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Abstract: In this paper, we discuss the beingness conditions for algebraic Schouten solitons associated
with Yano connections in the background of three-dimensional Lorentzian Lie groups. By transforming
equations of algebraic Schouten solitons into algebraic equations, the existence conditions of solitons
are found. In particular, we deduce some formulations for Yano connections and related Ricci
operators. Furthermore, we find the detailed categorization for those algebraic Schouten solitons
on three-dimensional Lorentzian Lie groups. The major results demonstrate that algebraic Schouten
solitons related to Yano connections are present in G, G,, G3, G5, G¢ and G7, while they are not
identifiable in G4.
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1. Introduction

In 1982, Hamilton first introduced the Ricci soliton (RS) concept with [1], and Hamilton pointed
out the RS serves as a self-similar outcome to the Ricci flow as long as it walks through a one single
parameter family with modulo diffeomorphic mappings and grows on a space about Riemannian
metrics in [2]. Since then, geometers and physicists turned their attention to discuss RS. For example,
in [3], Rovenski found conditions for the existence of an Einstein manifold according to a similar
Ricci tensor or generalized RS form in an extremely weak k-contact manifold. In [4], Arfah presented
a condition for RS on semi-Riemannian group manifold and illustrated the applications of group
manifold that admit RS. There are some typical works on affine RS [5], algebraic RS [6], as well as
generalized RS [7]. Nonetheless, a task about seeking out RS on manifolds is considerably
challenging and often necessitates the imposition of limitations. These restrictions can typically be
observed in several areas, such as the framework and dimensions of the manifold, the classification of
metrics or the classification about vector fields used in the RS equation. An example of this is the
utilization of homogeneous spaces, particularly Lie groups (LG) [8]. Following this, several
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mathematicians delved into the study of algebraic RS on LG, the area that had previously been
explored by Lauret. During his research, he investigated the correlation between solvsolitons solitons
and RS regarding Riemannian manifolds, ultimately proving that every Riemannian solvsoliton
metric constitutes the RS in [9]. With these findings as a foundation, the author was able to derive
both steady algebraic RS and diminishing algebraic RS in terms of Lorentzian geometries. It should
be noted that Batat together with Onda subsequently investigated RS for three-dimensional
Lorentzian Lie groups (LLG) in [10], examining all such Lie groups that qualify as algebraic RS.
Furthermore, there also have been certain studies on the LG about Gauss Bonnet theorems in [11,12].

Motivated by the above research, mathematicians undertook an investigation of algebraic RS that
are associated with different affine connections. For example, in [13], Wang presented a novel product
structure for three-dimensional LLG, along with a computation for canonical and Kobayashi-Nomizu
connections as well as curvature tensor. He went ahead to define algebraic RSs that are related to
the above statements. Furthermore, he categorized the algebraic RSs that are related to canonical as
well as Kobayashi-Nomizu connections with this specific product structure. Wang also considered the
distribution H = span{g},g}} and its orthogonal complement H* = span{g}}, which are relevant to
the three-dimensional LLG having a structure J : J§! = g}, Jg) = g} and Jg} = —g}. Moreover, other
impressive results of RS are found in [14-16]. In [17], Calvaruso performed an in-depth analysis of
three-dimensional generalized Rs with regards to Riemannian and Lorentzian frameworks. In order to
study the properties associated with such solitons, they introduced a generalized RS in Eq. (1) [18] that
can be regarded as the Schouten soliton, based on the Schouten tensor’s definition mentioned in [19].
Drawing upon the works of [20], they also defined algebraic Schouten solitons(ASS). Moreover, the
study in [21] introduced the concept of Yano connections (YC). Despite the substantial research on
ASS, there is limited knowledge about their association with YC on LLG. Inspired by [22], and many
studies provide extra incentives for solitons, see [23-26]. In this paper, we attempt to examine ASS
associated with YC in the context of three-dimensional LG. The key to solving this problem is to find
the existence conditions of ASS associated with YC. Based on this, by transforming equations of ASS
into algebraic equations, the existence conditions of solitons are found. In particular, we calculate the
curvature of YC and derive expressions for ASS to finish their categorization for three-dimensional
LLG. Its main results demonstrate that ASS related to YC are present in Gy, G,, G3, Gs, G¢ and G7,
while they are not identifiable in G4.

The paper is structured as follows. In Sec 2, fundamental concepts for three-dimensional LLG,
specifically relating to YC as well ASS, will be introduced. Additionally, we present a succinct
depiction of each three-dimensional connected LG, which is both unimodular and non-unimodular. In
Sec 3, we obtain all formulas for YC as well their corresponding curvatures tensor in seven LLG.
Using this Ricci operator and defining ASS associated to YC, we are able to fully classify
three-dimensional LLG that admit the first kind ASS related to YC. In Sec 4, we use this soliton
equation in an effort to finish a categorization about three-dimensional LLG that support ASS of the
second kind related to YC. In Sec 5, we highlight certain important findings and talk about potential
directions regarding research.
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2. Preliminaries

In this section, fundamental concepts for three-dimensional LLG, specifically relating to YC as
well ASS, will be introduced. Additionally, we present a succinct depiction of each three-dimensional
connected LG, which is both unimodular and non-unimodular (for details see [27,28]).

We designate {G;};-;..7 as the collection for three-dimensional LLG, which is connected and
simply connected, endowed with left-invariant Lorentzian metric g¥. Furthermore, the respective Lie
algebra(LA) for each group is denoted as {g; }=1... 7. The LCC will get represented by V. This is the
definition of the YC:

1
ViV =V V- (V@YJ)JUY— Z[(VLUYJ)JVY—(Vgl,YJ)VY], 2.1)

furthermore, {G};; ... 7 having a structure J : J§! = g}, Jg} = g}, Jg, = -3, followed J* = id, then
§'Ugl,Jg) = ¢" (q ¥,@Y). This is the definitions of the curvature:

RY'(UY, VW =V, Vi, W =V, VW =V, WY (2.2)

This definition of the Ricci tensor for (G, g¥), which is related to the YC, can be given as
p WU, V) = —g"R' WU, gV, q)) - " R"(WU", )V . q) + g" (R"(U",3)V". 43), (2.3)

the basis g}, g3 and g5 is pseudo-orthonormal, g} is timelike vector fields. This definition of the Ricci
operator Ric! can be given as
p" (U, V") = g" Ric"(UM), V). (24)

One can define the Schouten tensor with the expression given by
YRV =Y Yoar svy S vy sy
§$°G;»q;)=p (qi,cj,-)—zg (Gi»4;)s (2.5)
where s represents the scalar curvature. By extending the Schouten tensor’s definition, we obtain
S'@.a) =p"@ . a) - s 08" @], 3}, (2.6)

where A is a real-valued constant. By referring to [29], we can obtain

Y ~Y

s' =p"@1.q) +p" @, 3) — PN (@3, 3, 2.7)
for vector fields UY, V¥, WY.

