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Abstract: If a triangular Lie algebra acts on a smooth manifold, it induces a Poisson bracket on it.
In case this Poisson structure is actually symplectic, we show that this already implies the existence
of a flat connection on any vector bundle over the manifold the Lie algebra acts on, in particular the
tangent bundle. This implies, among other things, that CPn and higher genus Pretzel surfaces cannot
carry symplectic structures that are induced by triangular Lie algebras.
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1. Introduction

Formal deformation quantization was introduced in [1] in order to give a consistent definition of
the term quantization. A formal deformation quantization is an associative formal deformation à la
Gerstenhaber [2] of the commutative algebra of smooth functions on a Poisson manifold (M, π), such
that the first order of the commutator coincides with the Poisson bracket. The deformed product is
usually referred to as a star product. The question of existence of star products for generic Poisson
manifolds has been answered positively by Kontsevich in [3], but nevertheless there is a lack of concrete
formulas for star products, since Kontsevich’s approach is based on globalizing already complicated
local formulas in a non-trivial way, see [4]. Another option is to quantize via so-called Drinfel’d twists
which are certain elements in (U(g) ⊗U(g))[[~]], whereU(g) denotes the universal enveloping algebra
of the (finite dimensional) Lie algebra g which acts on M and induces a star product via this action, see
the textbook [5] and references therein for more details. These twists can be of the same complexity
as a star product, but can also in some sense be more accessible, and there are recursive formulas
known, see [6]. Moreover, a Drinfel’d twist does not only deform the commutative product, but also the
symmetries into a so called quantum group, see [5], and thus from many angles it is nice to have a star
product which is induced by a twist. There is one downside to this line of action: not every Poisson
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manifold can be quantized in this way, see [7, 8] for certain no-go theorems. The main problem using
this approach, is that the given Poisson structure has to be induced by an r-matrix, the semi-classical
limit of the Drinfel’d twist, which is a certain element in Λ2g, via the action of a Lie algebra. If a Poisson
structure is induced by an r-matrix, we can always find a Drinfel’d twist with the pre-described r-matrix
as a semi-classical limit, see [6, 9], and this twist then induces a quantization of the Poisson structure.

We are using quantization mainly as a motivation, and we will only concentrate on the semi-classical
version: Poisson structures induced by r-matrices. We refer the reader to Section 2 for details. Note
that this situation is also desirable if one is not interested in quantization, since a lot of computations in
symplectic geometry can be performed directly on the Lie algebra level which is finite dimensional.
Moreover, r-matrices on their own gained popularity in the field of integrable systems, as they are
special cases of infinitesimal counterparts of Poisson-Lie groups, see [5]. Additionally, r-matrices
themselves can be seen as left (or right) invariant Poisson structures on Lie groups, and as such they
possess a symplectic foliation. It turns out that the symplectic leaf through the unit of the Lie group
is a subgroup with an invariant symplectic structure, a so-called symplectic Lie group. They have
been studied extensively (see [10] for an introduction to symplectic Lie groups) and even have been
classified up to dimension 4 and partly up to dimension 6 (at least on the Lie algebra level, [11–13]), but
unfortunately are rather rare. So, already from this point of view, the situation where the Poisson bracket
is induced by an r-matrix seems to be rare as well. Nevertheless, we focus on exactly this situation.

This note is devoted to find obstructions to the situation that a given Poisson bracket is induced by an
r-matrix extending the ones found in [7] and [8]. We will focus on the case where the Poisson structure
is actually symplectic, where we can show that the tangent bundle of the symplectic manifold has to
carry a flat connection as a special case of an equivariant vector bundle (Theorem 3.6). We exclude
some well known examples of symplectic manifolds with our obstruction.

2. Preliminaries

This section is meant to fix the notation for the rest of this note and only describes rather standard
techniques and is spelled out in detail, for example, in [6].

