w = u − U, we will calculate every Lk(1 ≤ k ≤ 3).
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i) For L1, by using (4.3) and (4.5) , one can obtain

L1 =

∫ τ

0

∫
Ω

ρ
(
(u · ∇)uE

)
· wdxdt

=

∫ τ

0

∫
Ω

ρ
(
(w · ∇)uE

)
· wdxdt +

∫ τ

0

∫
Ω

ρ
(
(U · ∇)uE

)
· wdxdt

≤ C
∫ τ

0

∫
Ω

ρ|w|2dxdt +

∫ τ

0

∫
Ω

ρ
(
(uE · ∇)uE

)
· wdxdt

−

∫ τ

0

∫
Ω

ρ
(
(v · ∇)uE

)
· wdxdt

≤ C
∫ τ

0

∫
Ω

ρ|w|2dxdt +

∫ τ

0

∫
Ω

ρ
(
(uE · ∇)uE

)
· wdxdt + o(1).

ii) Decompose L2 into

L2 =

∫ τ

0

∫
Ω

ρ∂tuE · wdxdt −
∫ τ

0

∫
Ω

ρ∂tv · wdxdt −
∫ τ

0

∫
Ω

ρ(u · ∇)v · wdxdt. (4.7)

The second term can be estimated by

−

∫ τ

0

∫
Ω

ρ∂tv · wdxdt ≤C
∫ τ

0

∫
Ω

ρ|w|2dxdt + C
∫ τ

0

∫
Ω

ρ|∂tv|2dxdt

≤C
∫ τ

0

∫
Ω

|w|2dxdt + o(1).

For the first term, notice that ρE∂tuE + ρE(uE · ∇)uE + ∇p = 0, we have

∫ τ

0

∫
Ω

ρ∂tuE · wdxdt +

∫ τ

0

∫
Ω

ρ
(
(uE · ∇)uE

)
· wdxdt

=

∫ τ

0

∫
Ω

(
ρ − ρE

) (
∂tuE + (uE · ∇)uE

)
· wdxdt

≤C
∫ τ

0

∫
Ω

|w|2dxdt + C
∫ τ

0

∫
Ω

(
ρ − ρE

)2
dxdt.

Next, we proceed to analyze the third term of (4.7). For the sake of simplicity, we initially consider
the case of a flat boundary. In general, when dealing with a smooth boundary, we can get a flat boundary
by applying localization techniques to a curved one. Maintaining generality throughout, we assume that
the domain is situated in the upper half-plane, specifically Ω = {(x1, x2)|x1 ∈ R, x2 > 0}, with {x2 = 0}
representing the boundary.

Notice that

ρ(u · ∇)v · w (4.8)

=
(
ρu j∂ jviwi − ρu2∂2v1w1

)
+ ρu2∂2v1w1

= T1 + T2.
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By using (4.3), (4.5), and the Hölder inequality, we have∣∣∣∣∣∫ τ

0

∫
Ω

T1dxdt
∣∣∣∣∣ ≤ ∣∣∣∣∣∫ τ

0

∫
Ω

ρw jwi∂ jvidxdt
∣∣∣∣∣ +

∣∣∣∣∣∫ τ

0

∫
Ω

ρU jwi∂ jvidxdt
∣∣∣∣∣

≤ C
∫ τ

0

∫
Ω

ρ|w|2dxdt + C
∫ τ

0

∫
Ω

ρ|U j∂ jvi|
2dxdt

≤ C
∫ τ

0

∫
Ω

|w|2dxdt + o(1), (4.9)

for (i, j) , (1, 2).
Now we will deal with the other term given in (4.8). By using ∂tρ + div (ρu) = 0, we have,∫

Ω

T2dx =

∫
Ω

w1∂1(ρu1)v1dx −
∫

Ω

ρ∂2w1u2v1dx +

∫
Ω

w1∂tρv1dx (4.10)

=T21 + T22 + T23.

Using ∂tρ + ∇ρ · u = 0, the estimate of T23 is as follows.

T23 = −

∫
Ω

w1∇ρuv1dx = −

∫
Ω

w1∇ρwv1dx −
∫

Ω

w1∇ρUv1dx (4.11)

≤ ‖∇ρ‖L∞(Ωδ)

∫
Ω

|w|2dx + δ
1
2 ‖∇ρ‖L∞(Ωδ)

(∫
Ω

|w|2dx
) 1

2

≤ C‖∇ρ‖L∞(Ωδ)

∫
Ω

|w|2dx + Cδ‖∇ρ‖L∞(Ωδ).

The estimate for T21 is as follows.

T21 =

∫
Ω

w1∂1(ρu1)v1dx (4.12)

=

∫
Ω

∂1w1v1ρw1dx +

∫
Ω

∂1U1v1ρw1dx +

∫
Ω

v1w1∂1ρu1dx

≤
1
2

∫
Ω

ρv1∂1w2
1dx + Cδ

1
2 ‖w‖L2(Ω) + C‖∇ρ‖L∞(Ωδ)

∫
Ω

|w|2dx + Cδ‖∇ρ‖L∞(Ωδ)

≤ −
1
2

∫
Ω

∂1ρv1w2
1dx −

1
2

∫
Ω

ρ∂1v1w2
1dx + Cδ

1
2 ‖w‖L2(Ω)

+ C‖∇ρ‖L∞(Ωδ)

∫
Ω

|w|2dx + Cδ‖∇ρ‖L∞(Ωδ)

≤ C
(
1 + |∇ρ‖L∞(Ωδ)

) ∫
Ω

|w|2dx + Cδ‖∇ρ‖L∞(Ωδ) + o(1).

The estimate of T22 will use the following function v̂:

v̂ :=
∫ δ

x2

v2
1(t, x1, s)ds,
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which satisfies,
sup

t∈(0,T ),x∈Ω
‖v̂, ∂1v̂‖ = Cδ.

For the term T22, since the divergence is free of u, using integration by parts, one has

T22 ≤ ‖∇w‖L2(Ω)

(∫
Ω

u2
2v2

1dx
) 1

2

= ‖∇w‖L2(Ω)

(
−

∫
Ω

u2
2∂2v̂dx

) 1
2

(4.13)

= ‖∇w‖L2(Ω)

(
−2

∫
Ω

u2∂1u1v̂dx
) 1

2

= ‖∇w‖L2(Ω)

(
2
∫

Ω

∂1u2u1v̂dx + 2
∫

Ω

u2u1∂1v̂dx
) 1

2

.

Using the Poincaré inequality, we obtain

T22 ≤ C‖∇w‖L2(Ω)

(
δ‖∂1u2‖L2(Ω)‖u1‖L2(Ω) + δ‖u2‖L2(Ω)‖u1‖L2(Ω)

) 1
2 (4.14)

≤ C‖∇w‖L2(Ω)

(
δ2‖∂1u2‖L2(Ω)‖∇u‖L2(Ω) + δ3‖∇u‖2L2(Ω)

) 1
2

≤ Cδ‖∇w‖L2(Ω)‖∂1u2‖
1
2
L2(Ω)‖∇u‖

1
2
L2(Ω) + Cδ

3
2 ‖∇w‖L2(Ω)‖∇u‖L2(Ω).

For the first term, by using the Young inequality, we have:

δ‖∇w‖L2(Ω)‖∂1u2‖
1
2
L2(Ω)‖∇u‖

1
2
L2(Ω) (4.15)

≤
ε

16
‖∇w‖2L2(Ω) +

ε

16
‖∇u‖2L2(Ω) + Cδ4ε−3‖∂1u2‖

2
L2(Ω).

For the second term, by using the Young inequality, we have

δ
3
2 ‖∇w‖L2(Ω)‖∇u‖L2(Ω) ≤Cδ

3
2
(
‖∇u‖L2(Ω) + ‖∇U‖L2(Ω)

)
‖∇u‖L2(Ω) (4.16)

≤Cδ
3
2 ‖∇u‖2L2(Ω) + Cδ‖∇u‖L2(Ω)

≤Cδ
3
2 ‖∇u‖2L2(Ω) + Cδ

1
2 .

Combining (4.14)-(4.16) with (4.14), we obtain

T22 ≤
ε

16
‖∇w‖2L2(Ω) + C

(
ε

16
+ δ

3
2

)
‖∇u‖2L2(Ω)

+ Cδ4ε−3‖∂1u2‖
2
L2(Ω) + Cδ

1
2 . (4.17)

Plugging (4.12), (4.17), and (4.11) into (4.10), we obtain∫ τ

0

∫
Ω

T2dxdt (4.18)

≤C
(
1 + ‖∇ρ‖L∞([0,T ]×Ωδ)

) ∫ τ

0

∫
Ω

|w|2dxdt + Cδ‖∇ρ‖L∞([0,T ]×Ωδ) + C
ε

δ
+ o(1)
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+ Cδ4ε−3
∫ τ

0

∫
Ω

|∂1u2|
2dxdt + C

(
ε

4
+ δ

3
2

) ∫ τ

0

∫
Ω

|∇u|2dxdt,

where we have used

ε

∫ τ

0

∫
Ω

|∇w|2dxdt (4.19)