Theorem 2.1. [27, 28] Let (G,gY) be three-dimensional LG of connected unimodular that has a
left-invariant Lorentzian metric. Thus the LA for G is one of the following if there exists a pseudo-
orthonormal basis (G}, G5, G} with @y timelike:
(g)):
31,31 = aqy - p73.131.43] = —aqy - p3,.13,.331 = B4y + g, + ags,a # 0.
(g3):
[%’CIZ] ycﬁ—ﬁ(ﬁ, [5]{/’ ,8‘]2 743’ CI2’CI3] _a(}f,y;tO.
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e
37,321 = ~va5. 1@y, 35) = ~Ba5. 133,331 = gy
(g)
31,31 = =@ + @n=B)gy.n = 1,131,331 = ~B& + &5, 13,331 = gy
Theorem 2.2. [27,28] Let (G,g") be three-dimensional LG of connected non-unimodular that has

a left-invariant Lorentzian metric. Thus the LA for G is one of the following if there exists a pseudo-
orthonormal basis (G}, G5, G} with gy timelike:

(gh):

(31,351 = 0,141,351 = aq) + B, [Gr. 331 = ¥G} + 0G5, a + 6 # 0,ay +B5 = 0.
(g0):

(@), 3) = a@s + s, 1G], @51 = ¥@s + 0G5, 1Gs.G31 = 0,a +6 # 0,y — B = 0.
g

91,321 = —dy - B2, — B3> 141,331 = @dy +Ba, + BT,
[qz,q3] = yq! +6g) +6q3,a+6 #0,ay =0.
Definition 2.3. (G,, g¥) is called ASS of the first kind related with YC when it satisfies
Ric" = (s" 0 + 0)ld + D, (2.8)
which c is an actual number, Ay is a real-valued constant, as well D is derivation for g¥, which can be
DIU", V"] = [DUY, V'] + [U",DV"], (2.9)
for UY, VY e gY.

3. The first kind ASS related with YC on three-dimensional LLG

In this section, we aim to obtain the formulas for YC as well their corresponding curvatures in
seven LL.Gs. Using the Ricci operator and defining LLG associated to YC, we are able to fully classify
three-dimensional LLG that admit ASS as the first kind associated with YC.

3.1. ASS of G,
In the subsection, we present the LA for G, that satisfies the following condition
[41-32) = gy - 5. 11,431 = —ed - fay.183.35) = B4y + gy + gz, # 0,
the basis vectors g}, g and g} form a pseudo-orthonormal basis where g} is timelike. Four lemmas

regarding the formulations of YC as well their corresponding curvatures in G; with Lorentzian metric
can be derived.

Lemma 3.1 ([10,30]). The LCC for G can be given as

vy B
V~y511 = a'q2 - a’%a V~Y¢]2 = a’% - 2%, V%Y ;l = _CYCI{ - qu,
V%fly = @ , VL, 51 aqg, V~yq3 = 'BQT + 0151;/,
2 e 2
ng@r é V~Yé§ = IBQT _0151% V~Y‘13 = a'ég.
a3 2 2
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Lemma 3.2. For Gy, the following equalities hold
Vo (Day = =20q3, Vi (NG = =Ba5, Vi (NGs =204y + B,
Var(Day =paz, Vi (Na; =2aq3, Vi (N33 = ~pa) - 24,
VoD =0, V§3Y<J>q2 = ~2a;, V%(J)q; = 2a7;.
Based on (2.1), as well as Lemmas 3.1 and 3.2, one can derive the subsequent lemma.

Lemma 3.3. The YC for G, can be given as
Vol =gy, Vs = adi - B3, Vids =0,
Vo =Bas, Vi, =0, Vs = ags,
Vol = ad + By, Vs = =BG\ — gy, V45 = 0.
Based on (2.2), as well as Lemma 3.3, one can derive the subsequent lemma.

Lemma 3.4. The curvature RY for (G, g") can be given as

RY(@?@;)@? agy + (@ +Bq,, RY(%"Iz)‘Iz = —(@* + g, — afd, + s,
R'(31.45)ay = 0, R"(31.45)a) = -3°ay, R" (a1, a@%) &5 = —o’d),
Ry(qf,g,§)g,§: B3, Ry(qg,qg)q{ —’g), R (@.3) &) = o’}

Y Y

Using Lemmas 3.3 and 3.4, the following theorem regarding the ASS of the first kind in the first
LG with Lorentzian metric can be established.

Theorem 3.5. (G, g?,J) is ASS of the first kind related to the YC if it satisfies § = ¢ = 0, a # 0. And
specifically

gy (- 0  0)\(q
Ric” q; =l 0 -a* -||@].
&) Lo o ollg
q1 —a? + 2222 0 0 ql
D q2 = 0 —a? +2a%2) -a? q2 )
q3 0 0 222 q3

Proof. According to (2.3), we have

0"(@).q})) = - =B, p"@\.a) = B, p" @), 33) = —ap,

Y ~Y

P (Q2’Q1)—a,8 P (ClzaQZ) = —(CV +ﬁ) P (42’%):0/2,
p (‘I3’Q1) = O’ p (Q3’C[2) = Oa pY(Q:); q?‘;) -

By (2.4), the Ricci operator can be expressed as

Y gli e op ;lﬂ 2 a,82 éi
Ric” |q; | = af —a*—-p° —a||q; |-
7 0 0 0 )\
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As a result, the scalar curvature can be obtained as s¥ = —2a? — 25°. If (G, g", J) is ASS of the first
kind related to the YC, and by Ric? = (s¥ Ay + ¢)Id + D, we can get

Dgy = [-a* - 2 + (22 + 28 — clgy + e, + afbq;
Dg, = aﬁ@f +[=a? = B2 + (227 + 289 - clg; — @?Gs,
= [(2a? + 281 — 1g3

Therefore, by (2.9) and ASS of the first kind related to the YC can be established if it satisfies
203 Ay — 2aB* + 2aB% Ay — ac = 0,
20 _
«p=0, (3.1)

ﬁ3 - alzﬁ = O’
283y — 20*B + 2a*BAy — Bc = 0

Considering that @ # 0, by solving the first and second equations in (3.1) leads to the conclusion that
B =0and ¢ = 0. Thus we get Theorem 3.5.
3.2. ASS of G,

In the subsection, we present the LA for G, that satisfies the following condition

Gy, 331 =v3s — Bags. Gy, a3 = =By — vds. G5 @3] = agy,y # 0,

the basis vectors g}, g and g} form a pseudo-orthonormal basis where g} is timelike. Four lemmas
regarding the formulations of YC as well their corresponding curvatures in G, with Lorentzian metric
can be derived.

Lemma 3.6 ( [10,30]). The LCC for G, can be given as

V~yq1 0, V~YQ2 = (_ ,B)Q%’ V~Y% (_ _:8)

VL, q _7"]2 + 6]3, VLY% 7‘?1’ V~Y‘]3 =

@ C]la

2 2

VLa = 38 + ¥l Vhah = -3, Vadh = val.

Lemma 3.7. For G,, the following equalities hold
Vo) =0, Vi (Ng; = (@ = 28)35, Vi (Nas = —(a =2,
Va(Nal = gy, Vi (Na; =0, Vi (Ngs = —adgy,
Vi (NG} = 2yG5. Vi (DG; = 0. Vi ()G = ~2v7)
Based on (2.1), as well as Lemmas 3.6 and 3.7, one can derive the subsequent lemma.

Lemma 3.8. The YC for G, can be given as

V~Y‘11 =0, V~Y‘]2 = _,3513’ v! Y% = 2,8515—7&?
V~Y91 = VCI2 +ﬁQ3’ v Yq2 ?’Clla V~y93 =0,
Vf]y T—qu, qu = a/ql, V~yq3 =0.
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Based on (2.2), as well as Lemma 3.8, one can derive the subsequent lemma.
Lemma 3.9. The curvature RY for (G,,g") can be given as
R'(31.@) @) = & - B —Byds, R (@1.35) & = —(7 + op)a),
R (31.35) @5 = 28val. R" (a1.a%) @) =0, R" (a}.4}) &5 = By — av)d),
R (a1.a%) & = 2084, R" (@3.5) @) = By — av)y,
R'(35.35) @5 = ~Byas + opds, RY (3. 33) &5 = 20Pa) + ayas.
Using Lemmas 3.8 and 3.9, the following theorem regarding the ASS of the first kind in the second
LG with Lorentzian metric can be established.

Theorem 3.10. (G, g¥,J) is ASS of the first kind related to YC if it satisfies « = B = 0, v # 0,

c = y*(2Ay — 1). And specifically
ay (- 0 0)(q
q;’ = 0 _7/2 0 51;/ )
) Lo 0 0Nz

a) (0 0 0)(a

3 |=10 0 04|

z7) 0 0 y)\g
Proof. According to (2.3), we have

P’ @.a) =5 - p"@.3) =0, p"@G.3) =0,
o (@, 3) =0, o (@, 33) = —¥* = 2aB, p"(@3.33) = 2By — ay,
o (@G, q) =0, oG, 35) = —ay, p"(@,35) = 0.

Ric’

D

By (2.4), the Ricci operator can be expressed as

@\ (B2 0 0 a4
Ric" gyl = 0 -y? —2aB ay-2By gy |.
a3 0 —ay 0 J\g
As a result, the scalar curvature can be obtained as s¥ = 52 — 2y* — 2a8. If (G,,g"¥,J) is ASS of the
first kind related to the YC, and by Ric! = (s¥ Ay + ¢)Id + D, we can get

Dg) = (B* —y* = B2 Ao + 2y* Ao + 2084 — ©)G; ,
DGy = (=y* = 2af — A + 2y* Ao + 2aBA — ©)g5 + (ay — 2BY)G3,
DQ§ = —ayg) + (B2 + 2y* Ao + 2082y — c)Zlg .

Therefore, by (2.9) and ASS of the first kind related to the YC can be established if it satisfies
B =B + 2y — 6B8y* — 2a8% + 2By* Ay + 2821y — Bc = 0,
B =By + 2ay? + 2a8* + 2B3y* Ay + 2% Ay — fc = 0,

Y} = 2y3 Ay — 36%y + B*yAy + 2aBy — 2aBydy + yc = 0,
ap? —2a*B — af*Ay + 2ay* Ay + 2a*BAy — ac = 0.

(3.2)
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By solving the first and second equations of (3.2) imply that
208° +3B8y* =0
As y # 0, it follows that S must be zero. On this basis, the second equation of (3.2) reduces to
2ay2 =0,
we have @ = 0. In this case, the third equation of (3.2) can be simplified to
Y =2y’ +yc =0,
then we obtain ¢ = y*(21y — 1). Thus we get Theorem 3.10.

3.3. ASS of Gs

In the subsection, we present the LA for G; that satisfies the following condition

[G1. 351 = —v@s.1a}. 3] = =B, [8h, 33 ] = ady

the basis vectors g}, g and g} form a pseudo-orthonormal basis where g} is timelike. Four lemmas
regarding the formulations of YC as well their corresponding curvatures in G3 with Lorentzian metric

can be derived.

Lemma 3.11 ( [10,30]). The LCC for G3 can be given as

B-—v. a-B-vy._
Vadi =0, Vi, = T%Y, Vil = quy,
y a—B+y_ a—-B+y._
Vadi = 5 B 3 Vol = 0. Vi = quy’
a + a +
VL' = %qu VLG = —# 3. V43 =0,

Lemma 3.12. For G, the following equalities hold
Var(Nay =0, Vo (NG = (@ =B =73, V(NG; = ~(@=B =1,
VoD = (@ =B+, V(NG =0, V%Y(J>c7§ =—(@=B+)i,
V;}Y(J)Z]f =0, V%(J)qg =0, Vé,(])q3 =

Based on (2.1), as well as Lemmas 3.11 and 3.12, one can derive the subsequent lemma.

Lemma 3.13. The YC for Gz can be given as

A YCI1 =0, v! Yclz = _7513’ V~YCI3 =0,

A qu VQ3, V~Y‘]2 =0, V~YQ3 = _7511’

V;Y f—ﬁQQ’ gYQZ - QCII’ V~Yq3 - O
3 3
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Based on (2.2), as well as Lemma 3.13, one can derive the subsequent lemma.
Lemma 3.14. The curvature RY for (Gs, g") can be given as
R'(@\.a})a} = Bvds, R'(31.@5) @ = - + ev)dl, R (3}.35) @) = 0,
R (a}.4%) ) =0, R (31.45) @5 = 0. R" (a}.4%) &} = -pyar.
R'(3.35)al =0, R"(&5.35) @ = 0, R"(&.45) @ = Byas.
Using Lemmas 3.13 and 3.14, the following theorem regarding the ASS of the first kind in the third
LG with Lorentzian metric can be established.

Theorem 3.15. (Gs, g%, J) is ASS of the first kind related to YC if it satisfies

(Da =B =y = 0. And specifically
a) (0 0 0)(q
Ric"|g =10 0 oO]|gt|,

q; OOOq3
ayy (-c¢ 0 0)(q
D|g|=|0 —c 0|4
) (0 0 —cJ\g}

@\ (¥ 0 0)(a
D|g,|=|0 0 0]|4;
@) o 0 y»)\g

(3)y = ¢ = 0. And specifically

i
gy |,
7

ar) (0 0 0y(q
D|gy|=10 0 0|4 |
gy) 0 0 0)\g}

@B=0,a#0,y#0, v -y —a*y + a’yAy + yc — ac = 0. And specifically

oy (0 0 0(q
Ric"|g¥ | =0 —y*—ay 0O||GY]|,
g) 0 0 0]g
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gr Y* Ao + aydy — ¢ 0 0 gv
D|gi|= 0 Y2+ ¥ —ay +aydy—c 0 s |
qx 0 0 YA + aydo — c)\Gs

B)a=0,8+0,y#0,y —y31y - 28y* A + >y — B2ydy + yc — Bc = 0. And specifically

@) (Br 0 0\(q
Ric"|gy|=| 0 —¥* 0||3|.
;) L0 0 0Ng

a\ (YA —-By+Bylo—c 0 0 )
Z]2Y = 0 —)/2 + yz/lo + Bydy—c¢ 0 512Y .
gy 0 0 Yo +Bydo — cJ\G)

Proof. According to (2.3), we have

D

'@\, @) = -By. pP'@,3) =0, p"(@.33) =0,
0" @,3) =0, p"(@1,35) = —v* —ay, " (&, 33) =0,
o' (@, =0, o', 3) =0, p"(G.35) = 0.

By (2.4), the Ricci operator can be expressed as

ay By 0 0)(ay
Ric"|g¥ =] 0 —y*—ay O||G]|.
c7§ 0 0 0 qg

As a result, the scalar curvature can be obtained as s¥ = —(y* + ay + By). If (Gs, g, J) is ASS of the
first kind related to the YC, and by Ric’ = (s¥ Ay + ¢)Id + D, we can get

DGy = (y* Ao — By + aydo + Bydo — ©)Gy ,
Dy = (=7 +y*A — ay + aydo + Byl — O3,
Dgy = (y*Ao + aydo + Bydo — ©)33.-
Therefore, by (2.9) and ASS of the first kind related to the YC can be established if it satisfies

Y =¥ Ay + By + ay? — ay*Ay — By* Ay + yc = 0,
By = By* = By* Ao = By Ao — aBy — aBydo — c = 0, (3.3)
ay? + oty — ay* Ay — a*ydy — aBy — afydy + ac = 0.