For a Lie algebra (g, [·, ·]), we extend the Lie bracket [·, ·] : Λ•g × Λ•g→ Λ•+•−1g by

[X1 ∧ · · · ∧ Xk,Y1 ∧ · · · ∧ Y`] :=
∑

i, j

(−1)i+ j[Xi,Y j] ∧ X1 ∧ · · ·
i
∧ · · · ∧ Xk ∧ Y1 ∧ · · ·

j
∧ · · · ∧ Y`,

where
i
∧ and

j
∧ denotes the omission of Xi and Y j, respectively. Note that (Λ•g, [·, ·],∧) is a Gerstenhaber

algebra as usual.

Definition 2.1. Let (g, [·, ·]) be a Lie algebra. An element r ∈ Λ2g is called r-matrix if

[r, r] = 0.

In this case, the triple (g, [·, ·], r) is called triangular Lie algebra.

Remark 2.2. An r-matrix r on a Lie algebra g always induces a Lie bialgebra structure δr : g→ Λ2g.
In fact, r satisfies the classical Yang-Baxter equation (CYBE). We will not use the bialgebra structure in
this short note. For more details on this, we refer the reader to [14] and [5].
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Note that the condition [r, r] = 0 implies that

[r, ·] : Λ•g→ Λ•+1
g

induces a differential, i.e. [r, ·]2 = 0. If we use r to induce the contraction r] : g∗ → g and extend it to
r] : Λ•g∗ → Λ•g, it is a chain map

r] : (Λ•g∗, δCE)→ (Λ•g, [r, ·]),

where δCE is the Chevalley-Eilenberg differential with trivial representation. Let us denote by hr :=
im(r]) ⊆ g. It can be shown that this is a Lie subalgebra, see e.g. [6, 7]. If hr = g, we call r
non-degenerate. Note that r ∈ Λ2hr ⊆ Λ2g and (hr, [·, ·], r) is a triangular Lie algebra with r being
non-degenerate, see [15, Prop. 3.2-3.3]. For a non-degenerate r-matrix r on g, there is always a unique
element ω ∈ Λ2g∗ with r](ω) = r which has the following properties:

1. The contraction map ω[ : g→ g∗ is an isomorphism, and r] = (ω[)−1.
2. δCEω = 0.

A Lie algebras together with a 2-cocycleω fulfilling condition 1 as above is called symplectic Lie algebra.
Symplectic Lie algebras have been extensively studied and even have been completely classified up
to dimension 4 and partly up to dimension 6, see [12, 13]. Moreover, it is clear that a symplectic Lie
algebra is always triangular.

In this note, we are not particularly interested in triangular Lie algebras, but in their infinitesimal
action on a smooth manifold, i.e. Lie algebra maps

. : g→ Γ∞(T M).

For an element ξ ∈ g we call ξ. ∈ Γ∞(T M) the fundamental vector field of ξ. We can also extend this
action to a map . : Λ•g → Γ∞(Λ•T M) of Gerstenhaber algebras. An immediate consequence is the
following corollary which already appeared in [14].

Corollary 2.3. Let (g, [·, ·], r) be a triangular Lie algebra and let . : g → Γ∞(T M) be a Lie algebra
action on a smooth manifold. Then

πr = r. ∈ Γ∞(Λ2T M)

is a Poisson structure. Moreover, πr is said to be induced by the r-matrix r. If we restrict the action to
(hr, [·, ·], r) the same Poisson structure is induced.

This corollary shows in particular that if a Poisson structure is induced by an r-matrix, it is canonically
induced by a symplectic Lie algebra. One of the first examples of this situation is of course if g = Lie(G)
for some Lie group G. In this case, the action is just left translating and hence πr is a left invariant
Poisson structure on G and if r is non-degenerate this Poisson structure is actually symplectic and G is a
symplectic Lie group, see [10]. Nevertheless, it should be mentioned that the induced Poisson structure
is not invariant with respect to the action of g in general, but one can induce a Lie bialgebra structure on
g as already mentioned in Remark 2.2 and this Lie bialgebra acts on the Poisson manifold in the sense
of Drinfel’d (see [16]) and Lu and Weinstein (see [17]).
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Remark 2.4. Note that, even though a Poisson structure induced by an r-matrix is just built out of a
bilinear combination of fundamental vector fields, the Lie algebra action does not have to restrict to the
symplectic leaves of the Poisson structure. Recall that the symplectic leaves of a Poisson manifold (M, π)
are the integral submanifolds of the (possibly singular) involutive distribution spanned by Hamiltonian
vector fields { f , ·} ∈ Γ∞(T M) for f ∈ C∞(M). As an example, we consider the abelian Lie algebra R2

with the standard basis {e1, e2} and the r-matrix r = e1 ∧ e2. We consider the action . : R2 → Γ∞(TR2)
which is defined by

e1. =
∂

∂x
and e2. = y

∂

∂y
.