≤ε

∫ τ

0

∫
Ω

|∇u|2dxdt + ε

∫ τ

0

∫
Ω

|∇v|2dxdt + ε

∫ τ

0

∫
Ω

|∇uE |2dxdt

≤ε

∫ τ

0

∫
Ω

|∇u|2dxdt + C
ε

δ
+ Cε.

iii) For L3, we have

L3 ≤ ε

∫ τ

0

∫
Ω

S(∇u) : ∇uEdxdt + ε

∫ τ

0

∫
Ω

S(∇u) : ∇vdxdt

≤
ε

8

∫ τ

0

∫
Ω

|∇u|2dxdt + Cε +
ε

8

∫ τ

0

∫
Ω

|∇u|2dxdt + C
ε

δ

=
ε

4

∫ τ

0

∫
Ω

|∇u|2dxdt + C
ε

δ
+ Cε.

Substituting the estimates of R1,R2 and R3 into (4.6) and noticing that

1
2
‖ ρ − ρE ‖L2(Ω) ≤

∣∣∣∣∣∫ τ

0

∫
Ω

∇ρE
(
ρ − ρE

) (
u − uE

)
dxdt

∣∣∣∣∣
≤ C

∫ τ

0

∫
Ω

|u − uE |2dxdt + C
∫ τ

0

∫
Ω

(
ρ − ρE

)2
dxdt,

for ε small enough, we have

1
2

∫
Ω

|w(τ)|2dx +

(
ε

2
−Cδ

3
2

) ∫ τ

0

∫
Ω

|∇u|2dxdt +
1
2
‖ ρ − ρE ‖L2(Ω) (4.20)

≤
1
2

∫
Ω

|w(0)|2dx + C
(
1 + ‖∇ρ‖L∞([0,T ]×Ωδ)

) ∫ τ

0

∫
Ω

|w|2dxdt

+ Cδ4ε−3
∫ τ

0

∫
Ω

|∂τun|
2dxdt + C

∫ τ

0

∫
Ω

(
ρ − ρE

)2
dxdt

+ C
ε

δ
+ Cδ‖∇ρ‖L∞([0,T ]×Ωδ) + o(1).

Taking δ satisfying

ε = o(δ) and δ = o(ε
2
3 ),

one can get that ε
δ
→ 0 as ε → 0.

Thus, from (4.20), we obtain∫
Ω

|w(τ)|2dx+ ‖ ρ − ρE ‖L2(Ω) (4.21)
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≤

∫
Ω

|w(0)|2dx + C
(
1 + ‖∇ρ‖L∞([0,T ]×Ωδ)

) ∫ τ

0

∫
Ω

|w|2dxdt

+ C
∫ τ

0

∫
Ω

(
ρ − ρE

)2
dxdt + Cδ4ε−3

∫ τ

0

∫
Ω

|∂τun|
2dx + C

ε

δ
+ o(1),

when ε is small.
Using the Gronwall inequality, we have∫

Ω

|w(τ)|2dx+ ‖ ρ − ρE ‖L2(Ω) (4.22)

≤ Cδ4ε−3
∫ τ

0

∫
Ω

|∂τun|
2dx + C

ε

δ
+ o(1),

If we choose,

δ−1 = ε−1 max
((
ε‖∂τun‖

2
L2((0,T )×Ω)

) 1
5
, ε

1
4

)
=: ε−1Cε,δ,

it is satisfied that
lim
ε→0

ε

δ
= lim

ε→0
Cε,δ = 0,

lim
ε→0

δ

ε
2
3

= lim
ε→0

ε
1
3 C−1

ε,δ ≤ lim
ε→0

ε
1

12 = 0,

lim
ε→0

δ4ε−3
∫ τ

0

∫
Ω

|∂τun|
2 = lim

ε→0
ε‖∂τun‖

2
L2([0,T ]×Ω)C

−4
ε,δ ≤ lim

ε→0

(
ε‖∂τun‖

2
L2((0,T )×Ω)

) 1
5

= 0.

That is
ε = o(δ), δ = o(ε

2
3 )

and

Cδ4ε−3
∫ τ

0

∫
Ω

|∂τun|
2dx + C

ε

δ
= o(1).

We can conclude that when

ε‖∂τun‖
2
L2([0,T ]×Ω) → 0, ‖∇ρ‖L∞([0,T ]×Ω) = O(1) as ε → 0,

then

sup
t∈[0,T ]

∫
Ω

∣∣∣u − uE
∣∣∣2 dx + sup

t∈[0,T ]
‖ ρ − ρE ‖L2(Ω)→ 0 as ε → 0.

Thus, we obtain the assertion given in Theorem 2.1.
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