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1. Introduction and main results

Discuss the following p-Monge-Ampère equation{
det(D(|Du|p−2Du)) = g(|x|) f (|x|,−u) in B,
u = 0 on ∂B,

(1.1)

and system {
det(D(|Dui|

p−2Dui)) = gi(|x|) fi(|x|,−u1,−u2, . . . ,−un) in B,
ui = 0 on ∂B.

(1.2)

Here p ≥ 2, i ∈ In := {1, 2, · · · , n}, g, gi ∈ C[0, 1) are all singular at 1, B := {y ∈ Rm : |y| < 1}, and
m, n ≥ 2 are integers.

A new operator proposed by Trudinger-Wang in [1] is p-Monge-Ampère operator, which is denoted
by det(D(|Du|p−2Du)). And such operator just is Monge-Ampère operator when p = 2.
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Let M be a m × m real symmetric array, and

σl(µ(M)) =
∑

1≤i1<···<il≤m

µi1 · · · µil

denote the lth elemental symmetric function, where µ1, µ2 . . . , µm are the eigenvalues of M.
If u ∈ Φp(Ω) satisfying (1.1), then u is said to be a p-convex strong solution. Here

Φp(Rm) := {u ∈ W2,qm
loc (Rm) : |Du|p−2Du ∈ C1(Rm), λ(Di(|Du|p−2D ju)) ∈ Γm in Rm},

where 1 < q < p−1
p−2 , and

Γm := {λ ∈ Rm : σl(λ) > 0, l ∈ {1, 2, . . . ,m}}.

Now, we review several excellent conclusions related to p-Monge-Ampère Dirichlet problem (1.1)
and system (1.2).

Results of equations and systems involving p-Laplacian operator:
We refer to the following articles [2–16] for p-Laplacian equations and systems. We need to

specifically mention here that Hai-Shivaji [17] investigated{
−∆pv = λ f (v) in D,
v = 0 on ∂D.

(1.3)

Here p > 1, λ denotes a positive parameter, and D denotes the unit ball in Rn (n ≥ 1). Since a positive
solution of (1.3) in the unit ball is radially symmetric, so the authors resolved the problem of ordinary
differential equation {

(rn−1|v′|p−2v′)′ = −λrn−1 f (v),
v′(0) = 0, v(1) = 0.

(1.4)

The authors mainly used a sub-super solution method to demonstrate the uniqueness and existence of
positive solution for problem (1.4).

Recently, Feng-Zhang [18] employed the eigenvalue theory to discuss the existence of positive
solution for the p-Laplacian elliptic system

−∆pz1 = λ1h1(|x|)zα2 in D,
−∆pz2 = λ2h2(|x|)zβ1 in D,
z1 = z2 = 0 on ∂D.

Here λ1, λ2 , 0 are parameters, α, β > 0, and D denotes the unit ball in Rn (n ≥ 2). The authors
obtained a uniqueness and approximation result by iterations of the solution.

In [19], Lan-Zhang considered the system of p-Laplace equations{
∆pui = fi(x, u1,−u2, . . . ,−un) in Ω,
ui = 0 on ∂Ω,

(1.4)

where i ∈ {1, 2, · · · , n}. The authors obtained new existence results of nonzero positive weak solutions
of (1.4) under some sublinear conditions by employing a well-known theorem of fixed point index on
cones for completely continuous operators. The other recent results concerning p-Laplacian equations
and systems can be found in Ju-Bisci-Zhang [20] and He-Ousbika-Allali-Zuo [21].
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Results of equations and systems involving Monge-Ampère operator:
We observe that large numbers of mathematicians care about the existence of solution of equations

and systems involving Monge-Ampère operator; see [22–37] and the bibliographies. Particularly,
Cheng-Yau [40] considered the following Monge-Ampère problem{

detD2v = v−(n+2) in Ω,
v = 0 on ∂Ω,

(1.5)

where n ≥ 2. Employing the Legendre transform and the approximated method, they derived some
existence results of solution of (1.5).

In [41], Feng investigated {
det D2u = µ f (−u) in Ω,
u = 0 on ∂Ω,

(1.6)

where µ is a positive parameter. He use sharp estimates to verify that (1.6) admits at most one nontrivial
radial convex solution.

On systems involving Monge-Ampère operator, we only find a few results. In particular, Zhang-
Qi [42] considered 

det D2v1 = (−v2)α in Ω,
det D2v2 = (−v1)β in Ω,
v1 < 0, v2 < 0 in Ω,
v1 = v2 = 0 on ∂Ω,

where α and β are two positive numbers. Using the index theory of fixed points on cones, they obtained
several existence, nonexistence and uniqueness results of radial convex solutions when Ω denotes the
unit ball in Rn.

In [41], Feng considered a more general system

det D2v1 = λ1 f1(−v2) in Ω,
det D2v2 = λ2 f2(−v3) in Ω,

...

det D2vn = λn fn(−v1) in Ω,
v1 = v2 = . . . = vn = 0 on ∂Ω,

(1.7)

where λi > 0 (i ∈ {1, 2, . . . , n}) are parameters. He got some new existence and nonexistence results of
(1.7) by means of the eigenvalue theory on cones.

Recently, Feng [43] derived some existence, nonexistence and multiplicity results of nontrivial
radial convex solutions of 

det D2v1 = λh1(|x|) f1(−v2), in Ω,
det D2v2 = λh2(|x|) f2(−v1), in Ω,
v1 = v2 = 0, on ∂Ω

for a certain range of λ > 0.
More recently, in [44], Feng discussed the existence of nontrivial solution of{

det(D(|Dv|p−2Dv)) = λh(|x|) f (|x|,−v) in Ω,
v = 0 on ∂Ω,

(1.8)
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where λ denotes a positive parameter. We also refer to Xu [38] and Lian-Wang-Xu [39] for the related
results of p-Monge-Ampère problems.
Remark 1. There is almost no article except [44] studying p-Monge-Ampère equation. But, in [44],
the author only dealt with the existence of nontrivial solution, not the multiplicity of nontrivial
solutions; and the author only studied single p-Monge-Ampère equation, not system of
p-Monge-Ampère equations.

Inspired by the above, we first search the multiplicity of nontrivial p-convex radial solutions of
(1.1). Our proof makes use of the fixed point index theory on cones, which is completely different
from that used in [41] and [44]. Then we seek existence and multiplicity results of nontrivial solutions
of (1.2) by employing the theory of fixed point on cons when fi (i ∈ In) satisfy some new growth
conditions.