The induced Poisson structure is given by πr = y ∂
∂x ∧

∂
∂y , which has the symplectic leaves: R2 \ {y = 0},

and every point on the x-axis is zero dimensional leaf. Obviously, e1. is not tangential to {0} for example.

3. Symplectic structures induced by r-matrices

We have seen in Section 2 that, if a triangular Lie algebra acts on a manifold, the r-matrix always
induces a Poisson structure. Throughout this section, we will assume that this Poisson structure is
actually symplectic and derive some topological obstruction to this situation.

In the following, we fix a finite-dimensional real triangular Lie algebra (g, r) with non-degenerate
r ∈ Λ2g with inverse denoted by Ω ∈ Λ2g∗, a basis {ei}i∈I with dual {ei}i∈I , and an action . : g→ Γ∞(T M)
on a manifold, such that πr := r. ∈ Γ∞(Λ2T M) is actually symplectic with inverse ω ∈ Γ∞(Λ2T ∗M).
With the help of the non-degeneracies, we can define

.∗ : g∗ 3 α 7→ ω[(r](α).) ∈ Γ∞(T ∗M).

Remark 3.1. As already discussed in Section 2 the assumption that r is non-degenerate is not a
strong assumption, since we may always pass to a smaller Lie subalgebra in which the r-matrix is
non-degenerate.

Example 3.2.

• Let T 2 = S 1 × S 1 with the symplectic structure ω = dx ∧ dy. In this case, we can induce this
symplectic structure with the abelian Lie algebra g = R2 with the Lie algebra action e1 7→

∂
∂x and

e2 7→
∂
∂y and the r-matrix r = e1 ∧ e2. Similarly, one can induce the symplectic structure on (T 2)n

by the action of R2n. Note that ((T 2)n, ω) is a symplectic Lie group.
• We consider R2 \ {0} together with ω = dx ∧ dy. This symplectic structure can be induced by the

two-dimensional non-abelian Lie algebra which is generated by E, F fulfilling [E, F] = F. The
map defined by E 7→ −x ∂

∂x and F 7→ 1
x
∂
∂y is a Lie algebra map, and the r-matrix r = −E ∧ F

induces the symplectic structure ω.

Lemma 3.3. The extension .∗ : Λ•g∗ → Γ∞(Λ•T ∗M) is a chain map with respect to the Chevalley-
Eilenberg differential δCE : Λ•g∗ → Λ•+1g∗ and the usual de Rham differential d: Γ∞(Λ•T ∗M) →
Γ∞(Λ•+1T ∗M). Moreover, for a basis {ei}i∈I of g with dual {ei}i∈I ⊆ g

∗, we get for the induced vector
fields Xi = ei. and the corresponding 1-forms Θi = ei.∗ the following statements:

1. dΘi = −1
2Ci

klΘ
k ∧ Θl for [ei, e j] = Ck

i jek.
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2. Every vector field X ∈ Γ∞(T M) can be written as X = Θi(X)Xi and every 1-form α = α(Xi)Θi.
3. ω = 1

2Ωi jΘ
i ∧ Θ j, where Ω = 1

2Ωi jei ∧ e j.

Proof. Note that .∗ is a concatenation of three chain maps, namely

• r] : (Λ•g∗, δCE)→ (Λ•g, [r, ·]),
• . : (Λ•g, [r, ·])→ (Γ∞(Λ•T M), [πr, ·]) and
• ω[ : (Γ∞(Λ•T M), [πr, ·])→ (Γ∞(Λ•T ∗M), d).

Thus, the map .∗ is a chain map as well. Using this, we get the statements:

1. We have that δCEei = −1
2Ci

kle
k ∧ el and then we use the chain map .∗.

2. For a 1-form α ∈ Γ∞(T ∗M), using πr = 1
2ri jXi ∧ X j where ri j are the coefficients of r with respect

to the basis {ei}i∈I , we have

π]r(α) = α(Xi)ri jX j

= α(Xi)π]r(Θ
i)

= π]r(α(Xi)Θi),

where we use that Θi = ω[(ri jX j). Since π]r is non-degenerate, we can conclude α = α(Xi)Θi. For a
vector field X ∈ Γ∞(T M), we have for all β ∈ Γ∞(T ∗M)

β(X) = (β(Xi)Θi)(X) = β(Θi(X)Xi)

and thus X = Θi(X)Xi.
3. This follows directly from the previous parts.

Remark 3.4. The preceding lemma shows that the action of the Lie algebra has to be infinitesimally
transitive, i.e. on each tangent space the fundamental vector fields are generators since every tangent
vector at a point p can be written as a sum of fundamental vector fields evaluated at p (statement 2
from Lemma 3.3). Note that this does not imply that they are a basis on every tangent space, since the
action might fail to be infinitesimally free. In fact, Lemma 3.3 shows that the tangent bundle can be seen
as a Lie subalgebroid of the action Lie algebroid g × M → M via the map

TpM 3 Xp 7→ Θi
p(Xp)ei ∈ g.

Moreover, g × M is a symplectic Lie algebroid in the sense of [18], and T M becomes a symplectic Lie
subalgebroid.

Let us now assume that we additionally have a vector bundle E → M together with a Lie algebra
map .E : g → Γ∞(DE), such that σ(ξ.E) = ξ. for all ξ ∈ g. Here, we denote by DE → M the Atiyah
algebroid of E, whose smooth sections are first-order differential operators from E to E with scalar
symbol, and σ : DE → T M its anchor, i.e. the symbol map. We define

∇X s := Θi(X)ei .E s

for X ∈ Γ∞(T M) and s ∈ Γ∞(E).
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Lemma 3.5. The map ∇ : Γ∞(T M)→ Γ∞(DE) defines a flat connection.

Proof. We first have to check that ∇ is in fact a connection. It is clearly function linear in the vector
field part. Let X ∈ Γ∞(T M), s ∈ Γ∞(E), and f ∈ C∞(M), then

∇X f s = Θi(X)ei .E f s

= Θi(X)(ei . f )s + f Θi(X)ei .E s

= X( f )s + f∇X s,

where we used X = Θi(X)Xi from Lemma 3.3. To see that this connection is flat, we choose X,Y ∈
Γ∞(T M):

∇X∇Y s − ∇Y∇X s = Θi(X)ei .E (Θ j(Y)e j .E s) − Θi(Y)ei .E (Θ j(X)e j .E s)
= X(Θ j(Y))e j .E s + Θi(X)Θ j(Y)ei .E e j .E s

− Y(Θ j(X))e j .E s − Θi(Y)Θ j(X)ei .E e j .E s

= dΘ j(X,Y)e j .E s + Θ j([X,Y])e j .E s + Θi(X)Θ j(Y)[ei, e j] .E s

= dΘ j(X,Y)e j .E s + Θ j([X,Y])e j .E s + Ck
i jΘ

i(X)Θ j(Y)ek .E s

= Θ j([X,Y])e j .E s = ∇[X,Y]s,

where the last step makes use of Lemma 3.3 statement 1.

The rest of this note exploits this simple observation in order to obtain examples of symplectic
structures which cannot be induced by triangular Lie algebras. Let us start with the tangent bundle of
our given symplectic manifold (M, ω): the map

e j.TM : ξ 7→ [ξ.,−] ∈ Γ∞(DT M),

fulfills all the requirements, and thus we conclude the following theorem.

Theorem 3.6. Let (g, [·, ·], r) be a triangular Lie algebra with non-degenerate r, which induces a
symplectic structure on a manifold M. Then there exists a (not necessarily symmetric) flat connection on
the tangent bundle of M.

