Our main objective of this paper is to study the singular $ p $-Monge-Ampère problems: equations and systems of equations. New multiplicity results of nontrivial $ p $-convex radial solutions to a single equation involving $ p $-Monge-Ampère operator are first analyzed. Then, some new criteria of existence, nonexistence and multiplicity for nontrivial $ p $-convex radial solutions for a singular system of $ p $-Monge-Ampère equation are also established.
Citation: Meiqiang Feng. Nontrivial $ p $-convex solutions to singular $ p $-Monge-Ampère problems: Existence, Multiplicity and Nonexistence[J]. Communications in Analysis and Mechanics, 2024, 16(1): 71-93. doi: 10.3934/cam.2024004
Our main objective of this paper is to study the singular $ p $-Monge-Ampère problems: equations and systems of equations. New multiplicity results of nontrivial $ p $-convex radial solutions to a single equation involving $ p $-Monge-Ampère operator are first analyzed. Then, some new criteria of existence, nonexistence and multiplicity for nontrivial $ p $-convex radial solutions for a singular system of $ p $-Monge-Ampère equation are also established.
[1] | N. Trudinger, X. Wang, Hessian measures. II, Ann. of Math., 150 (1999), 579–604. https://doi.org/10.2307/121089 |
[2] | Z. Guo, J.R.L. Webb, Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large, Proc. Roy. Soc. Edinburgh, 124 (1994), 189–198. https://doi.org/10.1017/S0308210500029280 doi: 10.1017/S0308210500029280 |
[3] | Y. Du, Z. Guo, Boundary blow-up solutions and the applications in quasilinear elliptic equations, J. Anal. Math., 89 (2003), 277–302. https://doi.org/10.1007/BF02893084 doi: 10.1007/BF02893084 |
[4] | J. García-Melián, Large solutions for equations involving the $p$-Laplacian and singular weights, Z. Angew. Math. Phys., 60 (2009), 594–607. https://doi.org/10.1007/s00033-008-7141-z doi: 10.1007/s00033-008-7141-z |
[5] | F. Gladiali, G. Porru, Estimates for explosive solutions to $p$-Laplace equations, Progress in Partial Differential Equations (Pont-á-Mousson 1997), Vol. 1, Pitman Res. Notes Math. Series, Longman 383 (1998), 117–127. |
[6] | A. Mohammed, Boundary asymptotic and uniqueness of solutions to the $p$-Laplacian with infinite boundary values, J. Math. Anal. Appl., 325 (2007), 480–489. https://doi.org/10.1016/j.jmaa.2006.02.008 doi: 10.1016/j.jmaa.2006.02.008 |
[7] | L. Wei, M. Wang, Existence of large solutions of a class of quasilinear elliptic equations with singular boundary, Acta Math. Hung., 129 (2010), 81–95. https://doi.org/10.1007/s10474-010-9230-7 doi: 10.1007/s10474-010-9230-7 |
[8] | M. Karls, A. Mohammed, Solutions of $p$-Laplace equations with infinite boundary values: the case of non-autonomous and non-monotone nonlinearities, Proc. Edinburgh Math. Soc., 59 (2016), 959–987. https://doi.org/10.1017/S0013091515000516 doi: 10.1017/S0013091515000516 |
[9] | Z. Zhang, Boundary behavior of large solutions to $p$-Laplacian elliptic equations, Nonlinear Anal.: Real World Appl., 33 (2017), 40–57. https://doi.org/10.1016/j.nonrwa.2016.05.008 doi: 10.1016/j.nonrwa.2016.05.008 |
[10] | Y. Chen, M. Wang, Boundary blow-up solutions for $p$-Laplacian elliptic equations of logistic typed, Proc. Roy. Soc. Edinburgh Sect. A: Math., 142 (2012), 691–714. https://doi.org/10.1017/S0308210511000308 doi: 10.1017/S0308210511000308 |
[11] | J. Su, Z. Liu, Nontrivial solutions of perturbed of $p$-Laplacian on $\mathbb{R}^{N}$, Math. Nachr., 248–249 (2003), 190–199. https://doi.org/10.1002/mana.200310014 doi: 10.1002/mana.200310014 |
[12] | Y. Zhang, M. Feng, A coupled $p$-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior, Electron. Res. Arch., 28 (2020), 1419–1438. https://doi.org/10.3934/era.2020075 doi: 10.3934/era.2020075 |
[13] | R. Shivaji, I. Sim, B. Son, A uniqueness result for a semipositone $p$-Laplacian problem on the exterior of a ball, J. Math. Anal. Appl., 445 (2017), 459–475. https://doi.org/10.1016/j.jmaa.2016.07.029 doi: 10.1016/j.jmaa.2016.07.029 |
[14] | K.D. Chu, D.D. Hai, R. Shivaji, Uniqueness of positive radial solutions for infinite semipositone $p$-Laplacian problems in exterior domains, J. Math. Anal. Appl., 472 (2019), 510–525. https://doi.org/10.1016/j.jmaa.2018.11.037 doi: 10.1016/j.jmaa.2018.11.037 |
[15] | Z. Zhang, S. Li, On sign-changing andmultiple solutions of the $p$-Laplacian, J. Funct. Anal., 197 (2003), 447–468. https://doi.org/10.1016/S0022-1236(02)00103-9 doi: 10.1016/S0022-1236(02)00103-9 |
[16] | N. Papageorgiou, Double phase problems: a survey of some recent results, Opuscula Math., 42 (2022), 257–278. https://doi.org/10.7494/OpMath.2022.42.2.257 doi: 10.7494/OpMath.2022.42.2.257 |
[17] | D.D. Hai, R. Shivaji, Existence and uniqueness for a class of quasilinear elliptic boundary value problems, J. Differential Equations, 193 (2003), 500–510. https://doi.org/10.1016/S0022-0396(03)00028-7 doi: 10.1016/S0022-0396(03)00028-7 |
[18] | M. Feng, Y. Zhang, Positive solutions of singular multiparameter $p$-Laplacian elliptic systems, Discrete Contin. Dyn. Syst. Ser. B., 27 (2022), 1121–1147. https://doi.org/10.3934/dcdsb.2021083 doi: 10.3934/dcdsb.2021083 |
[19] | K. Lan, Z. Zhang, Nonzero positive weak solutions of systems of $p$-Laplace equations, J. Math. Anal. Appl., 394 (2012), 581–591. https://doi.org/10.1016/j.jmaa.2012.04.061 doi: 10.1016/j.jmaa.2012.04.061 |
[20] | C. Ju, G. Bisci, B. Zhang, On sequences of homoclinic solutions for fractional discrete $p$-Laplacian equations, Commun. Anal. Mecha., 15 (2023), 586–597. https://doi.org/10.3934/cam.2023029 doi: 10.3934/cam.2023029 |
[21] | H. He, M. Ousbika, Z, Allali, J. Zuo, Non-trivial solutions for a partial discrete Dirichlet nonlinear problem with $p$-Laplacian, Commun. Anal. Mecha., 15 (2023), 598–610. https://doi.org/10.3934/cam.2023030 |
[22] | J. Ji, F. Jiang, B. Dong, On the solutions to weakly coupled system of $k_i$-Hessian equations, J. Math. Anal. Appl., 513 (2022), 126217. https://doi.org/10.1016/j.jmaa.2022.126217 doi: 10.1016/j.jmaa.2022.126217 |
[23] | A. Figalli, G. Loeper, $C^1$ regularity of solutions of the Monge-Ampère equation for optimal transport in dimension two, Calc. Var., 35 (2009), 537–550. https://doi.org/10.1007/s00526-009-0222-9 doi: 10.1007/s00526-009-0222-9 |
[24] | B. Guan, H. Jian, The Monge-Ampère equation with infinite boundary value, Pacific J. Math., 216 (2004), 77–94. https://doi.org/10.2140/pjm.2004.216.77 |
[25] | A. Mohammed, On the existence of solutions to the Monge-Ampère equation with infinite boundary values, Proc. Amer. Math. Soc., 135 (2007), 141–149. https://doi.org/10.1090/S0002-9939-06-08623-0 doi: 10.1090/S0002-9939-06-08623-0 |
[26] | F. Jiang, N.S. Trudinger, X. Yang, On the Dirichlet problem for Monge-Ampère type equations, Calc. Var., 49 (2014), 1223–1236. https://doi.org/10.1007/s00526-013-0619-3 doi: 10.1007/s00526-013-0619-3 |
[27] | N.S. Trudinger, X. Wang, Boundary regularity for the Monge-Ampère and affine maximal surface equations, Ann. Math., 167 (2008), 993–1028. https://doi.org/10.4007/annals.2008.167.993 doi: 10.4007/annals.2008.167.993 |
[28] | X. Zhang, M. Feng, Blow-up solutions to the Monge-Ampère equation with a gradient term: sharp conditions for the existence and asymptotic estimates, Calc. Var., 61 (2022), 208. https://doi.org/10.1007/s00526-022-02315-3 doi: 10.1007/s00526-022-02315-3 |
[29] | X. Zhang, Y. Du, Sharp conditions for the existence of boundary blow-up solutions to the Monge-Ampère equation, Calc. Var., 57 (2018), 30. https://doi.org/10.1007/s00526-018-1312-3 doi: 10.1007/s00526-018-1312-3 |
[30] | A. Mohammed, G. Porru, On Monge-Ampère equations with nonlinear gradient terms-infinite boundary value problems, J. Differential Equations, 300 (2021), 426–457. https://doi.org/10.1016/j.jde.2021.07.034 doi: 10.1016/j.jde.2021.07.034 |
[31] | Z. Zhang, K. Wang, Existence and non-existence of solutions for a class of Monge-Ampère equations, J. Differential Equations, 246 (2009), 2849–2875. https://doi.org/10.1016/j.jde.2009.01.004 doi: 10.1016/j.jde.2009.01.004 |