The article will be organized as follows. In next section, we are going to study the existence and
multiplicity of nontrivial p-convex radial solutions of (1.1). In addition, many nontrivial p-convex
radial solutions are also studied. The third part will search nontrivial p-convex radial solution of
system (1.2).

2. Multiple nontrivial radial solutions of (1.1)

Let us seek multiple nontrivial radial solutions of (1.1) in this section. In [45], Bao-Feng pointed
out that one can change (1.1) into r1−n

(
1
n (u′)(p−1)n

)′
= g(r) f (r,−u), 0 < r < 1,

u′(0) = u(1) = 0.
(2.1)

Setting v = −u, then one can rewrite (2.1) as follows: r1−n
(

1
n (−v′)(p−1)n

)′
= g(r) f (r, v), 0 < r < 1,

v′(0) = v(1) = 0.
(2.2)

We make the following suppositions:
(C1) g : [0, 1)→ R+ is continuous, g(t) . 0 on any subinterval of [0, 1), and∫ 1

0
g(t)dt < +∞,

where R+ = [0,+∞);
(C2) f : [0, 1] × R+ → R+ is continuous.

Remark 2. It is not difficult to see that there are some elementary functions that satisfy (C1). For
example

g(r) =
c

π
√

1 − r2
,

where c is a positive real number.
Obviously, g : [0, 1)→ R+ is continuous, and g(t) . 0 on any subinterval of [0, 1).
Next, we verify that g satisfies

∫ 1

0
g(t)dt < +∞.
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In fact, ∫ 1

0
g(r)dr =

∫ 1

0
c

π
√

1−r2
dr

= lim
b→0+

∫ 1−b

0
c

π
√

1−r2
dr

= c
π

lim
b→0+

[arcsin r]1−b
0

= c
π

lim
b→0+

arcsin(1 − b)

= c
2 ,

which indicates that
∫ 1

0
g(t)dt < +∞.

Let J = [0, 1] and E := C[0, 1]. Then E is a real Banach space (RBS for short) with the norm
denoted by

∥x∥ = max
t∈J
|x(t)|.

Lemma 2.1. If (C1) and (C2) holds, then v is a solution of (2.2) when and only when v ∈ E is a solution
of

v(t) =
∫ 1

t

( ∫ τ

0
nsn−1h(s) f (s, v(s))ds

) 1
(p−1)n

dτ, (2.3)

and

min
t∈[ 1

4 ,
3
4 ]

v(t) ≥
1
4
∥v∥. (2.4)

Proof. Similar to the proof of Lemma 2.1 in [44], we can prove that Lemma 2.1 is correct.

Let K ⊂ E be

K = {u ∈ E : v(t) ≥ 0, t ∈ J, min
1
4≤t≤ 3

4

u(t) ≥
1
4
∥u∥}. (2.5)

Define an operator T : K → E as

(Tv)(t) =
∫ 1

t

( ∫ τ

0
nsn−1g(s) f (s, v(s))ds

) 1
(p−1)n

dτ, v ∈ K. (2.6)

When (C1) and (C2) hold, one can verify that T : K → E is compact.
We shall apply the well-known fixed points index theorem to discuss problem (2.2), which can be

found in Amann [46]. In addition, we use i(A, P ∩ Ω, P) to denote the fixed point index over P ∩ Ω
with regard to P in Lemma 2.2.
Lemma 2.2. Let E be a real Banach space. Suppose that P ⊂ E is a cone and Ω ⊂ E is a bounded open
subset. Let A : P ∩ Ω̄ → P be a completely continuous operator, which admits no fixed points on ∂Ω.
Then the following three conclusions are correct:
(1) Suppose that there is a v0 > 0 so that v − Av , tv0, ∀v ∈ P ∩ ∂Ω, t ≥ 0. Then

i(A, P ∩Ω, P) = 0.

(2) Suppose that Av , µv for v ∈ (P ∩ ∂Ω) and µ ≥ 1. Then

i(A, P ∩Ω, P) = 1.
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(3) Suppose that U is open in P so that Ū ⊂ P∩Ω. Then A admits a fixed point in (P∩Ω)\(Ū∩Ω) when
i(A, P ∩ Ω, P) = 1 and i(A,U ∩ P, P) = 0. The same conclusion is also correct when i(A, P ∩ Ω, P) =
0 and i(A,U ∩ P, P) = 1.
Remark 2.1. From Lan-Zhang [19], it is obvious to see that Lemma 2.1 is difficult to be applied
to demonstrate the multiplicity of solutions of (2.2). In the present paper, we will use Lemma 2.2 to
search the multiplicity of nonnegative solutions of (2.2). This needs some new ingredients in our proof.

For ρ > 0, we set

Ωρ =

{
v ∈ K : min

t∈[ 1
4 ,

3
4 ]

v(t) <
1
4
ρ
}
=

{
v ∈ E :

1
4
∥v∥ ≤ min

t∈[ 1
4 ,

3
4 ]

v(t) <
1
4
ρ
}
.

We also set
Kρ = {v ∈ K : ∥v∥ < ρ}.

According to a result of Lemma 2.5 in Lan [47], we can demonstrate that Ωρ is an open set relative
to K and

(1) K 1
4ρ
⊂ Ωρ ⊂ Kρ;

(2) v ∈ ∂Ωρ if and only if min
t∈[ 1

4 ,
3
4 ]

v(t) = 1
4ρ;

(3) if v ∈ ∂Ωρ, then 1
4ρ ≤ v(t) ≤ ρ for t ∈ [ 1

4 ,
3
4 ].

Define
f ρ1

4ρ
= min

{
min

t∈[ 1
4 ,

3
4 ]

f (t, u)
ρ(p−1)n : u ∈

[1
4
ρ, ρ
]}
,

f ρ0 = max
{

max
t∈J

f (t, u)
ρ(p−1)n : u ∈ [0, ρ]

}
,

f∞ = lim
u→∞

sup max
t∈J

f (t, u)
u
, f∞ = lim

u→∞
inf min

t∈J

f (t, u)
u
,

l =
1

nd2
, L =

4pn−1

nd1
,

where

d1 =

∫ 3
4

1
4

g(s)ds, d2 =

∫ 1

0
g(s)ds.

Theorem 2.1. Under conditions (C1) and (C2), if there are ρ1, ρ2, ρ3 ∈ (0,∞) satisfying ρ1 <
1
4ρ2 and

ρ2 < ρ3 so that
(C3) f ρ1

0 < l or f ρ3
0 < l, and

(C4) f ρ2
1
4ρ2
> L,

then (2.2) admits a positive p-convex solution v with

v ∈ Ωρ2\K̄ρ1 or v ∈ Kρ3\Ω̄ρ2 .

Proof. For all v ∈ ∂Ωρ2 , we assume that
v − Tv , θ. (2.7)

Otherwise, then there is v ∈ ∂Ωρ2 so that Tv = v.
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According to (C3), we deduce that

f (t, v) > Lρ(p−1)n
2 , ∀t ∈ [

1
4
,

3
4

], v ∈ [
1
4
ρ2, ρ2]. (2.8)

Setting w(t) ≡ 1, ∀t ∈ J, then w ∈ K with ∥w∥ ≡ 1. We claim

v − Tv , ζw (∀v ∈ ∂Ωρ2 , ζ ≥ 0). (2.9)

In reality, if there are v0 ∈ ∂Ωρ2 and ζ0 ≥ 0 so that v0 − Tv0 = ζ0w. Then (2.7) indicates that ζ0 > 0.
So, for any t ∈ [1

4 ,
3
4 ], we derive from (2.6) and (2.8) that

v0(t) =
∫ 1

t

( ∫ τ
0

nsn−1g(s) f (s, v0(s))ds
) 1

(p−1)n

dτ + ζ0w(s)

≥
∫ 1

3
4

( ∫ 3
4

1
4

nsn−1g(s) f (s, v0(s))ds
) 1

(p−1)n

dτ + ζ0w(s)

>
∫ 1

3
4

( ∫ 3
4

1
4

nsn−1g(s)Lρ(p−1)n
2 ds

) 1
(p−1)n

dτ + ζ0w(s)

≥

[
Ln
(1

4

)n−1
] 1

(p−1)n 1
4ρ2(
∫ 3

4
1
4

g(s))ds)
1

(p−1)n + ζ0w(s)

=

[
Ln
(1

4

)n−1d1

] 1
(p−1)n 1

4ρ2 + ζ0w(s)

= ρ2 + ζ0w(s).

This indicates that ρ2 > ρ2 + ζ0 by the property (3) of Ωρ, which leads to a conflict. So, (2.9) is correct.
Hence it yields by (1) of Lemma 2.2

i(T,Ωρ2 ,K) = 0. (2.10)

Moreover, by the definition of f ρ1
0 and f ρ1

0 < l, we derive

f (t, v) < lρ(p−1)n
1 , ∀t ∈ J, v ∈ [0, ρ1].

Next, we demonstrate that
∀v ∈ ∂Kρ1 , µ ≥ 1⇒ Tv , µv. (2.11)

Actually, if there are v1 ∈ ∂Kρ1 and µ1 ≥ 1 so that Tv1 = µ1v1, then we derive from (2.6) that

µ1v1(t) =
∫ 1

t

( ∫ τ
0

nsn−1g(s) f (s, v1(s))ds
) 1

(p−1)n

dτ

≤
∫ 1

0

( ∫ 1

0
nsn−1g(s) f (s, v1(s))ds

) 1
(p−1)n

dτ

<
∫ 1

0

( ∫ 1

0
nsn−1g(s)lρ(p−1)n

1 ds
) 1

(p−1)n

dτ

≤ (ln)
1

(p−1)nρ1

( ∫ 1

0
g(s)ds

) 1
(p−1)n

≤ (lnd2)
1

(p−1)nρ1

= ρ1, ∀t ∈ J,
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which indicates that µ∥v1∥∞ < ρ1. We so derive that µρ1 < ρ1. This shows that µ < 1, which contradicts
µ ≥ 1. Hence (2.11) is correct. From (2) of Lemma 2.2, we derive

i(T,Kρ1 ,K) = 1. (2.13)

In addition, one can similarly demonstrate

i(T,Kρ3 ,K) = 1. (2.14)

Noticing that ρ1 < γρ2, we have K̄ρ1 ⊂ Kγρ2 ⊂ Ωρ2 . It so follows from (3) of Lemma 2.2 that (2.2)
possesses a positive p-convex solution v satisfying v ∈ Ωρ2 \ K̄ρ1 or v ∈ Kρ3 \ Ω̄ρ2 . So Theorem 2.1 is
correct.

From the proof of Theorem 2.1, one can obtain the following conclusions.
Theorem 2.2. Under conditions (C1) and (C2), if there exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1 <

1
4ρ2 and

ρ2 < ρ3 so that f ρ1
0 < l and f ρ3

0 < l, and (C4) holds, then problem (2.2) has two positive p-convex
solutions v1, v2 with

v1 ∈ Ωρ2\K̄ρ1 , v2 ∈ Kρ3\Ω̄ρ2 .

Corollary 2.1. Under conditions (C1) and (C2), if there are ρ
′

, ρ ∈ (0,∞) with ρ
′

< 1
4ρ so that

f ρ
′

0 < l, f ρ1
4ρ
> L and 0 ≤ f∞ < l, then (2.2) admits two positive p-convex solutions in K.

Proof. We just need to verify that 0 ≤ f∞ < l yields that there exists a ρ3 such that f ρ3
0 < l.

Set η ∈ ( f∞, l). So there is r > η so that

max
t∈J

f (t, v) ≤ ηv, ∀v ∈ [r,+∞)

because of 0 ≤ f∞ < l. Letting

γ = max{max
t∈J

f (t, v) : v ∈ [0, r]} and ρ3 > max
{
γ

l − η
, ρ
}
,

then
max

t∈J
f (t, v) ≤ ηv + γ ≤ ηρ3 + γ < lρ3, ∀v ∈ [0, ρ3].

This indicates that f ρ3
0 < l.

Similarly, one can derive the following result.
Theorem 2.3. Under conditions (C1) and (C2), suppose that there exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1 <

ρ2 < ρ3 so that
(C5) f ρ2

0 < l, f ρ1
1
4ρ1
> L and f ρ3

1
4ρ3
> L,

then (2.2) admits two positive p-convex solutions v1, v2 with

v1 ∈ Ωρ2\K̄ρ1 , v2 ∈ Kρ3\Ω̄ρ2 .

The following conclusion is a special circumstances of Theorem 2.3.
Corollary 2.2. Under conditions (C1) and (C2), suppose that there are ρ

′

, ρ ∈ (0,∞) with ρ
′

< 1
4ρ such

that f ρ0 < l, f ρ
′

1
4ρ
′
> L and L < f∞ ≤ +∞, then (2.2) admits two positive p-convex solutions in K.

Communications in Analysis and Mechanics Volume 16, Issue 1, 71–93.



79

Moreover, one can generalize Theorem 2.2 and Theorem 2.3 to derive many solutions.
Theorem 2.4. Under conditions (C1) and (C2), if there are

{ρi}
2N0
i=1 ⊂ (0,∞) with ρ1 < γρ2 < ρ2 < ρ3 < γρ4 < · · · < ρ2N0

so that
(C6) f ρ2N−1

0 < l, f ρ2N
1
4ρ2N
> L, N ∈ {1, 2, . . . ,N0},

then (2.2) admits 2N0 positive p-convex solutions in K.
Theorem 2.5. Under conditions (C1) and (C2), if there exist

{ρi}
2N0
i=1 ⊂ (0,∞) with ρ1 < γρ2 < ρ2 < ρ3 < γρ4 < · · · < ρ2N0

so that
(C7) f ρ2N−1

0 < l, f ρ2N
1
4ρ2N
> L, N ∈ {1, 2, . . . ,N0},

then (2.2) admits (2N0 − 1) positive p-convex solutions in K.

3. Main results of system (1.2)

In this section, we are gonging to discuss the existence and multiplicity of nontrivial p-convex
solutions of system (1.2). Using a conclusion of Bao-Feng [45], we can change system (1.2) into r1−n

(
1
n (u′i)

(p−1)n
)′
= gi(r) fi(r,−u1,−u2, . . . ,−un), 0 < r < 1,

u′i(0) = 0, ui(1) = 0, i ∈ In.
(3.1)

Letting vi = −ui for i ∈ In, then one can rewrite (3.1) as r1−n
(

1
n (−v′i)

(p−1)n
)′
= gi(r) fi(r, v1, v2, . . . , vn), 0 < r < 1,

v′i(0) = 0, vi(1) = 0, i ∈ In.
(3.2)

For each i ∈ In, we assume that gi and fi gratify
(G) gi : [0, 1)→ R+ is continuous, gi(s) . 0 in any subinterval of [0, 1), and∫ 1

0
gi(s)ds < +∞;

(F) fi : J × Rn
+ → R+ are continuous for i ∈ In, where

J = [0, 1], R+ = [0,+∞), Rn
+ =

n︷                  ︸︸                  ︷
R+ × R+ × · · · × R+ .

Let v(t) = (v1(t), v2(t), . . . , vn(t)). Then v(t) is a positive p-convex solution of system (3.2) iff v(r) is
a solution of

vi(r) =
∫ 1

r

( ∫ t

0
nsn−1hi(s) fi(s, v(s))ds

) 1
(p−1)n

dt, ∀r ∈ J, i ∈ In. (3.3)

Let |·| denote the maximum norm inRn defined by |v| = max{|vi| : i ∈ In},where v = (v1, v2, . . . , vn) ∈
Rn, and set

(Rn
+)J = {v ∈ Rn

+ : |v| ∈ J},
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where J = [l1, l2] if l1, l2 ∈ [0,∞) with l1 ≤ l2 and J = [l1, l2) if l1, l2 ∈ [0,∞] with l1 < l2.
We also let Y = C(J;Rn). Then Y is a RBS of continuous functions from J into Rn with norm

∥v∥ = max{∥vi∥0, i ∈ In}, where ∥ · ∥0 denotes the supremum norm of C[0, 1].
Under conditions (G) and (F), if v is a positive solution of (3.2), then from Lemma 2.1 of Feng [43]

we derive
min
r∈J0

vi(r) ≥
1
4
∥vi∥0, (3.4)

where J0 = [ 1
4 ,

3
4 ].

Hence one can define a cone P in Y as

P = {v = (v1, v2, . . . , vn) ∈ Y : vi(r) ≥ 0, r ∈ J}. (3.5)

Let T = (T1,T2, . . . ,Tn) and (G) and (F) hold. Then we can show that T : P → P is a compact
operator. We understand

Tv = (T1v,T2v, . . . ,Tnv),

where

(Tiv)(r) =
∫ 1

r

( ∫ t

0
nsn−1gi(s) fi(s, v(s))ds

) 1
(p−1)n

dt, i ∈ In. (3.6)

Denote a fixed point equation by
v = T(v), v ∈ P. (3.7)

Our main goal is to look for nonzero fixed points of operator T because (3.2) is equivalent to (3.7).
We will apply a well known fixed point theorem for compact maps to tackle system (3.2), which

can be found in Amann [46]).
Lemma 3.1. Let E be a real Banach space. Suppose that Ω1 and Ω2 are two bounded open sets in
E with θ ∈ Ω1 and Ω̄1 ⊂ Ω2. Suppose that P is a cone in E and operator A : P ∩ (Ω̄2\Ω1) → P is
completely continuous. Let one of the following two conditions

(a) there is a u0 > 0 such that u − Au , tu0,∀u ∈ P ∩ ∂Ω2, t ≥ 0; Au , µu,∀u ∈ P ∩ ∂Ω1, µ ≥ 1,
(b) there is a u0 > 0 such that u − Au , tu0,∀u ∈ P ∩ ∂Ω1, t ≥ 0; Au , µu,∀u ∈ P ∩ ∂Ω2, µ ≥ 1

be satisfied. Then A admits at least one fixed point in P ∩ (Ω2\Ω̄1).
For i ∈ In, let

( fi)∞ = lim sup
|v(p−1)n |→+∞

max
s∈J

fi(s, v)
|v|(p−1)n , ( fi)∞ = lim inf

|v|→+∞
min

s∈J

fi(s, v)
|v|(p−1)n ,

( fi)0 = lim sup
|v|→0+

max
s∈J

fi(s, v)
|v|(p−1)n , ( fi)0 = lim inf

|v|→0+
min

s∈J

fi(s, v)
|v|(p−1)n ,

f∞ = max{( fi)∞, i ∈ In}, f∞ = max{( fi)∞, i ∈ In},

f 0 = max{( fi)0, i ∈ In}, f0 = max{( fi)0, i ∈ In},

(Fi)∞ := lim
|v|→+∞

fi(s, v) uniformly for s ∈ J,

and
Dni = ndi, Dni0 =

[
(
1
4

)pn−1ndi0
]
,
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where

di =

∫ 1

0
gi(s)ds, di0 =

∫ 3
4

1
4

gi0(s)ds.

Theorem 3.1. Under conditions (G) and (F), if in addition there exists i0 ∈ In such that

Dni f∞ < 1 < Dni0( fi0)0,

then we derive:
(i) (3.2) has a positive p-convex solution v = (v1, v2, . . . , vn); and then
(ii) (1.2) has a nontrivial p-convex radial solution u = (u1, u2, . . . , un), where

ui(|x|) = −vi(r) for i ∈ In and r ∈ J.

Proof. We assume that there is l1 > 0 so that

v − Tv , θ, ∀v ∈ P, 0 < ∥v∥ ≤ l1. (3.8)

If not, then there is v ∈ Pl1 such that
Tv = v.

On the one hand, it yields from the definition of ( fi0)0 and Di0( fi0)0 > 1 that there are ε1 > 0 and
l2 > 0 such that

fi0(s, v) ≥ (( fi0)0 − ε1)|v|(p−1)n, ∀s ∈ J, v ∈ ∂Pl2 , (3.9)

where ε1 gratifies that
Dni0(( fi0)0 − ε1) ≥ 1.

For i ∈ In, letting w = {w1,w2, . . . ,wn} with wi(s) ≡ 1 for s ∈ J, then w ∈ P with ∥wi∥0 ≡ 1. Next,
we demonstrate

v − Tv , ζw (∀v ∈ ∂Pl, ζ ≥ 0), (3.10)

where
0 < l < min{l1, l2}.

In reality, if there are v ∈ ∂Pl and ζ ≥ 0 so that v − Tv = ζw. Then (3.8) shows that ζ > 0 and

vi0 = ζwi0 + Ti0v ≥ ζwi0 .

Let
ζ∗ = sup{ζ |vi0 ≥ ζwi0}. (3.11)

Then
ζ∗ = ζ∗∥wi0∥0 ≤ ∥vi0∥0 = l < l2 ≤ [Dni0(( fi0)0 − ε1)]

1
(p−1)n−1 .
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Therefore, for any r ∈ J0, we derive from (3.6), (3.9) and (3.11) that

vi0(r) =
∫ 1

r
(
∫ t

0
nsn−1gi0(s) fi0(s, v(s))ds)

1
(p−1)n dt + ζwi0(r)

≥
∫ 1

3
4

(
∫ 3

4
1
4

nsn−1gi0(s) fi0(s, v(s))ds)
1

(p−1)n dt + ζwi0(r)

≥
∫ 1

3
4

(
∫ 3

4
1
4

nsn−1gi0(s)(( fi0)0 − ε1)|v(s)|(p−1)nds)
1

(p−1)n dt + ζwi0(r)

≥
∫ 1

3
4

(
∫ 3

4
1
4

nsn−1gi0(s)(( fi0)0 − ε1)|vi0(s)|(p−1)nds)
1

(p−1)n dt + ζwi0(r)

≥
∫ 1

3
4

(
∫ 3

4
1
4

nsn−1gi0(s)(( fi0)0 − ε1)(ζ∗wi0(s))(p−1)nds)
1

(p−1)n dt + ζwi0(r)

≥ 1
4ζ
∗[n( 1

4 )n−1(( fi0)0 − ε1)]
1

(p−1)n (
∫ 3

4
1
4

gi0(s)ds)
1

(p−1)n + ζwi0(r)

= 1
4ζ
∗[di0n(1

4 )n−1(( fi0)0 − ε1)]
1

(p−1)n + ζwi0(r)
= ζ∗[Dni0(( fi0)0 − ε1)]

1
(p−1)n + ζwi0(r)

≥ ζ∗ + ζwi0(r)
= (ζ∗ + ζ)wi0(r),

which conflicts with the definition of ζ∗. So, (3.10) is correct.
In addition, by the definition of f∞ and Di f∞ < 1 we have that there are ε2 > 0 and l3 > 0 so that

fi(s, v) ≤ (( fi)∞ + ε2)|v|(p−1)n, ∀s ∈ J, v ∈ (Rn
+)[l3,∞).

Define
Li = max

s∈J,v∈(Rn
+)[0,l3]

fi(s, v).

We so derive
fi(s, v) ≤ (( fi)∞ + ε2)|v|(p−1)n + Li, ∀s ∈ J, v ∈ Rn

+. (3.12)

Set

R >
{
l3,
( LiDni

1 − Dni((( fi)∞ + ε2)

)(p−1)n}
(3.13)

for i ∈ In.
We declare

∀v ∈ ∂PR, µ ≥ 1⇒ Tv , µv. (3.14)

Actually, if there are v ∈ ∂PR and µ ≥ 1 so that Tv = µv, then for each i ∈ In it follows from (3.6),
(3.12) and (3.13) that

µvi(r) =
∫ 1

r
(
∫ t

0
nsn−1gi(s) fi(s, v(s))ds)

1
(p−1)n dt

≤
∫ 1

0
(
∫ 1

0
nsn−1gi(s) fi(s, v(s))ds)

1
(p−1)n dt

≤
∫ 1

0
(
∫ 1

0
ngi(s) fi(s, v(s))ds)

1
(p−1)n dt

<
∫ 1

0
(
∫ 1

0
ngi(s)((( fi)∞ + ε2)|v(s)|(p−1)n + Li)ds)

1
(p−1)n dt

≤ (
∫ 1

0
ngi(s)((( fi)∞ + ε2)∥v∥(p−1)n + Li)ds)

1
(p−1)n

= [n((( fi)∞ + ε2)∥v∥(p−1)n + Li)]
1

(p−1)n (
∫ 1

0
gi(s))ds)

1
(p−1)n

= [ndi((( fi)∞ + ε2)∥v∥(p−1)n + Li)]
1

(p−1)n

< R,
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which shows that µ∥vi∥0 < R, and then we have µ∥v∥ < R. We hence derive µR < R. This indicates that
µ < 1, which conflicts with µ ≥ 1. So (3.14) is correct.

From Lemma 3.1 (b), it hence yields from (3.10) and (3.14) that T possesses a fixed point v in PR\P̄l

satisfying l < ∥v∥ < R. So (3.2) has a positive p-convex solution v satisfying l < ∥v∥ < R. Hence we
finish the proof of Theorem 3.1.
Remark 3.1. Although the essence of Lemma 2.1 and Lemma 3.1 is the same, the specific processing
technique of Theorem 3.1 is different from that of Theorem 2.1.
Theorem 3.2. Under conditions (G) and (F), if in addition there exists i0 ∈ In such that

Dni f 0 < 1 < Dni0( fi0)∞,

then we derive:
(i) (3.2) has a positive p-convex solution v = (v1, v2, . . . , vn); and then
(ii) (1.2) has a nontrivial p-convex radial solution u = (u1, u2, . . . , un), where

ui(|x|) = −vi(r) for i ∈ In and r ∈ J.

Proof. We assume that (3.8) holds. Considering the definition of ( fi0)∞, then there are ε3 > 0 and
R̂ > 0 with R̂ > l1 so that

fi0(s, v) ≥ (( fi0)∞ − ε3)|v|(p−1)n (∀s ∈ J, v ∈ (Rn
+)[R̂,+∞)), (3.15)

where ε3 satisfies that

Dni0(( fi0)∞ − ε3) ≥ 1.

For i ∈ In, let

w = {w1,w2, . . . ,wn}

with wi(s) ≡ 1 for s ∈ J. Then w ∈ P with ∥wi∥∞ ≡ 1. Next, we demonstrate that

v − Tv , ζw (∀v ∈ ∂PR, ζ ≥ 0), (3.16)

where R = 4R̂.
In reality, if there are v ∈ ∂PR and ζ ≥ 0 so that v − Tv = ζw. Then (3.8) shows that ζ > 0 and

vi0 = ζwi0 + Ti0v ≥ ζwi0 .

In addition, for v ∈ ∂PR we derive

vi(s) ≥ min
s∈J0

vi(s) ≥
1
4
∥vi∥0 ≥

1
4

max{∥vi∥0, i ∈ In} =
1
4
∥v∥ = R̂.
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Let ζ∗ be defined as in (3.11). Then, for v ∈ ∂PR and r ∈ J0, we derive from (3.6) and (3.15) that

vi0(r) =
∫ 1

r
(
∫ t

0
nsn−1gi0(s) fi0(s, v(s))ds)

1
(p−1)n dt + ζwi0(r)

≥
∫ 1

3
4

(
∫ 3

4
1
4

nsn−1gi0(s) fi0(s, v(s))ds)
1

(p−1)n dt + ζwi0(r)

≥
∫ 1

3
4

(
∫ 3

4
1
4

nsn−1gi0(s)(( fi0)0 − ε3)|v(s)|(p−1)nds)
1

(p−1)n dt + ζwi0(r)

≥
∫ 1

3
4

(
∫ 3

4
1
4

nsn−1gi0(s)(( fi0)0 − ε3)|vi0(s)|(p−1)nds)
1

(p−1)n dt + ζwi0(r)

≥
∫ 1

3
4

(
∫ 3

4
1
4

nsn−1gi0(s)(( fi0)0 − ε3)(ζ∗wi0(s))(p−1)nds)
1

(p−1)n dt + ζwi0(r)

≥ 1
4ζ
∗[n( 1

4 )n−1(( fi0)0 − ε3)]
1

(p−1)n (
∫ 3

4
1
4

gi0(s)ds)
1

(p−1)n + ζwi0(r)

= 1
4ζ
∗[ndi0(

1
4 )n−1(( fi0)0 − ε3)]

1
(p−1)n + ζwi0(r)

= ζ∗[ndi0(
1
4 )pn−1(( fi0)0 − ε3)]

1
(p−1)n + ζwi0(r)

= ζ∗[Dni0(( fi0)0 − ε3)]
1

(p−1)n + ζwi0(r)
≥ ζ∗ + ζwi0(r)
= (ζ∗ + ζ)wi0(r),

which conflicts with the definition of ζ∗. So, (3.16) is correct.
In addition, by the definition of f 0 and Dni f 0 < 1 we know that there are ε4 > 0 and l > 0 with

l < l1 so that
fi(s, v) ≤ (( fi)∞ + ε4)|v|

1
(p−1)n , ∀s ∈ J, v ∈ (Rn

+)[0,l], (3.17)

where ε4 satisfies
2(p−1)nDni(( fi)0 + ε4) ≤ 1.

We declare that
∀v ∈ ∂Pl, µ ≥ 1⇒ Tv , µv. (3.18)

Actually, if there are v ∈ ∂Pl and µ ≥ 1 so that Tv = µv, then for each i ∈ In it follows from (2.5)
and (3.17) that

µvi(r) =
∫ 1

r

( ∫ t

0
nsn−1gi(s) fi(s, v(s)))ds

) 1
(p−1)n

dt

≤
∫ 1

0

( ∫ 1

0
nsn−1gi(s) fi(s, v(s))ds

) 1
(p−1)n

dt

≤
∫ 1

0

( ∫ 1

0
ngi(s) fi(v(s))ds

) 1
(p−1)n

dt

<
∫ 1

0

( ∫ 1

0
ngi(s)(( fi)∞ + ε4)|v(s)|(p−1)nds

) 1
(p−1)n

dt

≤

( ∫ 1

0
ngi(s)(( fi)∞ + ε4)∥v∥(p−1)nds

) 1
(p−1)n

= [n(( fi)∞ + ε4)]
1

(p−1)n ∥v∥
( ∫ 1

0
gi(s)ds

) 1
(p−1)n

= [ndi(( fi)∞ + ε4)]
1

(p−1)n ∥v∥
= [Dni(( fi)∞ + ε4)]

1
(p−1)n ∥v∥

≤ 1
2∥v∥ =

1
2 l < l,
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which shows that µ∥vi∥0 < l, and then we have µ∥v∥ < l. We hence derive µl < l. This indicates that
µ < 1, which conflicts with µ ≥ 1. So (3.18) is correct.

According to (b) of Lemma 3.1, it so yields from (3.16) and (3.18) that operator T possesses a
fixed point v in PR\P̄l satisfying l < ∥v∥ < R. So (3.2) has a positive p-convex solution v satisfying
l < ∥v∥ < R. Therefore Theorem 3.2 is correct.
Theorem 3.3. Under conditions (G) and (F), if in addition there exists i0 ∈ In so that

Dni0( fi0)0 > 1 or Dni0( fi0)∞ > 1

and there is bi > 0 so that

max
s∈J, v∈(Rn

+)[0,bi]
fi(s, v) <

1
Dni

bi (3.19)

for each i ∈ In, then we have:
(i) (3.2) possesses a positive p-convex solution v = (v1, v2, . . . , vn) in P; and then
(ii) (1.2) possesses a nontrivial p-convex radial solution u = (u1, u2, . . . , un), where

ui(|x|) = −vi(r) for i ∈ In and r ∈ J.

Proof. Here we only consider the case Dni0( fi0)0 > 1 and (3.19). We choose l with 0 < l < bi for each
i ∈ In.