Remark 3.7. We want to stress that the implication of Theorem 3.6 is completely independent of the
symplectic structure and the triangular Lie algebra, which allows us to find counter examples very
easily without even referring to a specific Lie algebra action or a symplectic structure. For example,
this excludes every manifold with non-vanishing Pontryagin class.

Remark 3.8. Finding obstructions for a Poisson structure being induced by an r-matrix seems to be
much harder. In view of Remark 2.4, we cannot simply apply our obstruction leaf-wise to obtain similar
obstructions on each leaf. Nevertheless, finding those to a bigger class of Poisson structures, such as
symplectic fiber bundles and [-symplectic structures, is part of future work.

Theorem 3.6 implies in particular the main counter examples in [7] and [8], but we are using much
less advanced techniques.

Corollary 3.9. Let (g, [·, ·], r) be a triangular Lie algebra, which induces a symplectic structure on a
compact connected 2-dimensional manifold M. Then M is the torus.
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Proof. It is well known, see e.g. [19], that the only compact connected surface which admits a flat
connection on the tangent bundle is the torus. By Example 3.2, we know that we can find a symplectic
structure on T 2, which is induced by a triangular Lie algebra.

Since all complex projective spaces are simply connected and do not admit flat connections on their
tangent bundles, we immediately can conclude the following corollary.

Corollary 3.10. The complex projective space CPn cannot possess any symplectic structure that is
induced by a triangular Lie algebra for n ≥ 1.

Note that in [8] the authors only showed that the Fubini-Study symplectic structure on CPn cannot
be induced by an r-matrix defined on gln+1(C).

Using the the same line of thought, one can produce many counter examples: (complex analytic)
K3-surfaces are compact simply connected complex manifolds of complex dimension 2 with a trivial
canonical line bundle. It is well known that K3-surfaces are Kähler manifolds and thus symplectic.
Note, moreover, that their Pontryagin classes do not vanish, and thus we can conclude the following
corollary.

Corollary 3.11. A K3 surface (as a smooth manifold) cannot possess any symplectic structure that is
induced by a triangular Lie algebra.

As a last (class of) counter example(s), we show that we can produce non-compact ones. Let us
assume that we have a manifold M with non-trivial first Pontryagin class. It follows that the first
Pontryagin class of T ∗M is also non-vanishing and thus we obtain the following corollary

Corollary 3.12. For a manifold M with non-trivial first Pontryagin class, the canonical symplectic
structure ωcan ∈ Ω2(T ∗M) cannot be induced by a triangular Lie algebra.

As a last part of this section we want to consider an even more special case. Note that, in general, the
connection on the tangent bundle constructed above can not be the Levi-Civita connection of a metric,
since

Tor∇(X,Y) = dΘi(X,Y)Xi,

which generally does not vanish. If we assume that g is abelian, we immediately see that

Tor∇(X,Y) = 0,

using 3.3 and the vanishing of the structure constants of the Lie algebra. Moreover, we have

∇XXk = Θi(X)[Xi, Xk] = 0

for all X ∈ Γ∞(T M), and hence the Xi’s are parallel and thus ∇πr = 0, which implies ∇ω = 0.

Lemma 3.13. Let (M, ω) be a connected symplectic manifold and assume that ω is induced by a abelian
triangular Lie algebra. Then M admits a flat Kähler structure with symplectic form ω.
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Proof. Let Xi be the fundamental vector fields of a basis {ei}i∈I of an abelian triangular Lie algebra of
(g, [·, ·], r). Since the action is infinitesimally transitive (Lemma 3.3), we can choose {Xi`}1≤`≤dim(M) such
that they form a basis of TpM at some p ∈ M. Using the connectedness of M and the flatness of the Xi’s,
we conclude that the choice {Xi`}1≤`≤dim(M) are a basis at every point. We define a metric g ∈ Γ∞(S2T ∗M)
by declaring them orthonormal, and thus ∇ is the Levi-Civita connection of g. This makes (M, ω, g) a
flat Kähler manifold.

Remark 3.14. Note that all the symplectic manifolds we discussed in this short note cannot possess
star products which are induced by Drinfel’d twists, simply because we already excluded the first order
term, see [6, 7] for the exact statements.
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