Research article Special Issues

No-go theorems for $ r $-matrices in symplectic geometry

  • Received: 17 November 2023 Revised: 31 January 2024 Accepted: 16 May 2024 Published: 01 July 2024
  • 53D05, 16W25

  • If a triangular Lie algebra acts on a smooth manifold, it induces a Poisson bracket on it. In case this Poisson structure is actually symplectic, we show that this already implies the existence of a flat connection on any vector bundle over the manifold the Lie algebra acts on, in particular the tangent bundle. This implies, among other things, that $ \mathbb{C}P^n $ and higher genus Pretzel surfaces cannot carry symplectic structures that are induced by triangular Lie algebras.

    Citation: Jonas Schnitzer. No-go theorems for $ r $-matrices in symplectic geometry[J]. Communications in Analysis and Mechanics, 2024, 16(3): 448-456. doi: 10.3934/cam.2024021

    Related Papers:

  • If a triangular Lie algebra acts on a smooth manifold, it induces a Poisson bracket on it. In case this Poisson structure is actually symplectic, we show that this already implies the existence of a flat connection on any vector bundle over the manifold the Lie algebra acts on, in particular the tangent bundle. This implies, among other things, that $ \mathbb{C}P^n $ and higher genus Pretzel surfaces cannot carry symplectic structures that are induced by triangular Lie algebras.


    加载中


    [1] F. Bayen, M. Flato, C. Frønsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and quantization. I. Deformations of symplectic structures, Ann. Phys., 111 (1978), 61–151. https://doi.org/10.1016/0003-4916(78)90224-5 doi: 10.1016/0003-4916(78)90224-5
    [2] M. Gerstenhaber, On the Deformation of Rings and Algebras, Ann. Math., 79 (1964), 59–103. https://doi.org/10.2307/1970484 doi: 10.2307/1970484
    [3] M. Kontsevich, Deformation quantization of {P}oisson manifolds, Lett. Math. Phys., 66 (2003), 157–216. https://doi.org/10.1023/B:MATH.0000027508.00421.bf doi: 10.1023/B:MATH.0000027508.00421.bf
    [4] V. Dolgushev, Covariant and equivariant formality theorems, Adv. Math., 191 (2005), 147–177. https://doi.org/10.1016/j.aim.2004.02.001 doi: 10.1016/j.aim.2004.02.001
    [5] C. Kassel, Quantum Groups, Graduate Texts in Mathematics, Springer-Verlag, 1995.
    [6] C. Esposito, J. Schnitzer, S. Waldmann, A universal construction of universal deformation formulas, Drinfeld twists and their positivity, Pacific J. Math., 291 (2017), 319–358. https://doi.org/10.2140/pjm.2017.291.319 doi: 10.2140/pjm.2017.291.319
    [7] P. Bieliavsky, C. Esposito, S. Waldmann, T. Weber, Obstructions for twist star products, Lett. Math. Phys., 108 (2018), 1341–1350. https://doi.org/10.1007/s11005-017-1034-z doi: 10.1007/s11005-017-1034-z
    [8] F. D'Andrea, T. Weber, Twist star products and Morita equivalence, C. R. Math., 355 (2017), 1178–1184. https://doi.org/10.1016/j.crma.2017.10.012 doi: 10.1016/j.crma.2017.10.012
    [9] V. Drinfel'd, Constant quasiclassical solutions of the Yang–Baxter quantum equation, Dokl. Akad. Nauk SSSR, 273 (1983), 531–535. In Russian; translated in Soviet Math. Dokl. 28 (1983), 667–671.
    [10] O. Baues, V. Cortés, Symplectic Lie groups, Astérisque, 379 (2016).
    [11] L. P. Castellanos Moscoso, H. Tamaru, A classification of left-invariant symplectic structures on some Lie groups, Beitr. Algebra Geom., 64 (2023), 471–491. https://doi.org/10.1007/s13366-022-00643-1 doi: 10.1007/s13366-022-00643-1
    [12] G. Ovando, Four dimensional symplectic Lie algebras, Beitr. Algebra Geom., 47 (2006), 419–434.
    [13] S. Salamon, Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra, 157 (2001), 311–333. https://doi.org/10.1016/S0022-4049(00)00033-5 doi: 10.1016/S0022-4049(00)00033-5
    [14] D. V. Alekseevsky, A. M. Perelomov, Poisson and symplectic structures on Lie algebras. I, J. Geom. Phys., 22 (1997), 191–211. https://doi.org/10.1016/S0393-0440(96)00025-3 doi: 10.1016/S0393-0440(96)00025-3
    [15] P. Etingof, O. Schiffmann, Lectures on Quantum groups, International Press, Boston, 1998.
    [16] V. Drinfel'd, On Poisson homogeneous spaces of Poisson-Lie groups, Theor. Math. Phys., 95 (1993), 524–525. https://doi.org/10.1007/BF01017137 doi: 10.1007/BF01017137
    [17] J. H. Lu, A. Weinstein, Poisson Lie groups, dressing transformations, and Bruhat Decompositions, J. Diff. Geom., 31 (1990), 501–526. https://doi.org/10.4310/jdg/1214444324
    [18] R. Nest, B. Tsygan, Deformations of symplectic Lie algebroids, deformations of holomorphic symplectic structures, and index theorems, Asian J. Math., 5 (2001), 599–635. https://dx.doi.org/10.4310/AJM.2001.v5.n4.a2 doi: 10.4310/AJM.2001.v5.n4.a2
    [19] J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv., 32 (1958), 215–223. https://doi.org/10.1007/BF02564579 doi: 10.1007/BF02564579
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(194) PDF downloads(36) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog