Citation: Jonas Schnitzer. No-go theorems for $ r $-matrices in symplectic geometry[J]. Communications in Analysis and Mechanics, 2024, 16(3): 448-456. doi: 10.3934/cam.2024021
[1] | F. Bayen, M. Flato, C. Frønsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and quantization. I. Deformations of symplectic structures, Ann. Phys., 111 (1978), 61–151. https://doi.org/10.1016/0003-4916(78)90224-5 doi: 10.1016/0003-4916(78)90224-5 |
[2] | M. Gerstenhaber, On the Deformation of Rings and Algebras, Ann. Math., 79 (1964), 59–103. https://doi.org/10.2307/1970484 doi: 10.2307/1970484 |
[3] | M. Kontsevich, Deformation quantization of {P}oisson manifolds, Lett. Math. Phys., 66 (2003), 157–216. https://doi.org/10.1023/B:MATH.0000027508.00421.bf doi: 10.1023/B:MATH.0000027508.00421.bf |
[4] | V. Dolgushev, Covariant and equivariant formality theorems, Adv. Math., 191 (2005), 147–177. https://doi.org/10.1016/j.aim.2004.02.001 doi: 10.1016/j.aim.2004.02.001 |
[5] | C. Kassel, Quantum Groups, Graduate Texts in Mathematics, Springer-Verlag, 1995. |
[6] | C. Esposito, J. Schnitzer, S. Waldmann, A universal construction of universal deformation formulas, Drinfeld twists and their positivity, Pacific J. Math., 291 (2017), 319–358. https://doi.org/10.2140/pjm.2017.291.319 doi: 10.2140/pjm.2017.291.319 |
[7] | P. Bieliavsky, C. Esposito, S. Waldmann, T. Weber, Obstructions for twist star products, Lett. Math. Phys., 108 (2018), 1341–1350. https://doi.org/10.1007/s11005-017-1034-z doi: 10.1007/s11005-017-1034-z |
[8] | F. D'Andrea, T. Weber, Twist star products and Morita equivalence, C. R. Math., 355 (2017), 1178–1184. https://doi.org/10.1016/j.crma.2017.10.012 doi: 10.1016/j.crma.2017.10.012 |
[9] | V. Drinfel'd, Constant quasiclassical solutions of the Yang–Baxter quantum equation, Dokl. Akad. Nauk SSSR, 273 (1983), 531–535. In Russian; translated in Soviet Math. Dokl. 28 (1983), 667–671. |
[10] | O. Baues, V. Cortés, Symplectic Lie groups, Astérisque, 379 (2016). |
[11] | L. P. Castellanos Moscoso, H. Tamaru, A classification of left-invariant symplectic structures on some Lie groups, Beitr. Algebra Geom., 64 (2023), 471–491. https://doi.org/10.1007/s13366-022-00643-1 doi: 10.1007/s13366-022-00643-1 |
[12] | G. Ovando, Four dimensional symplectic Lie algebras, Beitr. Algebra Geom., 47 (2006), 419–434. |
[13] | S. Salamon, Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra, 157 (2001), 311–333. https://doi.org/10.1016/S0022-4049(00)00033-5 doi: 10.1016/S0022-4049(00)00033-5 |
[14] | D. V. Alekseevsky, A. M. Perelomov, Poisson and symplectic structures on Lie algebras. I, J. Geom. Phys., 22 (1997), 191–211. https://doi.org/10.1016/S0393-0440(96)00025-3 doi: 10.1016/S0393-0440(96)00025-3 |
[15] | P. Etingof, O. Schiffmann, Lectures on Quantum groups, International Press, Boston, 1998. |
[16] | V. Drinfel'd, On Poisson homogeneous spaces of Poisson-Lie groups, Theor. Math. Phys., 95 (1993), 524–525. https://doi.org/10.1007/BF01017137 doi: 10.1007/BF01017137 |
[17] | J. H. Lu, A. Weinstein, Poisson Lie groups, dressing transformations, and Bruhat Decompositions, J. Diff. Geom., 31 (1990), 501–526. https://doi.org/10.4310/jdg/1214444324 |
[18] | R. Nest, B. Tsygan, Deformations of symplectic Lie algebroids, deformations of holomorphic symplectic structures, and index theorems, Asian J. Math., 5 (2001), 599–635. https://dx.doi.org/10.4310/AJM.2001.v5.n4.a2 doi: 10.4310/AJM.2001.v5.n4.a2 |
[19] | J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv., 32 (1958), 215–223. https://doi.org/10.1007/BF02564579 doi: 10.1007/BF02564579 |