If Dni0( fi0)0 > 1, then
v − Tv , ζw (∀v ∈ ∂Pl, ζ ≥ 0). (3.20)

The proof is similar to that of (3.10). Therefore, it is omitted.
On the other hand, by (3.19), we can define

Li = max
s∈J,v∈(Rn

+)[0,bi]
fi(s, v) < D−1

ni b(p−1)n
i . (3.21)

Let
b = max{bi : i ∈ In}. (3.22)

Next, we prove that
∀v ∈ ∂Pb, µ ≥ 1⇒ Tv , µv. (3.23)

Indeed, suppose that there are v ∈ ∂Pb and µ ≥ 1 such that Tv = µv, then for each i ∈ In it follows
from (3.6), (3.21) and (3.22) that

µvi(r) =
∫ 1

r

( ∫ t

0
nsn−1gi(s) fi(s, v(s))ds

) 1
(p−1)n

dt

≤
∫ 1

0

( ∫ 1

0
nsn−1gi(s) fi(s, v(s))ds

) 1
(p−1)n

dt

≤

( ∫ 1

0
ngi(s) fi(s, v(s))ds

) 1
(p−1)n

≤

( ∫ 1

0
ngi(s)Lids

) 1
(p−1)n

= (nLi)
1

(p−1)n
( ∫ 1

0
gi(s)ds

) 1
(p−1)n

= (ndiLi)
1

(p−1)n

= (DniLi)
1

(p−1)n

< bi ≤ b.
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which indicates that µ∥vi∥0 < b, and then we get µ∥v∥ < b. Thus we derive µb < b. So we have µ < 1.
This conflicts with µ ≥ 1. Hence (3.23) is correct.

So, by (3.20) and (3.23), it follows from (b) of Lemma 3.1 that T possesses a fixed point v in Pb\P̄l

with l < ∥v∥ < b. This follows that (3.2) has a positive p-convex solution v satisfying l < ∥v∥ < b. So
Theorem 3.3 is correct.

Similarly, one can derive the following multiplicity conclusions.
Theorem 3.4. Under conditions (G) and (F), if in addition there is i0 ∈ In so that

Dni0( fi0)0 > 1 and Dni0( fi0)∞ > 1

and there is bi > 0 so that (3.19) holds for each i ∈ In, then we derive:
(i) (3.2) possesses two p-convex positive solutions v∗ and v∗∗ in P with

0 < ∥v∗∥ < max{bi, i ∈ In} < ∥v∗∗∥;

and then
(ii) (1.2) possesses two nontrivial p-convex radial solutions u∗ and u∗∗ with

u∗i (|x|) = −v∗i (r) u∗∗i (|x|) = −v∗∗i (r) for i ∈ In and r ∈ J.

Next, we consider the nonexistence result on system (3.2).
Theorem 3.5. Under conditions (G) and (F), if for each i ∈ In fi(s, v) < 1

Dni
|v|(p−1)n for all s ∈ J and

v ∈ R+ with |v| > 0, then (3.2) possesses no positive solution.
Proof. Conversely, suppose that v is a positive solution of system (3.2).

So, for r ∈ J, v ∈ P with ∥v∥ > 0 we obtain that

vi(r) =
∫ 1

r

( ∫ t

0
nsn−1gi(s) fi(s, v(s))ds

) 1
(p−1)n

dt

≤
∫ 1

0

( ∫ 1

0
nsn−1gi(s) fi(s, v(s))ds

) 1
(p−1)n

dt

≤

( ∫ 1

0
ngi(s) fi(s, v(s))ds

) 1
(p−1)n

<
( ∫ 1

0
ngi(s)( 1

Dni
|v(s)|)(p−1)nds

) 1
(p−1)n

≤ ∥v∥
(

1
Dni

n
) 1

(p−1)n
( ∫ 1

0
gi(s)ds

) 1
(p−1)n

= ∥v∥
(

1
Dni

ndi

) 1
(p−1)n

= ∥v∥.

This shows ∥vi∥0 < ∥v∥, and hence we derive that ∥v∥ < ∥v∥, a contradiction. So Theorem 3.5 is correct.

Remark 3.2. It is interesting to point out that, for i ∈ In, if we define

( fi)∞ = lim sup
|v|→+∞

max
s∈J

fi(s, v)
|v|
, ( fi)∞ = lim inf

|v|→+∞
min

s∈J

fi(s, v)
|v|
,
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( fi)0 = lim sup
|v|→0+

max
s∈J

fi(s, v)
|v|
, ( fi)0 = lim inf

|v|→0+
min

s∈J

fi(s, v)
|v|
,

f∞ = max{( fi)∞, i ∈ In}, f∞ = max{( fi)∞, i ∈ In},

f 0 = max{( fi)0, i ∈ In}, f0 = max{( fi)0, i ∈ In},

then we derive:
Theorem 3.6. Under conditions (H) and (F), if in addition there is i0 ∈ In so that

Di f∞ < 1 < Di0( fi0)0,

then we derive:
(i) (3.2) has a p-convex positive solution v = (v1, v2, . . . , vn); and then
(ii) (1.2) has a nontrivial p-convex radial solution u = (u1, u2, . . . , un), where

ui(|x|) = −vi(r) for i ∈ In and r ∈ J.

Proof. We assume that there is l1 > 0 so that

v − Tv , θ, ∀v ∈ P, 0 < ∥v∥ ≤ l1. (3.24)

If not, then there is v ∈ Pl1 such that
Tv = v.

On the one hand, it yields from the definition of ( fi0)0 and Di0( fi0)0 > 1 that there are ε1 > 0 and
l2 > 0 such that

fi0(s, v) ≥ (( fi0)0 − ε1)|v|, ∀s ∈ J, v ∈ ∂Pl2 . (3.25)

For i ∈ In, letting
w = {w1,w2, . . . ,wn}

with wi(s) ≡ 1 for s ∈ J, then w ∈ P with ∥wi∥0 ≡ 1. Now, we clare

v − Tv , ζw (∀v ∈ ∂Pl, ζ ≥ 0), (3.26)

where
0 < l < min{l1, l2}.

In reality, if there are v ∈ ∂Pl and ζ ≥ 0 such that

v − Tv = ζw.

Then (3.24) indicates ζ > 0 and
vi0 = ζwi0 + Ti0v ≥ ζwi0 .