Assuming that y = 0, we get

{ﬁc:O,

ac = 0.

If B = 0, we obtain two cases (1) and (2) of Theorem 3.15 holds. If 8 # 0, for the case (3) of
Theorem 3.15 holds. Next assuming that y # 0, If 8 = 0, and (3.3) can be simplified to

Y =Y +ay’ —ay’ o +yc =0,
ay? + oty — ay* Ay — a’ydy + ac = 0.
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We get two cases (3) and (4) of Theorem 3.15 holds. If 8 # 0 and @ = 0, then a direct calculation
reveals that (3.3) reduces to

{ Y =¥ +ByY =By’ Ao +yc =0,
B>y = By = By* Ao = B*ydo — Bc = 0
We have case (5) of Theorem 3.15 holds. Thus we get Theorem 3.15.
3.4. ASS of G,

In the subsection, we present the LA for G4 that satisfies the following condition

Y ~Y

[GY,301=-g% + 2n-P)gs,n = +1,[3.3%1 = -Bg: + 33,135,341 = o,

the basis vectors g7, 5 and g form a pseudo-orthonormal basis where g} is timelike. Four lemmas
regarding the formulations of YC as well their corresponding curvatures in G4 with Lorentzian metric
can be derived.

Lemma 3.16 ( [10,30]). The LCC for G4 can be given as
Vhal = 0. V43 = (5 +1- P Vil = G +1-Pa.
Vi YCh = CI2 ( 77)613a v YCIZ = 61{], YCI3 ( U)Qi/,
Vol = (5 M~ G5> Vols = —( + M4, VLng =
Lemma 3.17. For Gy, the following equalities hold
Vo (Nai =0, Vi (NG, = (@ + 21 = 2B)a3, Vi (Nay = —(a + 20 = 28)3,,
Vi (Nay = (@ =203, Vi, (Ng; =0, ny(J)qs = —(a = 2m)qy .
Vi (N3] = =243, Vi (Dg; = 0. Vi ()33 =24}
Based on (2.1), as well as Lemmas 3.16 and 3.17, one can derive the subsequent lemma.
Lemma 3.18. The YC for G4 can be given as
Vodi =0, Vi, =0 =P)gs, Vi = G,
Vol =@ + B =233, Vydy = =41, Vs =0,
~yq1 = Bg,, V yéz = —aq, V~yq3 =0.

Based on (2.2), as well as Lemma 3.18, one can derive the subsequent lemma.

Lemma 3.19. The curvature RY for (Gs, g") can be given as

R'(a).a@y)a) = B = 2pn+1ay, R (3).a3) @ = Qam— - 1)y,
R'(31.45) @ = 0. R (a1.45) @y =0, R" (@1, a) @ = (@ -P)al, R" (). a3) @ =0,
R(3.33) ) = (@-PB)ay, R (85.35) @ = B- )iy, R (85.35) @5 = —ady.

Communications in Analysis and Mechanics Volume 15, Issue 4, 763-791.



774

Using Lemmas 3.18 and 3.19, the following theorem regarding the ASS of the first kind in the
fourth LG with Lorentzian metric can be established.

Theorem 3.20. The LG G, cannot be ASS of a first kind related to the YC.
Proof. According to (2.3), we have
P"(@1,q1) =260~ -1, p"(@(.3) =0, p"(d1,33) =0,
p"(@.41) =0, p'(@.3,) = 2an - af - 1, p"(§5.33) = @,
P'(@.31) =0, p'(&,3) =0, p'(@3,33) = 0.

By (2.4), the Ricci operator can be expressed as

@\ (B +26n-1 0 0 (4,
Ric” gyl = 0 2an-epf-1 —a||q |-
gy 0 0 0 J\g¥

As a result, the scalar curvature can be obtained as s¥ = -5 + 2an + 26y — af — 2.If (G4, g*, J) is ASS
of the first kind related to the YC, and by RicY = (s¥ Ay + ¢)Id + D, we can get

DQf = (—ﬁ2 +,82/10 + 2Bn — 2andy — 26ndy + @y + 21— 1 — C)Z]f,
Dg¥ = (B A + 2an — af — 2andy — 2Bndo + By + 20 — 1 — ©)gs — g},
DE]§ = (ﬁz/l() - 2&’7]/10 - Zﬁn/l() + a’ﬁ/lo + 249 — C)f[g

Therefore, by (2.9) and ASS of the first kind related to the YC can be established if it satisfies

2a + (2 = B)(B% — B2 Ay — 2an — 2B + af + 2andy + 2Bndg — By — 24y +2 +¢) = 0,
B =B’ A — aB® = 2°n + 280 — o8> Ao + 2a3n + 2a8ndo — 2B + Bc = 0,

B2y — B +2Bn — aff — 2andy — 2Bndo + afly + 249 — 1 —c = 0,

20°n — a?B + af® - 2a°nAy + By + af? Ay — 2a8n — 2aBndy + 2ady — ac = 0.

(3.4)

By the first equation of (3.4), we assume that
a=0,6=2n.

On this basis, by the second equation of (3.4), we have ¢ = 24. By the third equation of (3.4), we get
¢ =24y — 1, and there is a contradiction. One can prove Theorem 3.20.

3.5. ASS of G5

In the subsection, we present the LA for G5 that satisfies the following condition
131,331 = 0,141,331 = g} +B33.135.331 = ¥\ +6G;,a +6 # 0,ay +B65 =0,

the basis vectors g}, g; and g} form a pseudo-orthonormal basis where g} is timelike. Four lemmas
regarding the formulations of YC as well their corresponding curvatures in G5 with Lorentzian metric
can be derived.
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Lemma 3.21 ( [10,30]). The LCC for Gs can be given as

vy Bty B+y
Vol =ads, Vyd, = —= 5 G- Vipds = oy + qu,
y_B+vy. - N B+y_y
VLGl = 5> Voo = 0G5, Vs = =41 + 04,
4, 2 2
B-vy ,3—% .
Vil =58, Vpls = =41, Vi =0.

Lemma 3.22. For Gs, the following equalities hold
VaNal =20q3, V(NG = B+, Vi (Nay = =20 = B +9)d,
Vaal = B+, Vi (Day =263, Vi (N33 = ~B+ )y =254,
Ve (D =0, Vi ()g; =0, Vi ()g; =0
Based on (2.1), as well as Lemmas 3.21 and 3.22, one can derive the subsequent lemma.

Lemma 3.23. The YC for Gs can be given as
V~YCI1 0, V~YQ2 0, V7, ng =0,
Vi =0, Vi, =0, V5,45 =0,
V~yq1 = —aq + B+ )3, V~yq2 = ~Yq =64, V,, ng =0.
Based on (2.2), as well as Lemma 3.23, one can derive the subsequent lemma.

Lemma 3.24. The curvature RY for (Gs, g") can be given as
R'(31.35)a) = R" (al.@})a = R" (&}.4}) @} =0,
where 1 < j < 3.

Using Lemmas 3.23 and 3.24, the following theorem regarding the ASS of the first kind in the fifth
LG with Lorentzian metric can be established..

