In this paper, we discuss the beingness conditions for algebraic Schouten solitons associated with Yano connections in the background of three-dimensional Lorentzian Lie groups. By transforming equations of algebraic Schouten solitons into algebraic equations, the existence conditions of solitons are found. In particular, we deduce some formulations for Yano connections and related Ricci operators. Furthermore, we find the detailed categorization for those algebraic Schouten solitons on three-dimensional Lorentzian Lie groups. The major results demonstrate that algebraic Schouten solitons related to Yano connections are present in $ G_{1} $, $ G_{2} $, $ G_{3} $, $ G_{5} $, $ G_{6} $ and $ G_{7} $, while they are not identifiable in $ G_{4} $.
Citation: Jinli Yang, Jiajing Miao. Algebraic Schouten solitons of Lorentzian Lie groups with Yano connections[J]. Communications in Analysis and Mechanics, 2023, 15(4): 763-791. doi: 10.3934/cam.2023037
In this paper, we discuss the beingness conditions for algebraic Schouten solitons associated with Yano connections in the background of three-dimensional Lorentzian Lie groups. By transforming equations of algebraic Schouten solitons into algebraic equations, the existence conditions of solitons are found. In particular, we deduce some formulations for Yano connections and related Ricci operators. Furthermore, we find the detailed categorization for those algebraic Schouten solitons on three-dimensional Lorentzian Lie groups. The major results demonstrate that algebraic Schouten solitons related to Yano connections are present in $ G_{1} $, $ G_{2} $, $ G_{3} $, $ G_{5} $, $ G_{6} $ and $ G_{7} $, while they are not identifiable in $ G_{4} $.
[1] | R. S. Hamilton, Three Manifold with positive Ricci curvature, J. Differential Geom., 17 (1982), 255–306. https://doi.org/10.4310/jdg/1214436922 doi: 10.4310/jdg/1214436922 |
[2] | R. S. Hamilton, The Ricci flow on surfaces, Contemp. Math., 71 (1988), 237–262. https://doi.org/10.1090/conm/071/954419 doi: 10.1090/conm/071/954419 |
[3] | V. Rovenski, Generalized Ricci solitons and Einstein metrics on weak $\kappa$-contact manifolds, Commun. Anal. Mech., 15 (2023), 177–188. https://doi.org/10.3934/cam.2023010 doi: 10.3934/cam.2023010 |
[4] | A. Arfah, Geometry of semi-Riemannian group manifold and its applications in spacetime admitting Ricci solitons, Intern. J. Geom. Methods Modern Phys., 18 (2021), 2150233. https://doi.org/10.1142/S0219887821502339 doi: 10.1142/S0219887821502339 |
[5] | T. Wu, Y. Wang, Affine Ricci solitons associated to the Bott connection on three-dimensional Lorentzian Lie groups, Turk. J. Math., 45 (2021), 2773–2816. https://doi.org/10.3906/mat-2105-49 doi: 10.3906/mat-2105-49 |
[6] | K. Onda, Examples of algebraic Ricci solitons in the pseudo-Riemannian case, Acta Math. Hung., 144 (2014), 247–265. https://doi.org/10.1007/s10474-014-0426-0 doi: 10.1007/s10474-014-0426-0 |
[7] | S. Azami, Affine Generalized Ricci Solitons of Three-Dimensional Lorentzian Lie Groups Associated to Yano Connection, J. Nonlinear Math. Phys., (2023), 1–24. https://doi.org/10.1007/s44198-022-00104-2 |
[8] | P. N. Klepikov, D. N. Oskorbin, E. D. Rodionov, Homogeneous Ricci solitons on four-dimensional Lie groups with a left-invariant Riemannian metric, Dokl Math., 92 (2015), 701–703. https://doi.org/10.1134/S1064562415060150 doi: 10.1134/S1064562415060150 |
[9] | J. Lauret, Ricci soliton homogeneous nilmanifolds, Math. Ann., 319 (2001), 715–733. https://doi.org/10.1007/PL00004456 doi: 10.1007/PL00004456 |
[10] | W. Batat, K. Onda, Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups, J. Geom. Phys., 114 (2017), 138–152. https://doi.org/10.1016/j.geomphys.2016.11.018 doi: 10.1016/j.geomphys.2016.11.018 |
[11] | Y. Wang, Affine connections and Gauss-Bonnet theorems in the Heisenberg group, arXiv preprint, arXiv: 2021.01907 (2021). https://doi.org/10.48550/arXiv.2102.01907 |
[12] | Z. Balogh, J. Tyson, E. Vecchi, Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group, Math. Z., 287 (2017), 1–38. https://doi.org/10.1007/s00209-016-1815-6 doi: 10.1007/s00209-016-1815-6 |
[13] | Y. Wang, Canonical connections and algebraic Ricci solitons of three-dimensional Lorentzian Lie groups, Chin. Ann. Math. Ser. B., 43 (2022), 443–458. https://doi.org/10.1007/s11401-022-0334-5 doi: 10.1007/s11401-022-0334-5 |