Let
ζ∗ = sup{ζ |vi0 ≥ ζwi0}. (3.27)

Then
ζ∗ = ζ∗∥wi0∥0 ≤ ∥vi0∥0 = l < l2 ≤ [Dni0(( fi0)0 − ε1)]

1
(p−1)n−1 .
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Therefore, for any r ∈ J0, we derive from (3.6), (3.25) and (3.27) that

vi0(r) =
∫ 1

r
(
∫ t

0
nsn−1gi0(s) fi0(s, v(s))ds)

1
(p−1)n dt + ζwi0(r)

≥
∫ 1

3
4

(
∫ 3

4
1
4

nsn−1gi0(s) fi0(s, v(s))ds)
1

(p−1)n dt + ζwi0(r)

≥
∫ 1

3
4

(
∫ 3

4
1
4

nsn−1gi0(s)(( fi0)0 − ε1)|v(s)|ds)
1

(p−1)n dt + ζwi0(r)

≥
∫ 1

3
4

(
∫ 3

4
1
4

nsn−1gi0(s)(( fi0)0 − ε1)|vi0(s)|ds)
1

(p−1)n dt + ζwi0(r)

≥
∫ 1

3
4

(
∫ 3

4
1
4

nsn−1gi0(s)(( fi0)0 − ε1)ζ∗wi0(s)ds)
1

(p−1)n dt + ζwi0(r)

≥ 1
4 [n(1

4 )n−1(( fi0)0 − ε1)ζ∗]
1

(p−1)n (
∫ 3

4
1
4

gi0(s)ds)
1

(p−1)n + ζwi0(r)

= 1
4 [di0n( 1

4 )n−1(( fi0)0 − ε1)ζ∗]
1

(p−1)n + ζwi0(r)
= [Dni0(( fi0)0 − ε1)ζ∗]

1
(p−1)n + ζwi0(r)

≥ ζ∗ + ζwi0(r)
= (ζ∗ + ζ)wi0(r),

which conflicts with the definition of ζ∗. So, (3.26) is correct.
In addition, by the definition of f∞ and Di f∞ < 1 we know that there are ε2 > 0 and l3 > 0 so that

fi(s, v) ≤ (( fi)∞ + ε2)|v|, ∀s ∈ J, v ∈ (Rn
+)[l3,∞).

Define
Li = max

s∈J,v∈(Rn
+)[0,l3]

fi(s, v).

We so derive
fi(s, v) ≤ (( fi)∞ + ε2)|v| + Li, ∀s ∈ J, v ∈ Rn

+. (3.28)

Take R large enough (say R > l3) such that

ndi(( fi)∞ + ε2)|v|
Rpn−n−1 +

ndiLi

Rpn−n < 1 (3.29)

for i ∈ In.
We declare

∀v ∈ ∂PR, µ ≥ 1⇒ Tv , µv. (3.30)

Actually, if there are v ∈ ∂PR and µ ≥ 1 so that Tv = µv, then for each i ∈ In it follows from (3.6),
(3.28) and (3.29) that

µvi(r) =
∫ 1

r
(
∫ t

0
nsn−1gi(s) fi(s, v(s))ds)

1
(p−1)n dt

≤
∫ 1

0
(
∫ 1

0
nsn−1gi(s) fi(s, v(s))ds)

1
(p−1)n dt

≤
∫ 1

0
(
∫ 1

0
ngi(s) fi(s, v(s))ds)

1
(p−1)n dt

<
∫ 1

0
(
∫ 1

0
ngi(s)((( fi)∞ + ε2)|v(s)| + Li)ds)

1
(p−1)n dt

≤ (
∫ 1

0
ngi(s)((( fi)∞ + ε2)∥v∥ + Li)ds)

1
(p−1)n

= [n((( fi)∞ + ε2)∥v∥ + Li)]
1

(p−1)n (
∫ 1

0
gi(s))ds)

1
(p−1)n

= [ndi((( fi)∞ + ε2)∥v∥ + Li)]
1

(p−1)n

< R.
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This indicates that µ∥vi∥0 < R, and then we have µ∥v∥ < R. So we derive µR < R, which shows that
µ < 1. This conflicts with µ ≥ 1. So (3.30) is correct.

By (b) of Lemma 3.1, it so yields from (3.26) and (3.30) that operator T admits a fixed point v
in PR\P̄l satisfying l < ∥v∥ < R. Therefore (3.2) possesses a p-convex positive solution v satisfying
l < ∥v∥ < R. Hence Theorem 3.6 is correct.
Remark 3.3. It is not difficult to see that the technique to prove Theorem 3.6 is different from that used
in Theorem 3.1. However, we can not apply this technique to prove:
Theorem 3.7. Under conditions (H) and (F), if in addition there exists i0 ∈ In such that

Dni f 0 < 1 < Dni0( fi0)∞,

then we derive:
(i) (3.2) has a p-convex positive solution v = (v1, v2, . . . , vn); and then
(ii) (1.2) has a nontrivial p-convex radial solution u = (u1, u2, . . . , un), where

ui(|x|) = −vi(r) for i ∈ In and r ∈ J.

Theorem 3.8. Under conditions (H) and (F), if in addition there exists i0 ∈ In so that

Dni0( fi0)0 > 1 and Dni0( fi0)∞ > 1

and there is bi > 0 so that (3.19) holds for each i ∈ In, then we derive:
(i) (3.2) possesses two p-convex positive solutions v∗ and v∗∗ in P with

0 < ∥v∗∥ < max{bi, i ∈ In} < ∥v∗∗∥;

and then
(ii) system (1.2) possesses two nontrivial p-convex radial solutions u∗ and u∗∗ with

u∗i (|x|) = −v∗i (r) u∗∗i (|x|) = −v∗∗i (r) for i ∈ In and r ∈ J.

Remark 3. The conclusions in Theorems 3.1-3.8 can be generalized to the system of p-k-Hessian
equation {

σk(λ(Di(|DuI|p−2D juI))) = hI(|x|) fI(|x|,−u1,−u2, . . . ,−un) in Ω,
u = 0 on ∂Ω.

Here k ∈ {1, 2, · · · , n}, p ≥ 2, hI ∈ C[0, 1) is singular at 1 for each I ∈ {1, 2, · · · , n}, fI are continuous
functions, Ω = {x ∈ Rn : |x| < 1}. There is only a few results on problems involving p-k-Hessian
operator; see Bao-Feng [45], Feng-Zhang [48], Kan-Zhang [49] and Zhang-Yang [50].

4. Conclusion

In this paper, we study the singular p-Monge-Ampère problems: equations and systems of
equations. we first analyze the multiplicity of nontrivial p-convex radial solutions to a single equation
involving p-Monge-Ampère . Then, we establish some new criteria of existence, nonexistence and
multiplicity for nontrivial p-convex radial solutions for a singular system of p-Monge-Ampère
equation.
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