Theorem 3.25. (Gs, g¥,J) is ASS of the first kind related to YC if it satisfies ¢ = 0. And specifically

511 000 qlY
q3 00 0/\g
a) (0 0 0)(q
%Ho el
a;) \0 0 0/\gy

p"(@l.q) =p"(@.3}) = p"(@3.3}) =0

D

Proof. According to (2.3), we have
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where 1 < j < 3.
By (2.4), the Ricci operator can be expressed as

) (0 0 0)(q
Ric"|g =10 0 of|g¥|.
a) 0 0 0)\gy
As a result, the scalar curvature can be obtained as s* = 0. If (Gs, g¥, J) is ASS of the first kind related
to the YC, and by RicY = (s¥Ay + ¢)Id + D, we can get

Dg) = -y,
Dgl = —cg},
D513Y = —c€13Y.

Therefore, by (2.9) and ASS of the first kind related to the YC can be established if it satisfies

ac =0,
c =0,
f/c:O 3.5
oc =0.

Since @ + 6 # 0 and ay + B6 = 0, by solving (3.5), we have ¢ = 0. Thus we get Theorem 3.25.

3.6. ASS of Gg

In the subsection, we present the LA for G¢ that satisfies the following condition
(71,33 = gy + By, 41,35 = v@y + 633,135,431 = 0, + 6 # 0,y — 36 = 0.

The basis vectors g}, g5 and g} form a pseudo-orthonormal basis where g} is timelike. Four lemmas
regarding the formulations of YC as well their corresponding curvatures in G¢ with Lorentzian metric
can be derived.

Lemma 3.26 ( [10,30]). The LCC for G¢ can be given as

. vy _Btvy._ vy _ Bty
Vadi =0, Vod, = ——a, Vi = ——

- vy B-7v. . . - B-v.
V%Cﬁ = —aq§ - qu, V%qg = a'q{, V%fg == 3 CI}/’
vy _B-Y.y . B-v. ~ .
Vadl = =50 — 045, Vs =~ Vyds = =6q).

Lemma 3.27. For Gg, the following equalities hold
Var(Day =0, VoD, = B+13s, Vi (NGs = B+,
Va(Dai = =B =7, V(Nay =0, Vi (N33 = B =93,
V(NG = =203, Vi (D, = 0. Vi ()3 = 267,
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Based on (2.1), as well as Lemmas 3.26 and 3.27, one can derive the subsequent lemma.

Lemma 3.28. The YC for Gg can be given as

V~Y‘]1 0, V~Y‘12 —18513’ V! Y% 55]§’
V~YQ1 = aq2 _,8512’ Y% = 091» V~Y(I3 =0,
V~Y‘11 = 7512, V~YQ2 =0, V~YQ3 = 0.

Based on (2.2), as well as Lemma 3.28, one can derive the subsequent lemma.

Lemma 3.29. The curvature RY for (Gg, g") can be given as

R (7.3%)a = By + aMgy - pogt. RV (31.35) &% = —a*q). R (
R' (31,4 @) = (ay + 693, R (@.45) @5 = —evay, R (a).45)a =0,
R'(3.35) ) = —ava). RY(35.3%) 3 = avd. RY (@3.3%) 3% = O

Using Lemmas 3.28 and 3.29, the following theorem regarding the ASS of the first kind in the sixth

LG with Lorentzian metric can be established.

Theorem 3.30. (Gq, g7, J) is ASS of the first kind related to YC if it satisfies
(Da=B=c=0,0 #0. And specifically

g\ (0 0 0Y(q)
oo o)
g') 0 0 o)\g!
) (0 0 0)(q
-0 o)
g) \0 0 0/\gy

Qa#0,8=y=0a+06#0, c=2a% — a?. And specifically
gy (-«* 0 0)(ql
Ric qu 0 -a* 0||gt|,
gy 0 0 0)\g
al 0 0 0)(a
D q2 00 0]la]
s 0 0 o*)\g}
~Y ~Y) —

'@}, q) =By +a), p'@G1.3) =0, p'(G),33) =0,
0" (@,3) =0, p"(@.35) = -, p' (@, 33) =0
' (@.3) =0, p"(@3.3) =0, p' (@G, 33) =0

Q

D

Proof. According to (2.3), we have
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By (2.4), the Ricci operator can be expressed as

4\ (-@+By 0 0)(q
RicY gyl = 0 - 0 a5 |-
ay 0 0 0)\g

As a result, the scalar curvature can be obtained as s = —2a? — By. If (Ge, g7, J) is ASS of the first
kind related to the YC, and by Ric' = (s¥ Ay + ¢)Id + D, we can get

DGl = 2a%2y — &* — By + Bydo — )7,
DZ[? = 2a%A —a® + Bydy — c)(}g ,
Dg} = 2a* g + Bydo — ©)F5.

Therefore, by (2.9) and ASS of the first kind related to the YC can be established if it satisfies

203y — @ — aBy + afydy — ac = 0,
Brydy — By — 2a*B + 2a*BAy — Bc = 0,
—By* +By* Ao + 2a%y g — yc = 0,
2a%6 4y — a*6 — Boy + Byddy — éc = 0.

(3.6)

Because o+ 6 # 0 as well ay — 86 = 0, we suppose first that @ = 8 = 0, 6 # 0. On this basis, the fourth
equation of (3.6) can be simplified to

oc =0,

we get ¢ = 0, for the case (1) of Theorem 3.30 holds. Suppose second thaty =0, @ # 0, @« + 6 # 0, on
this basis, the first and fourth equations of (3.6) reduces to

—? + 2% —c =0,
and the second equation of (3.6) can be simplified to
BRa* Ay —2a° —¢) =0,
we have o’ = 0, thus 8 = 0, for the case (2) of Theorem 3.30 holds. It turns out Theorem 3.30.

3.7. ASS of G,
In the subsection, we present the LA for G that satisfies the following condition
[31,33] = —aq) - Bay - B3, 1ay,33) = g +Ba; + B3,
133,331 = ¥§) + 635 +6G3, a0 +6 #0,ay =0,

the basis vectors g}, g, and g} form a pseudo-orthonormal basis where g} is timelike. Four lemmas
regarding the formulations of YC as well their corresponding curvatures in G; with Lorentzian metric
can be derived.
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Lemma 3.31 ( [10,30]). The LCC for G; can be given as

Y.y Y~
5‘]3’ V~Y‘]3 = a’ql + 2‘]2Y’

,3% + B+ )613’ Vi YCIZ = Bql "'5%’ Vi Y‘h B+ _)‘7{4'55];’

VLYN{/ =-(B- _) :3(]3’ ~Y‘72 =B - ) fg, ~Y613 = _:8

Vi yCh _a% +aq3, Vi YCI2 = 0/5]{"'

Lemma 3.32. For G4, the following equalities hold
VoD@l =245, Vi (N3, =35, Vi (Das = —20q) = v,
vLyu)q1 =B+, V(N = 25!, Vo (Ngy = =2 +7)a) =265,
Vo (NG = =283, Vi (Na; = ~2645, V%(J)% = 283y +263;.
Based on (2.1), as well as Lemmas 3.31 and 3.32, one can derive the subsequent lemma.
Lemma 3.33. The YC for G; can be given as
V~Y¢]1 = 6“12, vy Y‘Z2 = _a‘h :3‘]3’ V~Y‘]3 —ﬁqg’
Vordi =By + a3 Vs = B Viyds = 673
Vol = —adi — Py, Vi, = ~vq — 65, V45 = 0.
Based on (2.2), as well as Lemma 3.33, one can derive the subsequent lemma.