[14] | M. Brozos-Vazquez, E. Garcia-Rio, S. Gavino-Fernandez, Locally conformally flat Lorentzian gradient Ricci solitons, J. Geom. Anal., 23 (2013), 1196–1212. https://doi.org/10.1007/s12220-011-9283-z doi: 10.1007/s12220-011-9283-z |
[15] | Y. Wang, Affine Ricci soliton of three-dimensional Lorentzian Lie groups, J. Nonlinear Math. Phys., 28 (2021), 277–291. |
[16] | Y. L. Li, S. Dey, S. Pahan, A. Ali, Geometry of conformal $\eta$-Ricci solitons and conformal $\eta$-Ricci almost solitons on Paracontact geometry, Open Math., 20 (2022), 574–589. https://doi.org/10.1515/math-2022-0048 doi: 10.1515/math-2022-0048 |
[17] | G. Calvaruso, Three-dimensional homogeneous generalized Ricci solitons, Mediterr. J. Math., 14 (2017), 216. https://doi.org/10.1007/s00009-017-1019-2 doi: 10.1007/s00009-017-1019-2 |
[18] | S. Azami, Generalized Ricci solitons of three-dimensional Lorentzian Lie groups associated canonical connections and Kobayashi-Nomizu connections, J. Nonlinear Math. Phys., 30 (2023), 1–33. https://doi.org/10.1007/s44198-022-00069-2 doi: 10.1007/s44198-022-00069-2 |
[19] | E. Calvino-Louzao, L. M. Hervella, J. Seoane-Bascoy, R. Vazquez-Lorenzo, Homogeneous Cotton solitons, J. Phys. A: Math. Theor., 46 (2013), 285204. https://doi.org/10.1088/1751-8113/46/28/285204 doi: 10.1088/1751-8113/46/28/285204 |
[20] | T. H. Wears, Homogeneous Cotton solitons, On algebraic solitons for geometric evolution equations on three-dimensional Lie groups, Tbil Math. J., 9 (2016), 33–58. https://doi.org/10.1515/tmj-2016-0018 doi: 10.1515/tmj-2016-0018 |
[21] | F. Etayo, R. Santamaría, Distinguished connections on $(J^{2} = \pm 1)$-metric manifolds, Arch. Math., 52 (2016), 159–203. https://doi.org/10.5817/AM2016-3-159 doi: 10.5817/AM2016-3-159 |
[22] | T. Wu, S. Wei, Y. Wang, Gauss-Bonnet theorems and the Lorentzian Heisenberg group, Turk. J. Math., 45 (2021), 718–741. https://doi.org/10.3906/mat-2011-19 doi: 10.3906/mat-2011-19 |
[23] | Z. Chen, Y. Li, S. Sarkar, S. Dey, A. Bhattacharyya, Ricci Soliton and Certain Related Metrics on a Three-Dimensional Trans-Sasakian Manifold, Universe, 8 (2022), 595. https://doi.org/10.3390/universe8110595 doi: 10.3390/universe8110595 |
[24] | Y. Wang, X. Liu, Ricci solitons on three-dimensional $\eta$-Einstein almost Kenmotsu manifolds, Taiwanese J. Math., 19 (2015), 91–100. https://doi.org/10.11650/tjm.19.2015.4094 doi: 10.11650/tjm.19.2015.4094 |
[25] | X. M. Chen, Almost Quasi-Yamabe Solitons on Almost Cosymplectic Manifolds, Intern. J. Geom. Methods Modern Phys., 17 (2020), 2050070. https://doi.org/10.1142/S021988782050070X doi: 10.1142/S021988782050070X |
[26] | X. M. Chen, The $\kappa$-almost Yamabe solitons and almost coKähler manifolds, Intern. J. Geom. Methods Modern Phys., 18 (2021), 2150179. https://doi.org/10.1142/S0219887821501796 doi: 10.1142/S0219887821501796 |
[27] | G. Calvaruso, Homogeneous structures on three-dimensional Lorentzian manifolds, J. Geom. Phys., 57 (2007), 1279–1291. https://doi.org/10.1016/j.geomphys.2006.10.005 doi: 10.1016/j.geomphys.2006.10.005 |
[28] | L. A. Cordero, P. E. Parker, Left-invariant Lorentzian metrics on 3-dimensional Lie groups, Rend. Lincei-Mat Appl., 17 (1997), 129–155. |
[29] | H. R. Salimi, On the geometry of some para-hypercomplex Lie groups, Arch. Math., 45 (2009), 159–170. https://doi.org/10.48550/arXiv.1305.2855 doi: 10.48550/arXiv.1305.2855 |
[30] | G. Calvaruso, Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds, Geometriae Dedicata., 127 (2007), 99–119. https://doi.org/10.1007/s10711-007-9163-7 doi: 10.1007/s10711-007-9163-7 |
[31] | V. Borges, On complete gradient Schouten solitons, Nonlinear Anal., 221 (2022), 112883. https://doi.org/10.1016/j.na.2022.112883 doi: 10.1016/j.na.2022.112883 |
[32] | L. Ju, J. Zhou, Y. Zhang, Conservation laws analysis of nonlinear partial differential equations and their linear soliton solutions and Hamiltonian structures, Commun. Anal. Mech., 15 (2023), 24–49. https://doi.org/10.3934/cam.2023002 doi: 10.3934/cam.2023002 |
[33] | J. Zhang, S. Zhu, On criticality coupled sub-Laplacian systems with Hardy type potentials on Stratified Lie groups, Commun. Anal. Mech., 15 (2023), 70–90. https://doi.org/10.3934/cam.2023005 doi: 10.3934/cam.2023005 |