[32] | Z. Zhang, Boundary behavior of large solutions to the Monge-Ampère equations with weights, J. Differential Equations, 259 (2015), 2080–2100. https://doi.org/10.1016/j.jde.2015.03.040 doi: 10.1016/j.jde.2015.03.040 |
[33] | Z. Zhang, Large solutions to the Monge-Ampère equations with nonlinear gradient terms: existence and boundary behavior, J. Differential Equations, 264 (2018), 263–296. https://doi.org/10.1016/j.jde.2017.09.010 doi: 10.1016/j.jde.2017.09.010 |
[34] | A. Mohammed, On the existence of solutions to the Monge-Ampère equation with infinite boundary values, Proc. Amer. Math. Soc., 135 (2007), 141–149. https://doi.org/10.1090/S0002-9939-06-08623-0 |
[35] | H. Jian, X. Wang, Generalized Liouville theorem for viscosity solutions to a singular Monge-Ampère equation, Adv. Nonlinear Anal., 12 (2023), 20220284. https://doi.org/10.1515/anona-2022-0284 doi: 10.1515/anona-2022-0284 |
[36] | H. Wan, Y. Shi, W. Liu, Refined second boundary behavior of the unique strictly convex solution to a singular Monge-Ampère equation, Adv. Nonlinear Anal., 11 (2022), 321–356. https://doi.org/10.1515/anona-2022-0199 doi: 10.1515/anona-2022-0199 |
[37] | M. Feng, A class of singular $k_i$-Hessian systems, Topol. Method. Nonl. An., 62 (2023), 341–365. https://doi.org/10.12775/TMNA.2022.072 doi: 10.12775/TMNA.2022.072 |
[38] | H. Xu, Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials, Commun. Anal. Mecha., 15 (2023), 132–161. https://doi.org/10.3934/cam.2023008 doi: 10.3934/cam.2023008 |
[39] | W. Lian, L. Wang, R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differential Equations, 269 (2020), 4914–4959. https://doi.org/10.1016/j.jde.2020.03.047 doi: 10.1016/j.jde.2020.03.047 |
[40] | S.Y. Cheng, S.T. Yau, On the regularity of the Monge-Ampère equation $\text{det}((\partial ^2u/\partial x_{i}\partial x_{j})) = F(x, u)$, Comm. Pure Appl. Math., 30 (1977), 41–68. https://doi.org/10.1002/cpa.3160300104 doi: 10.1002/cpa.3160300104 |
[41] | M. Feng, Convex solutions of Monge-Ampère equations and systems: Existence, uniqueness and asymptotic behavior, Adv. Nonlinear Anal., 10 (2021), 371–399. https://doi.org/10.1515/anona-2020-0139 doi: 10.1515/anona-2020-0139 |
[42] | Z. Zhang, Z. Qi, On a power-type coupled system of Monge-Ampère equations, Topol. Method. Nonl. An., 46 (2015), 717–729. https://doi.org/10.12775/TMNA.2015.064 doi: 10.12775/TMNA.2015.064 |
[43] | M. Feng, A class of singular coupled systems of superlinear Monge-Ampère equations, Acta Math. Appl. Sin., 38 (2022), 38,925–942. https://doi.org/10.1007/s10255-022-1024-5 doi: 10.1007/s10255-022-1024-5 |
[44] | M. Feng, Eigenvalue problems for singular $p$-Monge-Ampère equations, J. Math. Anal. Appl., 528 (2023), 127538. https://doi.org/10.1016/j.jmaa.2023.127538 doi: 10.1016/j.jmaa.2023.127538 |
[45] | J. Bao, Q. Feng, Necessary and sufficient conditions on global solvability for the $p$-$k$-Hessian inequalities, Canad. Math. Bull. 65 (2022), 1004–1019. https://doi.org/10.4153/S0008439522000066 |
[46] | H. Amann, Fixed point equations and nonlinear eigenvalue problems in order Banach spaces, SIAM Rev., 18 (1976), 620–709. https://doi.org/10.1137/1018114 doi: 10.1137/1018114 |
[47] | K. Lan, Multiple positive solutions of semilinear differential equations with singularities, J. London Math. Soc., 63 (2001), 690–704. https://doi.org/10.1017/S002461070100206X doi: 10.1017/S002461070100206X |
[48] | M. Feng, X. Zhang, The existence of infinitely many boundary blow-up solutions to the $p$-$k$-Hessian equation, Adv. Nonlinear Stud., 23 (2023), 20220074. https://doi.org/10.1515/ans-2022-0074 doi: 10.1515/ans-2022-0074 |
[49] | S. Kan, X. Zhang, Entire positive$p$-$k$-convex radial solutions to $p$-$k$-Hessian equations and systems, Lett. Math. Phys., 113 (2023), 16. https://doi.org/10.1007/s11005-023-01642-6 doi: 10.1007/s11005-023-01642-6 |
[50] | X. Zhang, Y. Yang, Necessary and sufficient conditions for the existence of entire subsolutions to $p$-$k$-Hessian equations, Nonlinear Anal., 233 (2023), 113299. https://doi.org/10.1016/j.na.2023.113299 doi: 10.1016/j.na.2023.113299 |