Lemma 3.34. The curvature RY for (G, gY) can be given as

R (a}.43) @} = —opa) +’g) + B3},

RY(3).35) 35 = —(@® + B* + By)G} — BoGs + Bog,.

R'(a).a3) @) = (Bs + aP)al, R' (3}, %) a) = Qap+ay)g) + (ad - 273},
RY(3).3%) 35 = (B + By + ad)3} + (—af — ay + BO)Gs + (BS + ap)q.

R (3}.3%) 35 = (B + B5)a},

R"(33.35) ) = (B* + By + ad)g) + (B6 — af — ay)h — (af + fO)}

R (35.3%) 35 = (2P0 — af + ay + y0)a) + (6 — By - B,

R'(35.45)a = —(By + 83

The following theorem regarding the ASS of the first kind in the seventh LG with Lorentzian metric
can be established.

Theorem 3.35. (G7,g¥,J) is ASS of the first kind related to YC if it satisfies
WWa=p=y=0,0+#0,0 =-1,c = 1. And specifically
g’ 00 O él
Ric” qg ={0 0 -¢? q2 ,
gy 06 0)\g
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D

g’ - 0 0)(q'
al=lo - -&||a|.
~Y ~Y
q; 0 6 -c)\g

Qa=p=c=0,0#0,y #0, 6 =—1. And specifically

gy (0 0 0)(q
Ric"|g =10 0 -&*||g¥|,
3) \0 6 0\

)y (0 0 0)\(q
D(g =10 0 -&*||q |-
i) s o)lg

1 1 -2 +2222
211" (-a-12"

5]{ —a? 0 0 Z]f
Ric"|g¥|=| 0 - -&*||G}],

qx 0 as+6 0 )\g)

g —6? 0 0 gy
gl=10 -4 -6 ||y |.

gy 0 as+6 -8 )\g)

Ba#0,=y=0,a+06#0,a=16,0= A # 0. And specifically

Proof. According to (2.3), we have

(G, q)) = -, 0" @G, 3Y) = —aB, p"(G],33) = o + B,
0 (@, 3)) = B8, " (@5, 35) = —a* — B> = By, P (@3, 33) = By + &%,
P (Gh,qY) = aB + B6, p'(GY.3Y) = as + 6, p¥(qh,33) = 0.
By (2.4), the Ricci operator can be expressed as
q" —a? ~af —(aB +Bo)\ (G
Ric"|g¥|=| Bs -a>-p-By —-(@+pBy)||d)].
gy af + 36 ad +6 0 gy

As a result, the scalar curvature can be obtained as s* = —2a? — 52 — By. If (G7,g"¥,J) is ASS of the
first kind related to the YC, and by Ric’ = (s¥ Ay + ¢)Id + D, we can get

Dq%/ = (—a? + 2a% +ﬁ2/10 + Bydy — C)Z]f - aﬁcg —(ap +,85)51§,
Dy = Bog! + (—a® — B* + 22 Ay + 2o — By + Bydo — )G — (6 + By,
DG} = (aB + B)q] + (ad + 6)gs + 222y + Ay + Bydy — O)Fs.
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Therefore, by (2.9) and ASS of the first kind related to the YC can be established if it satisfies

a@® =223 Ay + 2aB8% — ad® + 2326 — ap*Ay + aBy + 6y — aBydy + ac = 0,

By + 2a%BAg + Py Ay + By — 2aB6 — BS — Bc = 0,

B =B+ B~y — B8 — 2a°BAg — fPydo + B = 0,

203 Ay — a*6 — 2826 — aff* + P’y — ad — aBy + afydy —ac = 0,

B+ By + a?B + By + 2a*BAg + Py Ay — 3aB5 — 285 — e = 0, (3.7)
B30 + By + BS% + 2028 + Brydo — B — 6 — B = 0,

@’B - By — By* — 2B6% + 2a*y Ay + BPydg + By Ao + af — ye = 0,

aff? +2B%6 — ad® — 6% + 2264y + S5y + ey + Boydy — dc = 0,

3+ af? + 26 — a?6 + 226y + 20 + aBy + Byd + BydAy — dc = 0.

Because @ + ¢ # 0 as well @y = 0. Let’s first suppose that @ = 0. On this basis, (3.7) can be simplified

to
2825 + By = 0,

B + By Ao + By — B — Bc = 0,

B =B’ — By — B6* = By + Bc = 0,

B*5 =0,

B+ B + B2y + BPydg — 286 — Bc = 0,

B g + B¥y + B6* + BPydg — BS — Bc = 0,

By +By* + 286> = Brydo — By’ Ao + yc = 0,

2B%6 — 6% + 254y + BoyAdy — 6c = 0,

8 + 26 + 254y + Byd + Byddy — oc = 0.

If y # 0 and 6 # 0, we get case (2) of Theorem 3.35 holds. If y = 0 as well 6 # 0, on this basis, we
calculate that

B2 =0,

By —B6 —Bc =0,

B =B — 5% + pc = 0,

B+ B3 —2B6—pBc =0,

By + B6* — BS — e = 0,

B6* =0,

2B%6 — 6% + BS54y — 6c = 0,

8 + 526 + B*6Ay — 6¢c = 0.

we obtain case (1) of Theorem 3.35 holds. Assume second that @ # 0, @ + 6 # 0 and y = 0. In this
case, (3.7) reduces to

@ =22y + 2aB8% — ad® + 2326 — af*dy + ac = 0,
B3 + 202BAg — 2035 — BS — B = 0,

B — B3y + B — B — 2028y + fc = 0,

20° ) — a6 — 2626 — af* + apB’ly — ad —ac = 0,
B+ B3 + 2B + 20281y — 3086 — 285 — B = 0,
B0 + B + 20°BAg — afBS — B — B = 0,

2B - 2B5% + a5 = 0,

f? + 2825 — ad? — & + 20250y + By — 6¢ = 0,
5 + aff? + 25 — 025 + 202640 + By — 6¢ = 0.
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Next suppose that 5 = 0, we have

@ -2y — ad* + ac =0,
203y — a@*8 —ad —ac =0,
@d® + 6% —2a%61 + 6¢c = 0,
8 — @26 +2a%51, — 6c = 0.

Then we get
@ -6 -2 -6 —as =0.

Let a = A6, A # 0, it becomes
(B =21-18 -+ 1)§* =0,

for the cases (3) of Theorem 3.35 holds. Thus it turns out Theorem 3.35.

4. The second kind ASS related to YC on three-dimensional LLG

In the section, we use the soliton equation in an effort to finish a categorization about
three-dimensional LLG that support ASS of the second kind associated with YC.

Let Y Y Y Y Y Y
p (U, VY +p"(VI,U")

prur, vt = 5 : 4.1)
and .y
pYUY, V") = g"(Ric (U, V). (4.2)
Similar to the formulae (2.6), we have
§$Y@}.q) =p"@).a) - s" 08" @ . a)). (4.3)
where A, is a real number. Refer to [29], we can get
s"=p"@a) +p" @, @) - p"@. 3. (4.4)
for vector fields UY, VY.
Definition 4.1. (G,, g¥) is called ASS of the second kind related with YC when it satisfies
Ric' = (s'0+ c)Id + D, (4.5)

which c is an actual number, Ay is a real-valued constant, as well D is derivation for g*, which can be
DU, V'] =[DU", V"1 +[U",DV"], (4.6)

for UY, V¥ € g¥.

Theorem 4.2. (G,,g",J) is ASS of the second kind related to YC if it satisfies « # 0, B = 0, %2 -

20y + ¢ = 0. And specifically
, g\ (- 0 0)\(g"
Ric |g¥|=] 0 -o* -<||g!].

gy - a

S

0 2 0
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n(F L@
Dfg,|=| 0 072 _(217 9,
a3 0 ¢« <« \g
Proof. For (G,,VY), according to (4.1), we have
. _y - af
P @1, 3)) = (@ +5°), p'(@).43) = ap. p (qiqi)-—T
o2 4.7
@3 =~ + B, p'(@3,85) = = (@5, 43) =

By (4.2), the Ricci operator can be expressed as

~ ap ~
(@ A A I ]
Ric q2 af -a? - B -% qg

CI3 0 q3

[N

2 T
As aresult, the scalar curvature can be obtained as s = —2a? —232. If (G, g¥, J) is ASS of the second
kind related to the YC, and by ie‘iEY = (s¥ Ay + ¢)Id + D, we can get

Dgy = [-0 = B + 207 + 251 - c1g] +af + 74,

DGy = afg) + [~ = B> + (2a” + 27 — c1g; ~ %q{

DGy = ~%q} + S3% + [2* + 289 - ¢l
Therefore, by (4.6) and ASS of the second kind related to the YC can be established if it satisfies

20 Ay — % — 20 + 2321y — ac = 0,
a/2,8 =0,
B =0, (4.8)
28° ) — 2a%B + 2a°BAy — Bc = 0
283 — &*B + 2a*BAy — Bc = 0
Since a # 0, by solving the second and third equations of (4.8) imply that 8 = 0. In this case, the first
equation of (4.8) can be simplified to

3
20° Ay — % —ac =0,

we have & — 204y + ¢ = 0. Thus we get Theorem 4.2.

Theorem 4.3. (G, g¥,J) is ASS of the second kind related to YC if it satisfies « = 8 = 0, y # 0,
¢ = v*(2Ay — 1). And specifically

Ric

(@) (Y 0 0\(a
gl=1 0 - 0||g].
7 0 0 7
a) (0 0 0)(q
Ao o))
gr) 0 o0 y\g
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Proof. For (G,, V"), according to (4.1), we can get
P @1.a) =B =7 p'@.4) =0, p'(@).43) =0,
P'@.4,) = =y’ = 2aB, p"(@3.43) = By — @y, p'(q3.33) = 0.
By (4.2), the Ricci operator can be expressed as

[\ (F-7 0 0 (a4
Ric |g3 | = 0 —y* =2aB ay-By||d].
qr 0  By-ay 0 J\g

As a result, the scalar curvature can be obtained as s* = 52 — 2y* — 2ap. If (G,,g",J) is ASS of the
second kind related to the YC, and by ie‘iZY = (s¥ Ay + ¢)Id + D, we can get
DG\ = (B> =y* = B Ao + 2y* Ao + 2B — ©)§;,
DG} = (=y* = 2aB = Ao + 2y* Ao + 2084 — ©)G; + (ay = BY)G3
DG} = (By — ay)qy + (=B Ao + 2y* Ao + 2aBy — ©)G5.
Therefore, by (4.6) and ASS of the second kind related to the YC can be established if it satisfies
B — By + 2ay? — 4By* — 2a8% + 2By* Ay + 2e32 Ay — Bc = 0,
B =By — 2By + 2ay* + 2aB% + 2By Ay + 2821y — Bc = 0,
Y =2y = 3%y + B2y Ao + 2aBy — 208y + yc = 0,
af? = 2a°B — af*Ay + 2ay* Ay + 2a*BAy — ac = 0.
By solving the first and second equations of (4.9) imply that

4.9)

2ap% + By* = 0.
Since y # 0, we have 5 = 0. In this case, the first equation of (4.9) reduces to
2ay2 =0,
we get @ = 0. In this case, the third equation of (4.9) can be simplified to
Y =2y’ +yc =0,
then we have ¢ = y*(24y — 1). Thus we get Theorem 4.3.

Theorem 4.4. (Gs,g",J) is ASS of the second kind related to YC if it satisfies ASS of the first kind
related to YC.

Proof. For (G3,VY), according to (4.1), we have
P @y.a) =By, '@, 33) =0, p(@).33) = 0,
'@ 3) =y —ay, PN (@.33) =0, p'(@.33) = 0.

By (4.2), the Ricci operator can be expressed as

., ay By 0 0)(ay
Ric |g¥|=] 0 —y*-ay Of|g}|.
(}éj 0 0 0 qg

Since pY(Zjl.Y,q}/) = pY(c}}/,Z]iY), then p¥ (!, (}}/) = pY(ij,q}/). So (Gs,g¥,J) is ASS of the second kind
related to YC if it satisfies ASS of the first kind related to YC.
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Theorem 4.5. The LG G4 cannot be ASS of a second kind related to the YC.

Proof. For (G4, V"), according to (4.1), we can get

pY@Gl.a) =2n-g -1, p"@G.3) =0, 5@, 3) =0,

vy o P S
'@y, 3y) =2an-aB -1, p' (@, 35) = > 2 @.q) = 0.

)
a |-

7

By (4.2), the Ricci operator can be expressed as

(@) (B2 0 0
Ric |g) | = 0 2an—oB -1 -%

i 0 3 0

As a result, the scalar curvature can be obtained as s¥ = —8% + 2an + 281y — off — 2. If (G4, g¥,J) is
ASS of the second kind related to the YC, and by IFSEY = (s¥ Ay + ¢)Id + D, we can get

DY = (=B + 2o + 2B — 2amA — 2Bndo + aBlo + 240 — 1 — )G,
D3y = (B2 Ao + 2an — o — 2andg — 2Bndo + aflo + 240 — 1 — 0)q) — 43,
Dg; = 54, + (B> = 2ando — 210 + affdo + 229 = 0)G;

Therefore, by (4.6) and ASS of the second kind related to the YC can be established if it satisfies
a+ (2n - BB — B2y — 2an — 2B + aff + 2andy + 2By — affdy — 29+ 2 +¢) = 0,
B =By — ap? — 28 + 2B Ay — af’ Ay + 2aBn + 2andy — 2By — a + Bc = 0,

By — B+ an +2Bn — aff — 2andy — 2Bndo + aBly +24p— 1 —c = 0,
20°n — a?B + af® — 2a°nAy + By + af? Ay — 2aB8n — 2aBndy + 2ady — ac = 0.

(4.10)

By the first equation of (4.10), we assume that
a=0,8="2n.

On this basis, by the second equation of (4.10), we get ¢ = 24,. By the third equation of (4.10), we
have ¢ = 24y — 1, and there is a contradiction. One can prove Theorem 4.5.

Theorem 4.6. (Gs,g",J) is ASS of the second kind related to YC if it satisfies ASS of the first kind
related to YC.

Proof. For (Gs, V"), according to (4.1), we can get
p'@.a) =p"@.35) =p"@G).35) =0,
p'@.3) =p"@.35) =p"@.35) =0.

By (4.2), the Ricci operator can be expressed as

(@) (0 0 0\(q
Ric |gy|=10 0 Of|gy|.
g3) \0 0 0Jg;

Since p"(3).3) = p"(@!.q)) = 0. then 5"(3).3}) = p"(@!.3}) = 0. So (Gs.g".J) is ASS of the
second kind related to YC if it satisfies ASS of the first kind related to YC.
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Theorem 4.7. (Gg, g",J) is ASS of the second kind related to YC if it satisfies ASS of the first kind
related to YC.

Proof. For (G, VY), according to (4.1), we have

Y@, q)) = -By +a?, p'@).qy) =0, p¥@G},33) =0,
(@33 = -, '@, q3) =0, 5@, q3) = 0.

ay
7 |-

7

By (4.2), the Ricci operator can be expressed as

. gr -a*-By 0 0
Ric |g¥|= 0 —a* 0
g 0 0 0

Since p"(g},}) = p"(G},q)). then p¥(G!,G)) = p"(@G!.G}). So (Ge,g",J) is ASS of the second kind
related to YC if it satisfies ASS of the first kind related to YC.

Theorem 4.8. (G,g",J) is ASS of the second kind related to YC if it satisfies« = 8 =y = ¢ = 0,
0 # 0. And specifically
=i 9
Ric |gy[=[0 0 Of|g}|,
gy 0 0 0)\g}

7 (0 0 0@
Dcé:() 2() -t czg
;) \0 22 0 )\g;

Proof. For (G;,VY), according to (4.1), we can get

Y ~Y):ﬁ5—043

2 @r.q) = -ad% p'G .3 R '@}, 33y) = aB + s,

F+6+ad+By _y oy .y

p'@ ) =~ =B =By, p'(@,3:) = 5 . P'(@3.85) = 0.
According to (4.2), the Ricci operator can be expressed as
B T B S C Ry A T
Ric qg — ﬁé;aﬁ _az _ﬁz —,37 _ o +(5+2a/(5+,67 ~§ )
@) \aB+ps — Crotedudy 0 7

As a result, the scalar curvature can be obtained as s = —2a? — 5% — By. If (G7,g¥,J) is ASS of the
second kind related to the YC, and by IF?%Y = (s¥ Ay + ¢)Id + D, we can get

Dg! = (=a? + 2% + B2 + Bydo — O)F) + EB5LGY — (aB + Bo)gL,
—af ~ ~ 2 11 ~
DG} = BB + (=a? = B2 + 2022 + B2 Ao — By + Pydy — )G} — TEELBr gY

2
D! = (B +Bo)g + TP GY 4 (202 Ao + B2 + By do — ).
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Therefore, by (4.6) and ASS of the second kind related to the YC can be established if it satisfies

@ -2’ + %01,82 - %a/éz - %026 + %,826 —ap?Ay - %afé + %aﬁy + oy — afydy + ac = 0,
B + 2a*BA + By Ay — 1a°B — B6* — 2aBs — e = 0,

B =By + a?B - 2a*BAy — BEyAy — oSS — 56 + Bc = 0,

2072 — 176 — 1a6® - 3B%6 — Laf* + aB?Ay — Sad — aPy + 3By + afydy — ac =0,

B+ B+ 1a°B — 36°B + 22y + By Ao — 2035 — e = 0,

B + 1B6* + 202BAg + By Ao + 3036 — Bc = 0,

10°B — By = By — 388" + 207y Ao + By Ao + By Ao + a5 — ye = 0,

16% = LaB* - 3B%6 + 1ad® + 162 — 22?61y — B*6g + ByS — SaBy — BSydg + 6¢c = 0,

18% + 2aB? + 3576 — a*S + 36% + 2a%6 Ay + 2610 + BS + 306 + afy — 3By + Byddy — 6¢ = 0.

(4.11)

Because @ + 6 = 0 as well ay = 0. Let’s first suppose @ = 0. On this basis, (4.11) reduces to

38%6 + By = 0,

B + B*ydy — B5* — Be = 0,

B =B = BPydo — BS + Bc = 0,

376 — 3B6y = 0,

B+ B — 16°B + ByAo — Bc = 0, (4.12)
BAo + 3B6% + Brydg — Be = 0,

By + By* + 3867 — By do — By* Ao + yc = 0,

16° = 3326 + 16% = f*610 + ByS — Boydo + 6¢ = 0,

26% + 1B%6 + 16 + 2610 + B — 3BYS + BydAy — 6c = 0.

If y # 0 as well ¢ # 0, on this basis, the first and fourth equations of (4.12) can be simplified to

Boy =0,

we get S = 0. The seventh equation of (4.12) reduces to

ve =0,

we obtain ¢ = 0. The eighth and ninth equations of (4.12) can be simplified to

5 —6>-26c=0,

we have ¢ = %(52 + 0), and there is a contradiction. If y = 0 as well 6 # 0, on this basis, we calculate

that

B =0,
B0 — B6* — e = 0,
B’ =B =B + e =0,

3+ — 36°B—Bc =0,

ﬁmﬁloézz_ﬁ_'% (4.13)
(N SR

5,85 :O,

168° = 3% + 162 = p*649 + 6¢ = 0,
16% + 1B%6 + 167 + 2620 + B — 6c = 0.
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By solving (4.13), we obtain 8 = ¢ = 0. Suppose second that @ # 0, @ + 6 # 0 as well y = 0. In this
case, (4.11) can be simplified to

@ —2a’ Ay + %0482 — %aéz — %a/zé + %,826 —afPAy - %afé +ac =0,
B+ 2a*BAy — 3B - B6* — 3aBs — Bc =0,

B =B + a*B - 2a*BAy — aPs — B + e = 0,

2072 — 3076 — 1a6® — 3B%6 — 1ot + aBf?Ay — Jad — ac =0,

B+ B+ 3a°B — 36°B + 27BAy — 2a6 — Be = 0,

B + 3B6* + 202y + 3aBS — e = 0,

1a*B - 3B8* + afs = 0,

16% = 1aB* — 3B%6 + 1ad® + 167 — 2?64y — B0y + 6¢c = 0,

36° + 3B + 376 — P + 367 + 2a%6Ay + 76y + BS + 306 — 6¢ = 0.

Next suppose that 8 = 0, we have

@ =2a°1, - %aéz — %afzé — %aé +ac =0,

2032, — %azé - %aéz - %aé —ac =0,
16% + 1ad® + 16 = 22?640 + 6¢ = 0,

36° —a?6 + 36% + 2276y + 306 — 6¢ = 0.

(4.14)

Then we get
1 1
@ +8 - —ad*+6 —a*6— —ad = 0.
2 2
Let o = 46, A # 0, it becomes

B -212- %/l + D&+ (1 - %1)52 =0,

-2
we have 6 = P2l i3 For a = 10, (4.14) now reduces to
A6 = 16> — 16 + 36" = 22%6% A + ¢ = 0,
167+ 16+ 126" - 22%6° A + ¢ = 0,
6% — 367 — 16 — 346 = 22%6° g + ¢ = 0.

A simple computation demonstrates that the result is 6 = —1, then we get 4 = 1, @ = —1. In this case,
we have ¢ = —3 + 24 and ¢ = —1 + 2., so there is a contradiction. Thus it turns out Theorem 4.8.

5. Conlusions

We focus on the existence conditions of ASS related to YC in the context of three-dimensional LLG.
We classify those ASS in three-dimensional LLG. The major results demonstrate that ASS related to
YC are present in Gy, G,, G3, G5, Gg and G5, while they are not identifiable in G4. Based on this
research, we will explore gradient Schouten solitons associated with YC using the theories in [31-33].
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